SAFE-OPT: A Bayesian optimization algorithm for learning optimal deep brain stimulation parameters with safety constraints

To treat neurological and psychiatric diseases with deep brain stimulation, a trained clinician must select parameters for each patient by monitoring their symptoms and side-effects in a months-long trial-and-error process, delaying optimal clinical outcomes. Bayesian optimization has been proposed...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:bioRxiv
Hlavní autori: Cole, Eric R, Connolly, Mark, Ghetiya, Mihir, Sendi, Mohammad, Kashlan, Adam, Eggers, Thomas, Robert Elkan Gross
Médium: Paper
Jazyk:English
Vydavateľské údaje: Cold Spring Harbor Cold Spring Harbor Laboratory Press 16.02.2024
Cold Spring Harbor Laboratory
Vydanie:1.1
Predmet:
ISSN:2692-8205, 2692-8205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To treat neurological and psychiatric diseases with deep brain stimulation, a trained clinician must select parameters for each patient by monitoring their symptoms and side-effects in a months-long trial-and-error process, delaying optimal clinical outcomes. Bayesian optimization has been proposed as an efficient method to quickly and automatically search for optimal parameters. However, conventional Bayesian optimization does not account for patient safety and could trigger unwanted or dangerous side-effects. In this study we develop SAFE-OPT, a Bayesian optimization algorithm designed to learn subject-specific safety constraints to avoid potentially harmful stimulation settings during optimization. We prototype and validate SAFE-OPT using a rodent multielectrode stimulation paradigm which causes subject-specific performance deficits in a spatial memory task. We first use data from an initial cohort of subjects to build a simulation where we design the best SAFE-OPT configuration for safe and accurate searching in silico. We then deploy both SAFE-OPT and conventional Bayesian optimization in new subjects in vivo, showing that SAFE-OPT can find an optimally high stimulation amplitude that does not harm task performance with comparable sample efficiency to Bayesian optimization and without selecting amplitude values that exceed the subject-specific safety threshold. The incorporation of safety constraints will provide a key step for adopting Bayesian optimization in real-world applications of deep brain stimulation.Competing Interest StatementThe authors have declared no competing interest.
AbstractList To treat neurological and psychiatric diseases with deep brain stimulation, a trained clinician must select parameters for each patient by monitoring their symptoms and side-effects in a months-long trial-and-error process, delaying optimal clinical outcomes. Bayesian optimization has been proposed as an efficient method to quickly and automatically search for optimal parameters. However, conventional Bayesian optimization does not account for patient safety and could trigger unwanted or dangerous side-effects. In this study we develop SAFE-OPT, a Bayesian optimization algorithm designed to learn subject-specific safety constraints to avoid potentially harmful stimulation settings during optimization. We prototype and validate SAFE-OPT using a rodent multielectrode stimulation paradigm which causes subject-specific performance deficits in a spatial memory task. We first use data from an initial cohort of subjects to build a simulation where we design the best SAFE-OPT configuration for safe and accurate searching in silico. We then deploy both SAFE-OPT and conventional Bayesian optimization in new subjects in vivo, showing that SAFE-OPT can find an optimally high stimulation amplitude that does not harm task performance with comparable sample efficiency to Bayesian optimization and without selecting amplitude values that exceed the subject-specific safety threshold. The incorporation of safety constraints will provide a key step for adopting Bayesian optimization in real-world applications of deep brain stimulation.Competing Interest StatementThe authors have declared no competing interest.
To treat neurological and psychiatric diseases with deep brain stimulation, a trained clinician must select parameters for each patient by monitoring their symptoms and side-effects in a months-long trial-and-error process, delaying optimal clinical outcomes. Bayesian optimization has been proposed as an efficient method to quickly and automatically search for optimal parameters. However, conventional Bayesian optimization does not account for patient safety and could trigger unwanted or dangerous side-effects. In this study we develop SAFE-OPT, a Bayesian optimization algorithm designed to learn subject-specific safety constraints to avoid potentially harmful stimulation settings during optimization. We prototype and validate SAFE-OPT using a rodent multielectrode stimulation paradigm which causes subject-specific performance deficits in a spatial memory task. We first use data from an initial cohort of subjects to build a simulation where we design the best SAFE-OPT configuration for safe and accurate searching in silico. We then deploy both SAFE-OPT and conventional Bayesian optimization in new subjects in vivo, showing that SAFE-OPT can find an optimally high stimulation amplitude that does not harm task performance with comparable sample efficiency to Bayesian optimization and without selecting amplitude values that exceed the subject’s safety threshold. The incorporation of safety constraints will provide a key step for adopting Bayesian optimization in real-world applications of deep brain stimulation.
Author Sendi, Mohammad
Robert Elkan Gross
Cole, Eric R
Ghetiya, Mihir
Kashlan, Adam
Eggers, Thomas
Connolly, Mark
Author_xml – sequence: 1
  givenname: Eric
  surname: Cole
  middlename: R
  fullname: Cole, Eric R
– sequence: 2
  givenname: Mark
  surname: Connolly
  fullname: Connolly, Mark
– sequence: 3
  givenname: Mihir
  surname: Ghetiya
  fullname: Ghetiya, Mihir
– sequence: 4
  givenname: Mohammad
  surname: Sendi
  fullname: Sendi, Mohammad
– sequence: 5
  givenname: Adam
  surname: Kashlan
  fullname: Kashlan, Adam
– sequence: 6
  givenname: Thomas
  surname: Eggers
  fullname: Eggers, Thomas
– sequence: 7
  fullname: Robert Elkan Gross
BookMark eNpNkE9Lw0AUxBepYK39AN4WvHhJ3D_JJvFWS6tCoYL1HHaTt3VLuht3U7X99EbiwdM8ht88hrlEI-ssIHRNSUwpoXeMsCQmLKY8TnNCE3aGxkwULMoZSUf_7gs0DWFHCGGFoDxLxuj0OlsuovXL5h7P8IM8QjDSYtd2Zm9OsjPOYtlsnTfd-x5r53ED0ltjtwMjG1wDtFh5aSwOvXNohlQrvdxDBz7grz6Mg9TQHXHlbOh-4S5coXMtmwDTP52gt-ViM3-KVuvH5_lsFSlKEhZRBUWW1oWoFOEZ8EIzATWDStZKC6aZzmlVi1qISqg6o5AolVKVa0Uo5AXwCbod_irj_Lf5LFvfF_fH8ne2krCS8nKYrUdvBrT17uMAoSt37uBt365kBcsyLkgm-A-O5HEX
ContentType Paper
Copyright 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2024.02.13.580142
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2024.02.13.580142v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1042-1be975d96cb037e39f26ed2ecadbf62f2f81cd6d66c6bd71e4bb51b8fb01e89e3
IEDL.DBID M7P
ISSN 2692-8205
IngestDate Tue Jan 07 18:49:41 EST 2025
Fri Jul 25 09:14:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords hippocampus
real-time
optimization
data-driven
Neuromodulation
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1042-1be975d96cb037e39f26ed2ecadbf62f2f81cd6d66c6bd71e4bb51b8fb01e89e3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
OpenAccessLink https://www.proquest.com/docview/2927736076?pq-origsite=%requestingapplication%
PQID 2927736076
PQPubID 2050091
PageCount 28
ParticipantIDs biorxiv_primary_2024_02_13_580142
proquest_journals_2927736076
PublicationCentury 2000
PublicationDate 20240216
PublicationDateYYYYMMDD 2024-02-16
PublicationDate_xml – month: 02
  year: 2024
  text: 20240216
  day: 16
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Salanova, Sperling, Gross, Irwin, Vollhaber, Giftakis (2024.02.13.580142v1.3) 2021; 62
Cole, Connolly, Park, Grogan, Buxton, Eggers (2024.02.13.580142v1.13) 2021
Eric, Cole, Stento, Funk, Blanpain, Dabiri, Laxpati, Kahana, Gross (2024.02.13.580142v1.32) 2023
Lorenz, Simmons, Monti, Arthur, Limal, Laakso (2024.02.13.580142v1.16) 2019; 12
Cole, Grogan, Eggers, Connolly, Laxpati, Gross (2024.02.13.580142v1.17) 2021
Ashmaig, Connolly, Gross, Mahmoudi (2024.02.13.580142v1.26) 2018; 2018
Antunes, Biala (2024.02.13.580142v1.27) 2012; 13
Connolly, Cole, Isbaine, de Hemptinne, Starr, Willie (2024.02.13.580142v1.30) 2021; 18
Turchetta (2024.02.13.580142v1.24); 32
Maslen, Cheeran, Pugh, Pycroft, Boccard, Prangnell (2024.02.13.580142v1.23) 2018; 21
Zarzycki, Domitrz (2024.02.13.580142v1.22) 2020; 32
Fisher, Salanova, Witt, Worth, Henry, Gross (2024.02.13.580142v1.8) 2010; 51
Reuter, Deuschl, Berg, Helmers, Falk, Witt (2024.02.13.580142v1.20) 2018; 56
Sarikhani, Ferleger, Mitchell, Ostrem, Herron, Mahmoudi (2024.02.13.580142v1.35) 2022
Nair, Laxer, Weber, Murro, Park, Barkley (2024.02.13.580142v1.2) 2020; 95
Mayberg, Lozano, Voon, McNeely, Seminowicz, Hamani (2024.02.13.580142v1.5) 2005; 45
Cole, Grogan, Laxpati, Fernandez, Skelton, Isbaine (2024.02.13.580142v1.9) 2022
Shen, Campbell, Cote, Paquet (2024.02.13.580142v1.39) 2020; 14
Desai, Rolston, McCracken, Potter, Gross (2024.02.13.580142v1.25) 2016; 9
Rasmussen, Nickisch (2024.02.13.580142v1.28) 2010; 11
Acerbo, Botzanowski, Dellavale, Stern, Cole, Gutekunst (2024.02.13.580142v1.40) 2024
Stern, Cole, Gross, Berglund (2024.02.13.580142v1.41) 2024; 11
Accolla, Pollo (2024.02.13.580142v1.21) 2019; 10
Picillo, Lozano, Kou, Puppi Munhoz, Fasano (2024.02.13.580142v1.7) 2016; 9
Eric Brochu, Nando (2024.02.13.580142v1.29) 2010
Schrum, Connolly, Cole, Ghetiya, Gross, Gombolay (2024.02.13.580142v1.37) 2022
Yanan Sui, Burdick, Yue (2024.02.13.580142v1.38) 2018
Geller, Skarpaas, Gross, Goodman, Barkley, Bazil (2024.02.13.580142v1.1) 2017; 58
van Dijk, Verhagen, Bour, Heida, Veltink (2024.02.13.580142v1.18) 2018; 21
Romann, Beber, Cielo, Rieder (2024.02.13.580142v1.19) 2019; 23
Louie, Petrucci, Grado, Lu, Tuite, Lamperski (2024.02.13.580142v1.12) 2021; 18
Connolly, Park, Laxpati, Zaidi, Ghetiya, Fernandez (2024.02.13.580142v1.11) 2020
Grado, Johnson, Netoff (2024.02.13.580142v1.15) 2018; 14
Losanno, Badi, Wurth, Borgognon, Courtine, Capogrosso (2024.02.13.580142v1.31) 2021; 29
Cooper, Netoff (2024.02.13.580142v1.36) 2022
Volkmann, Herzog, Kopper, Deuschl (2024.02.13.580142v1.6) 2002; 17
Benabid (2024.02.13.580142v1.4) 2003; 13
Connolly, Park, Gross (2024.02.13.580142v1.33) 2019; 2019
Nagrale, Yousefi, Netoff, Widge (2024.02.13.580142v1.14) 2023; 20
Cole, Eggers, Weiss, Connolly, Gombolay, Laxpati (2024.02.13.580142v1.34) 2022
Park, Connolly, Exarchos, Fernandez, Ghetiya, Gutekunst (2024.02.13.580142v1.10) 2020; 17
References_xml – volume: 13
  start-page: 93
  year: 2012
  end-page: 110
  ident: 2024.02.13.580142v1.27
  article-title: The novel object recognition memory: neurobiology, test procedure, and its modifications
  publication-title: Cogn Process
– volume: 14
  start-page: e1006606
  year: 2018
  ident: 2024.02.13.580142v1.15
  article-title: Bayesian adaptive dual control of deep brain stimulation in a computational model of Parkinson’s disease
  publication-title: PLoS Comput Biol
– volume: 11
  start-page: 024202
  year: 2024
  ident: 2024.02.13.580142v1.41
  article-title: Seizure event detection using intravital two-photon calcium imaging data
  publication-title: Neurophotonics
– year: 2010
  ident: 2024.02.13.580142v1.29
  article-title: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
  publication-title: Arxiv
– volume: 51
  start-page: 899
  year: 2010
  end-page: 908
  ident: 2024.02.13.580142v1.8
  article-title: Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy
  publication-title: Epilepsia
– volume: 10
  start-page: 617
  year: 2019
  ident: 2024.02.13.580142v1.21
  article-title: Mood Effects After Deep Brain Stimulation for Parkinson’s Disease: An Update
  publication-title: Front Neurol
– start-page: 1
  year: 2022
  end-page: 8
  ident: 2024.02.13.580142v1.37
  article-title: Meta-Active Learning in Probabilistically Safe Optimization
– volume: 95
  start-page: e1244
  year: 2020
  end-page: e1256
  ident: 2024.02.13.580142v1.2
  article-title: Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy
  publication-title: Neurology
– volume: 17
  start-page: 046009
  year: 2020
  ident: 2024.02.13.580142v1.10
  article-title: Optimizing neuromodulation based on surrogate neural states for seizure suppression in a rat temporal lobe epilepsy model
  publication-title: J Neural Eng
– year: 2022
  ident: 2024.02.13.580142v1.9
  article-title: Evidence Supporting Deep Brain Stimulation of the Medial Septum in the Treatment of Temporal Lobe Epilepsy
  publication-title: Epilepsia
– volume: 11
  start-page: 3011
  year: 2010
  end-page: 3015
  ident: 2024.02.13.580142v1.28
  article-title: Gaussian processes for machine learning (GPML) toolbox
  publication-title: The Journal of Machine Learning Research
– volume: 32
  start-page: 57
  year: 2020
  end-page: 64
  ident: 2024.02.13.580142v1.22
  article-title: Stimulation-induced side effects after deep brain stimulation - a systematic review
  publication-title: Acta Neuropsychiatr
– year: 2022
  ident: 2024.02.13.580142v1.36
  article-title: Multidimensional Bayesian Estimation for Deep Brain Stimulation Using the SafeOpt Algorithm
  publication-title: medRxiv
– volume: 21
  start-page: 553
  year: 2018
  end-page: 561
  ident: 2024.02.13.580142v1.18
  article-title: Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead
  publication-title: Neuromodulation
– volume: 17
  start-page: S181
  issue: Suppl 3
  year: 2002
  end-page: 187
  ident: 2024.02.13.580142v1.6
  article-title: Introduction to the programming of deep brain stimulators
  publication-title: Mov Disord
– volume: 21
  start-page: 135
  year: 2018
  end-page: 143
  ident: 2024.02.13.580142v1.23
  article-title: Unexpected Complications of Novel Deep Brain Stimulation Treatments: Ethical Issues and Clinical Recommendations
  publication-title: Neuromodulation
– year: 2024
  ident: 2024.02.13.580142v1.40
  article-title: Improved Temporal and Spatial Focality of Non-invasive Deep-brain Stimulation using Multipolar Single-pulse Temporal Interference with Applications in Epilepsy
  publication-title: bioRxiv
– year: 2023
  ident: 2024.02.13.580142v1.32
  article-title: Automated Detection of Evoked Potentials Produced by Intracranial Electrical Stimulation
– start-page: 950
  year: 2021
  end-page: 953
  ident: 2024.02.13.580142v1.13
  article-title: Autonomous State Inference for Data-Driven Optimization of Neural Modulation
– volume: 9
  start-page: 425
  year: 2016
  end-page: 437
  ident: 2024.02.13.580142v1.7
  article-title: Programming Deep Brain Stimulation for Parkinson’s Disease: The Toronto Western Hospital Algorithms
  publication-title: Brain Stimul
– year: 2022
  ident: 2024.02.13.580142v1.34
  article-title: Irregular optogenetic stimulation waveforms can induce naturalistic patterns of hippocampal spectral activity
  publication-title: bioRxiv
– volume: 62
  start-page: 1306
  year: 2021
  end-page: 1317
  ident: 2024.02.13.580142v1.3
  article-title: The SANTE study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy
  publication-title: Epilepsia
– volume: 9
  start-page: 86
  year: 2016
  end-page: 100
  ident: 2024.02.13.580142v1.25
  article-title: Asynchronous Distributed Multielectrode Microstimulation Reduces Seizures in the Dorsal Tetanus Toxin Model of Temporal Lobe Epilepsy
  publication-title: Brain Stimul
– volume: 13
  start-page: 696
  year: 2003
  end-page: 706
  ident: 2024.02.13.580142v1.4
  article-title: Deep brain stimulation for Parkinson’s disease
  publication-title: Curr Opin Neurobiol
– volume: 58
  start-page: 994
  year: 2017
  end-page: 1004
  ident: 2024.02.13.580142v1.1
  article-title: Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy
  publication-title: Epilepsia
– volume: 45
  start-page: 651
  year: 2005
  end-page: 660
  ident: 2024.02.13.580142v1.5
  article-title: Deep brain stimulation for treatment-resistant depression
  publication-title: Neuron
– year: 2018
  ident: 2024.02.13.580142v1.38
  article-title: Stagewise Safe Bayesian Optimization with Gaussian Processes
– volume: 14
  start-page: 41
  year: 2020
  ident: 2024.02.13.580142v1.39
  article-title: Challenges for Therapeutic Applications of Opsin-Based Optogenetic Tools in Humans
  publication-title: Front Neural Circuits
– volume: 23
  start-page: 203
  year: 2019
  end-page: 208
  ident: 2024.02.13.580142v1.19
  article-title: Acoustic Voice Modifications in Individuals with Parkinson Disease Submitted to Deep Brain Stimulation
  publication-title: Int Arch Otorhinolaryngol
– volume: 18
  year: 2021
  ident: 2024.02.13.580142v1.30
  article-title: Multi-objective data-driven optimization for improving deep brain stimulation in Parkinson’s disease
  publication-title: J Neural Eng
– volume: 32
  ident: 2024.02.13.580142v1.24
  article-title: Felix Berkenkamp, and Andreas Krause
  publication-title: Advances in Neural Information Processing Systems
– volume: 2018
  start-page: 2683
  year: 2018
  end-page: 2686
  ident: 2024.02.13.580142v1.26
  article-title: Bayesian Optimization of Asynchronous Distributed Microelectrode Theta Stimulation and Spatial Memory
– year: 2020
  ident: 2024.02.13.580142v1.11
  article-title: A framework for designing data-driven optimization systems for neural modulation
  publication-title: J Neural Eng
– start-page: 19
  year: 2022
  ident: 2024.02.13.580142v1.35
  article-title: Automated deep brain stimulation programming with safety constraints for tremor suppression in patients with Parkinson’s disease and essential tremor
  publication-title: J Neural Eng
– volume: 2019
  start-page: 6454
  year: 2019
  end-page: 6457
  ident: 2024.02.13.580142v1.33
  article-title: Learning State-Dependent Neural Modulation Policies with Bayesian Optimization
– start-page: 281
  year: 2021
  end-page: 284
  ident: 2024.02.13.580142v1.17
  article-title: Model-Driven Collection of Neural Modulation Data
– volume: 18
  start-page: 83
  year: 2021
  ident: 2024.02.13.580142v1.12
  article-title: Semi-automated approaches to optimize deep brain stimulation parameters in Parkinson’s disease
  publication-title: J Neuroeng Rehabil
– volume: 20
  year: 2023
  ident: 2024.02.13.580142v1.14
  article-title: . In silicodevelopment and validation of Bayesian methods for optimizing deep brain stimulation to enhance cognitive control
  publication-title: J Neural Eng
– volume: 29
  start-page: 18
  year: 2021
  ident: 2024.02.13.580142v1.31
  article-title: Bayesian optimization of peripheral intraneural stimulation protocols to evoke distal limb movements
  publication-title: J Neural Eng
– volume: 12
  start-page: 1484
  year: 2019
  end-page: 1489
  ident: 2024.02.13.580142v1.16
  article-title: Efficiently searching through large tACS parameter spaces using closed-loop Bayesian optimization
  publication-title: Brain Stimul
– volume: 56
  start-page: 88
  year: 2018
  end-page: 92
  ident: 2024.02.13.580142v1.20
  article-title: Life-threatening DBS withdrawal syndrome in Parkinson’s disease can be treated with early reimplantation
  publication-title: Parkinsonism Relat Disord
SSID ssj0002961374
Score 1.7137963
SecondaryResourceType preprint
Snippet To treat neurological and psychiatric diseases with deep brain stimulation, a trained clinician must select parameters for each patient by monitoring their...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Bayesian analysis
Bioengineering
Deep brain stimulation
Learning
Mental disorders
Mental task performance
Optimization algorithms
Patient safety
Safety
Side effects
Spatial memory
Title SAFE-OPT: A Bayesian optimization algorithm for learning optimal deep brain stimulation parameters with safety constraints
URI https://www.proquest.com/docview/2927736076
https://www.biorxiv.org/content/10.1101/2024.02.13.580142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZatpU4lb5UKEVG6jVtbCeOzaWCaldwYBu1VKKnyI8xXYl9sAmI5dfXkzVwqNRLj1Esy5oZj8fjme8j5KPwwuQcdBaEcllRmSIz2pjMa4ihXKmk1q4nm6jGY3V-ruuUcGtTWeW9T-wdtZ87zJF_5ppXlZDx2v1lcZUhaxS-riYKjadkgCgJvC_dqx9yLFzHw6oHYuZSx43P8zI9bEZDxGt_gXidTHwqEUOFxxDYTubL28nNX465P21GL_53nVtkUJsFLF-SJzB7RZ6v-SZXr8ndj8PRMPtWnx3QQ3pkVoAdlHQevcY0tWNSc3kRZ-t-T2mMZmnilLhYjzGX1AMsqEVaCRp9wzRxf1EEEJ9iYU1LMbFLWxOgW1GHwScO7to35OdoePb1OEvkC5ll2LLDLOiq9Fo6m4sKhA5cgufgjLdB8sCDYs5LL6WT1lcMCmtLZlWwOQOlQbwlG7P5DN4Rij7CRpswosyLAKUplLUyD1E9nCuntsl-knuzWENsNKibJucNE81aN9tk917cTdplbfMo651__35PNnFGrLZmcpdsdMtr-ECeuZtu0i73yOBoOK6_7_XGE7_qk9P61x8Yoc47
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbKFkRPvEVLASPBMRDbiWMjIVSgq67aLiuxSOWU-jEuK3UfbELb5Uf1N9azycIBiVsPnGNZjufTN-OxZz5CXgovTMpBJ0Eol2SFyRKjjUm8hhjK5Upq7ZZiE0W_r46O9GCNXK5qYfBZ5YoTl0Ttpw5z5G-45kUhZDx2v5_9SFA1Cm9XVxIaDSz2YXEej2zVu96naN9XnHd3hx_3klZVILEMa1GYBV3kXktnU1GA0IFL8Byc8TZIHnhQzHnppXTS-oJBZm3OrAo2ZaA0iDjvDbKeIdg7ZH3QOxx8-53V4Tq6x2XrZy51pBqe5u1VaoQ-Jhoy7BDKxOscu7bwGHTb0XR-MTr7yxUs_Vv3zv-2M3fjjpgZzO-RNZjcJ7caRc3FA_Lry053N_k8GL6lO_SDWQDWiNJp5MVxW3BKzelJXH39fUxjvE5b1YyTZow5pR5gRi0KZ9DIfuNW3Yxii_QxPh2qKKauaWUC1AvqMLzGwXX1kHy9lt99RDqT6QQeE4osaCPqjcjTLEBuMmWtTEOEA-fKqU3yorVzOWuaiJSIhTLlJRNlg4VNsr0yb9nySFX-se3Wvz8_J7f3hocH5UGvv_-EbODs-LacyW3Sqec_4Sm56c7qUTV_1kKWkuPrxsIVSSssVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAFE-OPT%3A+A+Bayesian+optimization+algorithm+for+learning+optimal+deep+brain+stimulation+parameters+with+safety+constraints&rft.jtitle=bioRxiv&rft.au=Cole%2C+Eric+R.&rft.au=Connolly%2C+Mark+J.&rft.au=Ghetiya%2C+Mihir&rft.au=Sendi%2C+Mohammad+E.+S.&rft.date=2024-02-16&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.02.13.580142&rft.externalDocID=2024.02.13.580142v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon