Single-cell analysis of skeletal muscle macrophages reveals age- associated functional subpopulations

Tissue-resident macrophages represent a group of highly responsive innate immune cells that acquire diverse functions by polarizing towards distinct subgroups. The subgroups of macrophages that reside in skeletal muscle (SKM) and their changes during aging are poorly characterized. By single-cell tr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:bioRxiv
Hlavní autori: Krasniewski, Linda K, Chakraborty, Papiya, Chang-Yi, Cui, Mazan-Mamczarz, Krystyna, Dunn, Christopher, Piao, Yulan, Fan, Jinshui, Shi, Changyou, Wallace, Tonya, Nguyen, Cuong, Rathbun, Isabelle A, Munk, Rachel, Tsitsipatis, Dimitrios, De, Supriyo, Sen, Payel, Ferrucci, Luigi, Gorospe, Myriam M
Médium: Paper
Jazyk:English
Vydavateľské údaje: Cold Spring Harbor Cold Spring Harbor Laboratory Press 24.02.2022
Cold Spring Harbor Laboratory
Vydanie:1.1
Predmet:
ISSN:2692-8205, 2692-8205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Tissue-resident macrophages represent a group of highly responsive innate immune cells that acquire diverse functions by polarizing towards distinct subgroups. The subgroups of macrophages that reside in skeletal muscle (SKM) and their changes during aging are poorly characterized. By single-cell transcriptomic analysis, we found that mouse SKM macrophages primarily comprise two large populations, “healing” LYVE1+ and “proinflammatory” LYVE1-macrophages. SKM macrophages were further classified into four functional subgroups based on the expression levels of another cell-surface marker, MHCII: LYVE1+/MHCII-lo (similar to alternatively activated M2), LYVE1-/MHCII-hi (similar to classically activated M1), and two new subgroups, LYVE1+/MHCII-hi and LYVE1-/MHCII-lo. Notably, the new subgroup LYVE1+/MHCII-hi had traits of both M2 and M1 macrophages, while the other new subgroup, LYVE1-/MHCII-lo, expressed high levels of mRNAs encoding cytotoxicity proteins. Flow cytometric analysis validated the presence of the four macrophage subgroups in SKM. In old SKM, LYVE1- macrophages were more abundant than LYVE1+ macrophages. Furthermore, complementary unsupervised classification revealed the emergence of specific macrophage subclusters expressing abundant proinflammatory markers, including S100a8 and S100a9 in aged SKM. In sum, our study has identified dynamically polarized mouse SKM macrophages and further uncovered the contribution of specific macrophage subpopulations to the proinflammatory status in old SKM. Competing Interest Statement The authors have declared no competing interest.
AbstractList Tissue-resident macrophages represent a group of highly responsive innate immune cells that acquire diverse functions by polarizing towards distinct subgroups. The subgroups of macrophages that reside in skeletal muscle (SKM) and their changes during aging are poorly characterized. By single-cell transcriptomic analysis, we found that mouse SKM macrophages primarily comprise two large populations, “healing” LYVE1+ and “proinflammatory” LYVE1-macrophages. SKM macrophages were further classified into four functional subgroups based on the expression levels of another cell-surface marker, MHCII: LYVE1+/MHCII-lo (similar to alternatively activated M2), LYVE1-/MHCII-hi (similar to classically activated M1), and two new subgroups, LYVE1+/MHCII-hi and LYVE1-/MHCII-lo. Notably, the new subgroup LYVE1+/MHCII-hi had traits of both M2 and M1 macrophages, while the other new subgroup, LYVE1-/MHCII-lo, expressed high levels of mRNAs encoding cytotoxicity proteins. Flow cytometric analysis validated the presence of the four macrophage subgroups in SKM. In old SKM, LYVE1- macrophages were more abundant than LYVE1+ macrophages. Furthermore, complementary unsupervised classification revealed the emergence of specific macrophage subclusters expressing abundant proinflammatory markers, including S100a8 and S100a9 in aged SKM. In sum, our study has identified dynamically polarized mouse SKM macrophages and further uncovered the contribution of specific macrophage subpopulations to the proinflammatory status in old SKM. Competing Interest Statement The authors have declared no competing interest.
Tissue-resident macrophages represent a group of highly responsive innate immune cells that acquire diverse functions by polarizing towards distinct subgroups. The subgroups of macrophages that reside in skeletal muscle (SKM) and their changes during aging are poorly characterized. By single-cell transcriptomic analysis, we found that mouse SKM macrophages primarily comprise two large populations, “healing” LYVE1+ and “proinflammatory” LYVE1-macrophages. SKM macrophages were further classified into four functional subgroups based on the expression levels of another cell-surface marker, MHCII: LYVE1+/MHCII-lo (similar to alternatively activated M2), LYVE1-/MHCII-hi (similar to classically activated M1), and two new subgroups, LYVE1+/MHCII-hi and LYVE1-/MHCII-lo. Notably, the new subgroup LYVE1+/MHCII-hi had traits of both M2 and M1 macrophages, while the other new subgroup, LYVE1-/MHCII-lo, expressed high levels of mRNAs encoding cytotoxicity proteins. Flow cytometric analysis validated the presence of the four macrophage subgroups in SKM. In old SKM, LYVE1-macrophages were more abundant than LYVE1+ macrophages. Furthermore, complementary unsupervised classification revealed the emergence of specific macrophage subclusters expressing abundant proinflammatory markers, including S100a8 and S100a9 in aged SKM. In sum, our study has identified dynamically polarized mouse SKM macrophages and further uncovered the contribution of specific macrophage subpopulations to the proinflammatory status in old SKM.
Author Fan, Jinshui
Mazan-Mamczarz, Krystyna
Rathbun, Isabelle A
Chang-Yi, Cui
Nguyen, Cuong
De, Supriyo
Sen, Payel
Chakraborty, Papiya
Shi, Changyou
Piao, Yulan
Gorospe, Myriam M
Krasniewski, Linda K
Wallace, Tonya
Tsitsipatis, Dimitrios
Dunn, Christopher
Ferrucci, Luigi
Munk, Rachel
Author_xml – sequence: 1
  givenname: Linda
  surname: Krasniewski
  middlename: K
  fullname: Krasniewski, Linda K
– sequence: 2
  givenname: Papiya
  surname: Chakraborty
  fullname: Chakraborty, Papiya
– sequence: 3
  givenname: Cui
  surname: Chang-Yi
  fullname: Chang-Yi, Cui
– sequence: 4
  givenname: Krystyna
  surname: Mazan-Mamczarz
  fullname: Mazan-Mamczarz, Krystyna
– sequence: 5
  givenname: Christopher
  surname: Dunn
  fullname: Dunn, Christopher
– sequence: 6
  givenname: Yulan
  surname: Piao
  fullname: Piao, Yulan
– sequence: 7
  givenname: Jinshui
  surname: Fan
  fullname: Fan, Jinshui
– sequence: 8
  givenname: Changyou
  surname: Shi
  fullname: Shi, Changyou
– sequence: 9
  givenname: Tonya
  surname: Wallace
  fullname: Wallace, Tonya
– sequence: 10
  givenname: Cuong
  surname: Nguyen
  fullname: Nguyen, Cuong
– sequence: 11
  givenname: Isabelle
  surname: Rathbun
  middlename: A
  fullname: Rathbun, Isabelle A
– sequence: 12
  givenname: Rachel
  surname: Munk
  fullname: Munk, Rachel
– sequence: 13
  givenname: Dimitrios
  surname: Tsitsipatis
  fullname: Tsitsipatis, Dimitrios
– sequence: 14
  givenname: Supriyo
  surname: De
  fullname: De, Supriyo
– sequence: 15
  givenname: Payel
  surname: Sen
  fullname: Sen, Payel
– sequence: 16
  givenname: Luigi
  surname: Ferrucci
  fullname: Ferrucci, Luigi
– sequence: 17
  givenname: Myriam
  surname: Gorospe
  middlename: M
  fullname: Gorospe, Myriam M
BookMark eNpNkEtPwzAQhC1UJErpD-BmiQuXBD_iOD6iipdUiQO9R7azLi5uHOKkov-eVOXAaXdWs6PRd41mbWwBoVtKckoJfWCEsZywnPG8qKio6AWas1KxrGJEzP7tV2iZ0o4QwlRJuSzmCD58uw2QWQgB61aHY_IJR4fTFwQYdMD7MdkAeK9tH7tPvYWEeziADglPIsM6pWi9HqDBbmzt4OOUgtNoutiNQZ90ukGXbnqA5d9coM3z02b1mq3fX95Wj-vMUFLQrAAnCiO0oxSEdKVUjTDTsVTOlEa5ygptG02okUZJR0suRVFZQrhzUlK-QPfnWONj_-MPddf7ve6P9QlQTVjNeH0GNFnvztauj98jpKHexbGfmqealZyJiatS_BeVGGjp
Cites_doi 10.21769/BioProtoc.3984
ContentType Paper
Copyright 2022. This article is published under https://creativecommons.org/publicdomain/zero/1.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2022. This article is published under https://creativecommons.org/publicdomain/zero/1.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2022.02.23.481581
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database (subscription)
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2022.02.23.481581v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b1041-4ef54b5af11e57f679d5b4ef69fb6b9f8c5acda01b7b97f1637548c003ff7713
IEDL.DBID M7P
ISSN 2692-8205
IngestDate Tue Jan 07 19:00:36 EST 2025
Fri Jul 25 09:15:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords macrophages
polarization
aging
Skeletal muscle
single-cell analysis
Language English
License This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1041-4ef54b5af11e57f679d5b4ef69fb6b9f8c5acda01b7b97f1637548c003ff7713
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0001-7899-0110
0000-0003-2809-0901
0000-0001-5439-3434
0000-0002-6273-1613
OpenAccessLink https://www.proquest.com/docview/2632511099?pq-origsite=%requestingapplication%
PQID 2632511099
PQPubID 2050091
PageCount 38
ParticipantIDs biorxiv_primary_2022_02_23_481581
proquest_journals_2632511099
PublicationCentury 2000
PublicationDate 20220224
PublicationDateYYYYMMDD 2022-02-24
PublicationDate_xml – month: 02
  year: 2022
  text: 20220224
  day: 24
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2022
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Mills (2022.02.23.481581v1.28) 2015; 6
Stein, Keshav, Harris, Gordon (2022.02.23.481581v1.39) 1992; 176
Forcina, Cosentino, Musaro (2022.02.23.481581v1.11) 2020; 9
Cox, Pokrovskii, Vicario, Geissmann (2022.02.23.481581v1.7) 2021; 39
Kosmac, Peck, Walton, Mula, Kern, Bamman, Dennis, Jacobs, Lattermann, Johnson, Peterson (2022.02.23.481581v1.19) 2018; 8
Yao, Xu, Jin (2022.02.23.481581v1.50) 2019; 10
Yuan, Klein, Kerscher, West, Weis, Katona, Martini (2022.02.23.481581v1.51) 2018; 38
Suda, Shimizu, Katsuumi, Yoshida, Hayashi, Ikegami, Matsumoto, Yoshida, Mikawa, Katayama, Wada, Seki, Suzuki, Iwama, Nakagami, Nagasawa, Morishita, Sugimoto, Okuda, Tsuchida, Ozaki, Nakanishi-Matsui, Minamino (2022.02.23.481581v1.40) 2021
Hessian, Edgeworth, Hogg (2022.02.23.481581v1.16) 1993; 53
Furuhashi, Tuncman, Gorgun, Makowski, Atsumi, Vaillancourt, Kono, Babaev, Fazio, Linton, Sulsky, Robl, Parker, Hotamisligil (2022.02.23.481581v1.12) 2007; 447
Krasniewski, Tsitsipatis, Izydore, Shi, Piao, Michel, Sen, Gorospe, Cui (2022.02.23.481581v1.20) 2021; 101
Wolf, Yanez, Barman, Goodridge (2022.02.23.481581v1.47) 2019; 10
Babaev, Runner, Fan, Ding, Zhang, Tao, Erbay, Gorgun, Fazio, Hotamisligil, Linton (2022.02.23.481581v1.2) 2011; 31
Martinez, Sica, Mantovani, Locati (2022.02.23.481581v1.27) 2008; 13
Liu, Cheung, Charville, Rando (2022.02.23.481581v1.24) 2015; 10
Chakarov, Lim, Tan, Lim, See, Lum, Zhang, Foo, Nakamizo, Duan, Kong, Gentek, Balachander, Carbajo, Bleriot, Malleret, Tam, Baig, Shabeer, Toh, Schlitzer, Larbi, Marichal, Malissen, Chen, Poidinger, Kabashima, Bajenoff, Ng, Angeli, Ginhoux (2022.02.23.481581v1.5) 2019; 363
Nabekura, Lanier (2022.02.23.481581v1.31) 2016; 213
Blackwell, Harries, Pilling, Ferrucci, Jones, Melzer (2022.02.23.481581v1.3) 2015; 65
Cui, Driscoll, Piao, Chia, Gorospe, Ferrucci (2022.02.23.481581v1.8) 2019
Tidball (2022.02.23.481581v1.41) 2011; 1
Cui, Ferrucci (2022.02.23.481581v1.9) 2020; 12
Buchacher, Ohradanova-Repic, Stockinger, Fischer, Weber (2022.02.23.481581v1.4) 2015; 10
Raudvere, Kolberg, Kuzmin, Arak, Adler, Peterson, Vilo (2022.02.23.481581v1.33) 2019; 47
Shapouri-Moghaddam, Mohammadian, Vazini, Taghadosi, Esmaeili, Mardani, Seifi, Mohammadi, Afshari, Sahebkar (2022.02.23.481581v1.37) 2018; 233
Mills, Kincaid, Alt, Heilman, Hill (2022.02.23.481581v1.29) 2000; 164
Arnold, Henry, Poron, Baba-Amer, Van Rooijen, Plonquet, Gherardi, Chazaud (2022.02.23.481581v1.1) 2007; 204
Wynn, Chawla, Pollard (2022.02.23.481581v1.48) 2013; 496
Yang, Hu (2022.02.23.481581v1.49) 2018; 13
Mills, Thomas, Lenz, Munder (2022.02.23.481581v1.30) 2014; 5
Ross, Devitt, Johnson (2022.02.23.481581v1.34) 2021; 12
Tidball (2022.02.23.481581v1.42) 2017; 17
Hao, Hao, Andersen-Nissen, Mauck, Zheng, Butler, Lee, Wilk, Darby, Zager, Hoffman, Stoeckius, Papalexi, Mimitou, Jain, Srivastava, Stuart, Fleming, Yeung, Rogers, Mcelrath, Blish, Gottardo, Smibert, Satija (2022.02.23.481581v1.15) 2021; 184
Scala, Rehak, Giudice, Ciaglia, Puca, Selleri, Della Porta, Maffulli (2022.02.23.481581v1.35) 2021; 22
Wang, Song, Wang, Jing, Wang, Ma (2022.02.23.481581v1.44) 2018; 9
Mantovani, Sozzani, Locati, Allavena, Sica (2022.02.23.481581v1.26) 2002; 23
Schyns, Bai, Ruscitti, Radermecker, De Schepper, Chakarov, Farnir, Pirottin, Ginhoux, Boeckxstaens, Bureau, Marichal (2022.02.23.481581v1.36) 2019; 10
Jaitin, Adlung, Thaiss, Weiner, Li, Descamps, Lundgren, Bleriot, Liu, Deczkowska, Keren-Shaul, David, Zmora, Eldar, Lubezky, Shibolet, Hill, Lazar, Colonna, Ginhoux, Shapiro, Elinav, Amit (2022.02.23.481581v1.18) 2019; 178
Gautier, Shay, Miller, Greter, Jakubzick, Ivanov, Helft, Chow, Elpek, Gordonov, Mazloom, Ma’ayan, Chua, Hansen, Turley, Merad, Randolph (2022.02.23.481581v1.13) 2012; 13
Lavin, Winter, Blecher-Gonen, David, Keren-Shaul, Merad, Jung, Amit (2022.02.23.481581v1.22) 2014; 159
Covarrubias, Kale, Perrone, Lopez-Dominguez, Pisco, Kasler, Schmidt, Heckenbach, Kwok, Wiley, Wong, Gibbs, Iyer, Basisty, Wu, Kim, Silva, Vitangcol, Shin, Lee, Riley, Ben-Sahra, Ott, Schilling, Scheibye-Knudsen, Ishihara, Quake, Newman, Brenner, Campisi, Verdin (2022.02.23.481581v1.6) 2020; 2
Girbl, Lenn, Perez, Rolas, Barkaway, Thiriot, Del Fresno, Lynam, Hub, Thelen, Graham, Alon, Sancho, Von Andrian, Voisin, Rot, Nourshargh (2022.02.23.481581v1.14) 2018; 49
Jackson, Mcardle (2022.02.23.481581v1.17) 2011; 589
Lim, Lim, Tan, Thiam, Goh, Carbajo, Chew, See, Chakarov, Wang, Lim, Johnson, Lum, Fong, Bongso, Biswas, Goh, Evrard, Yeo, Basu, Wang, Tan, Jain, Tikoo, Choong, Weninger, Poidinger, Stanley, Collin, Tan, Ng, Jackson, Ginhoux, Angeli (2022.02.23.481581v1.23) 2018; 49
Van Beek, Van Den Bossche, Mastroberardino, De Winther, Leenen (2022.02.23.481581v1.43) 2019; 40
Deshmane, Kremlev, Amini, Sawaya (2022.02.23.481581v1.10) 2009; 29
Wang, Wehling-Henricks, Samengo, Tidball (2022.02.23.481581v1.46) 2015; 14
Wang, Sathe, Smith, Ruf-Zamojski, Nair, Lavine, Xing, Sealfon, Zhou (2022.02.23.481581v1.45) 2020; 117
Rath, Muller, Kropf, Closs, Munder (2022.02.23.481581v1.32) 2014; 5
Singh-Jasuja, Thiolat, Ribon, Boissier, Bessis, Rammensee, Decker (2022.02.23.481581v1.38) 2013; 218
Krzyszczyk, Schloss, Palmer, Berthiaume (2022.02.23.481581v1.21) 2018; 9
Makowski, Boord, Maeda, Babaev, Uysal, Morgan, Parker, Suttles, Fazio, Hotamisligil, Linton (2022.02.23.481581v1.25) 2001; 7
References_xml – volume: 38
  start-page: 4610
  year: 2018
  end-page: 4620
  ident: 2022.02.23.481581v1.51
  article-title: Macrophage Depletion Ameliorates Peripheral Neuropathy in Aging Mice
  publication-title: J Neurosci
– volume: 10
  start-page: 3964
  year: 2019
  ident: 2022.02.23.481581v1.36
  article-title: Non-classical tissue monocytes and two functionally distinct populations of interstitial macrophages populate the mouse lung
  publication-title: Nat Commun
– volume: 17
  start-page: 165
  year: 2017
  end-page: 178
  ident: 2022.02.23.481581v1.42
  article-title: Regulation of muscle growth and regeneration by the immune system
  publication-title: Nat Rev Immunol
– volume: 9
  start-page: 419
  year: 2018
  ident: 2022.02.23.481581v1.21
  article-title: The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes
  publication-title: Front Physiol
– volume: 5
  start-page: 620
  year: 2014
  ident: 2022.02.23.481581v1.30
  article-title: Macrophage: SHIP of Immunity
  publication-title: Front Immunol
– volume: 13
  start-page: 25
  year: 2018
  end-page: 32
  ident: 2022.02.23.481581v1.49
  article-title: Skeletal muscle regeneration is modulated by inflammation
  publication-title: J Orthop Translat
– volume: 39
  start-page: 313
  year: 2021
  end-page: 344
  ident: 2022.02.23.481581v1.7
  article-title: Origins, Biology, and Diseases of Tissue Macrophages
  publication-title: Annu Rev Immunol
– volume: 178
  start-page: 686
  year: 2019
  end-page: 698 e14
  ident: 2022.02.23.481581v1.18
  article-title: Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner
  publication-title: Cell
– volume: 49
  start-page: 1191
  year: 2018
  ident: 2022.02.23.481581v1.23
  article-title: Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen
  publication-title: Immunity
– volume: 13
  start-page: 1118
  year: 2012
  end-page: 28
  ident: 2022.02.23.481581v1.13
  article-title: Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
  publication-title: Nat Immunol
– volume: 8
  year: 2018
  ident: 2022.02.23.481581v1.19
  article-title: Immunohistochemical Identification of Human Skeletal Muscle Macrophages
  publication-title: Bio Protoc
– volume: 65
  start-page: 145
  year: 2015
  end-page: 50
  ident: 2022.02.23.481581v1.3
  article-title: Changes in CEBPB expression in circulating leukocytes following eccentric elbow-flexion exercise
  publication-title: J Physiol Sci
– volume: 53
  start-page: 197
  year: 1993
  end-page: 204
  ident: 2022.02.23.481581v1.16
  article-title: MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes
  publication-title: J Leukoc Biol
– volume: 47
  start-page: W191
  year: 2019
  end-page: W198
  ident: 2022.02.23.481581v1.33
  article-title: g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update)
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: 1612
  year: 2015
  end-page: 24
  ident: 2022.02.23.481581v1.24
  article-title: Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting
  publication-title: Nat Protoc
– volume: 23
  start-page: 549
  year: 2002
  end-page: 55
  ident: 2022.02.23.481581v1.26
  article-title: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes
  publication-title: Trends Immunol
– volume: 9
  start-page: 1298
  year: 2018
  ident: 2022.02.23.481581v1.44
  article-title: S100A8/A9 in Inflammation
  publication-title: Front Immunol
– volume: 12
  start-page: 708186
  year: 2021
  ident: 2022.02.23.481581v1.34
  article-title: Macrophages: The Good, the Bad, and the Gluttony
  publication-title: Front Immunol
– volume: 12
  start-page: 3
  year: 2020
  end-page: 4
  ident: 2022.02.23.481581v1.9
  article-title: Macrophages in skeletal muscle aging
  publication-title: Aging (Albany NY)
– volume: 164
  start-page: 6166
  year: 2000
  end-page: 73
  ident: 2022.02.23.481581v1.29
  article-title: M-1/M-2 macrophages and the Th1/Th2 paradigm
  publication-title: J Immunol
– volume: 363
  year: 2019
  ident: 2022.02.23.481581v1.5
  article-title: Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches
  publication-title: Science
– volume: 447
  start-page: 959
  year: 2007
  end-page: 65
  ident: 2022.02.23.481581v1.12
  article-title: Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2
  publication-title: Nature
– volume: 101
  start-page: e3984
  year: 2021
  ident: 2022.02.23.481581v1.20
  article-title: Improved Macrophage Isolation from Mouse Skeletal Muscle
  publication-title: Bio-
  doi: 10.21769/BioProtoc.3984
– volume: 159
  start-page: 1312
  year: 2014
  end-page: 26
  ident: 2022.02.23.481581v1.22
  article-title: Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
  publication-title: Cell
– volume: 9
  year: 2020
  ident: 2022.02.23.481581v1.11
  article-title: Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing
  publication-title: Cells
– volume: 176
  start-page: 287
  year: 1992
  end-page: 92
  ident: 2022.02.23.481581v1.39
  article-title: Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation
  publication-title: J Exp Med
– volume: 14
  start-page: 678
  year: 2015
  end-page: 88
  ident: 2022.02.23.481581v1.46
  article-title: Increases of M2a macrophages and fibrosis in aging muscle are influenced by bone marrow aging and negatively regulated by muscle-derived nitric oxide
  publication-title: Aging Cell
– volume: 29
  start-page: 313
  year: 2009
  end-page: 26
  ident: 2022.02.23.481581v1.10
  article-title: Monocyte chemoattractant protein-1 (MCP-1): an overview
  publication-title: J Interferon Cytokine Res
– volume: 233
  start-page: 6425
  year: 2018
  end-page: 6440
  ident: 2022.02.23.481581v1.37
  article-title: Macrophage plasticity, polarization, and function in health and disease
  publication-title: J Cell Physiol
– volume: 184
  start-page: 3573
  year: 2021
  end-page: 3587 e29
  ident: 2022.02.23.481581v1.15
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
– volume: 496
  start-page: 445
  year: 2013
  end-page: 55
  ident: 2022.02.23.481581v1.48
  article-title: Macrophage biology in development, homeostasis and disease
  publication-title: Nature
– volume: 2
  start-page: 1265
  year: 2020
  end-page: 1283
  ident: 2022.02.23.481581v1.6
  article-title: Senescent cells promote tissue NAD(+) decline during ageing via the activation of CD38(+) macrophages
  publication-title: Nat Metab
– volume: 213
  start-page: 2745
  year: 2016
  end-page: 2758
  ident: 2022.02.23.481581v1.31
  article-title: Tracking the fate of antigen-specific versus cytokine-activated natural killer cells after cytomegalovirus infection
  publication-title: J Exp Med
– volume: 589
  start-page: 2139
  year: 2011
  end-page: 45
  ident: 2022.02.23.481581v1.17
  article-title: Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species
  publication-title: J Physiol
– volume: 13
  start-page: 453
  year: 2008
  end-page: 61
  ident: 2022.02.23.481581v1.27
  article-title: Macrophage activation and polarization
  publication-title: Front Biosci
– volume: 117
  start-page: 20729
  year: 2020
  end-page: 20740
  ident: 2022.02.23.481581v1.45
  article-title: Heterogeneous origins and functions of mouse skeletal muscle-resident macrophages
  publication-title: Proc Natl Acad Sci U S A
– volume: 10
  start-page: e0143593
  year: 2015
  ident: 2022.02.23.481581v1.4
  article-title: M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae
  publication-title: PLoS One
– year: 2021
  ident: 2022.02.23.481581v1.40
  article-title: Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice
  publication-title: Nature Aging
– volume: 218
  start-page: 28
  year: 2013
  end-page: 39
  ident: 2022.02.23.481581v1.38
  article-title: The mouse dendritic cell marker CD11c is down-regulated upon cell activation through Toll-like receptor triggering
  publication-title: Immunobiology
– volume: 7
  start-page: 699
  year: 2001
  end-page: 705
  ident: 2022.02.23.481581v1.25
  article-title: Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis
  publication-title: Nat Med
– volume: 22
  year: 2021
  ident: 2022.02.23.481581v1.35
  article-title: Stem Cell and Macrophage Roles in Skeletal Muscle Regenerative Medicine
  publication-title: Int J Mol Sci
– volume: 40
  start-page: 113
  year: 2019
  end-page: 127
  ident: 2022.02.23.481581v1.43
  article-title: Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging?
  publication-title: Trends Immunol
– volume: 10
  start-page: 1642
  year: 2019
  ident: 2022.02.23.481581v1.47
  article-title: The Ontogeny of Monocyte Subsets
  publication-title: Front Immunol
– volume: 204
  start-page: 1057
  year: 2007
  end-page: 69
  ident: 2022.02.23.481581v1.1
  article-title: Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis
  publication-title: J Exp Med
– start-page: e13032
  year: 2019
  ident: 2022.02.23.481581v1.8
  article-title: Skewed macrophage polarization in aging skeletal muscle
  publication-title: Aging Cell
– volume: 6
  start-page: 212
  year: 2015
  ident: 2022.02.23.481581v1.28
  article-title: Anatomy of a discovery: m1 and m2 macrophages
  publication-title: Front Immunol
– volume: 10
  start-page: 792
  year: 2019
  ident: 2022.02.23.481581v1.50
  article-title: Macrophage Polarization in Physiological and Pathological Pregnancy
  publication-title: Front Immunol
– volume: 31
  start-page: 1283
  year: 2011
  end-page: 90
  ident: 2022.02.23.481581v1.2
  article-title: Macrophage Mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-gamma-regulated genes
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 1
  start-page: 2029
  year: 2011
  end-page: 62
  ident: 2022.02.23.481581v1.41
  article-title: Mechanisms of muscle injury, repair, and regeneration
  publication-title: Compr Physiol
– volume: 49
  start-page: 1062
  year: 2018
  end-page: 1076 e6
  ident: 2022.02.23.481581v1.14
  article-title: Distinct Compartmentalization of the Chemokines CXCL1 and CXCL2 and the Atypical Receptor ACKR1 Determine Discrete Stages of Neutrophil Diapedesis
  publication-title: Immunity
– volume: 5
  start-page: 532
  year: 2014
  ident: 2022.02.23.481581v1.32
  article-title: Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages
  publication-title: Front Immunol
SSID ssj0002961374
Score 1.6478506
SecondaryResourceType preprint
Snippet Tissue-resident macrophages represent a group of highly responsive innate immune cells that acquire diverse functions by polarizing towards distinct subgroups....
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Aging
Cell Biology
Cell surface
Cytotoxicity
Flow cytometry
Inflammation
Macrophages
Musculoskeletal system
Skeletal muscle
Surface markers
Transcriptomics
Title Single-cell analysis of skeletal muscle macrophages reveals age- associated functional subpopulations
URI https://www.proquest.com/docview/2632511099
https://www.biorxiv.org/content/10.1101/2022.02.23.481581
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-6OfDJb_yYI4Kv0TVrm-RJUDYUdBTdw3wqSZvgULe5bkP_e--6bD4IvviYFo5yd7m73yX9HSHnXGahaWrBspaNWci1YYBsA6YzK4VU4CO65Jm9F92u7PdV4htuhb9WuYyJZaDORxn2yC-RVzxCekx1Nf5gODUKT1f9CI11UkWWhFZ5dS9Z9Vi4gmRVEjHzWMHG583IH2yCIyLs58jXyVsXyFiCzNY1MxhNPgfzX4G5zDadrf9-5zapJnpsJztkzQ53SW0xb_Jrj9gnSFRvlmG3nmpPR0JHjhavkH2gDKfvswL8iL5rnOz1ArGmoMjxBD5KYcGo9ta0OcWMuGgk0mJmxqtBYMU-6XXavZtb5ucsMANgDCCkdVFoIu2CwEbCxULlkYGHsXImNsrJLNJZrpuBEUYJBxWcAJyTQTxwTgDIPSCV4WhoDwmF8sNKZZVAiVA6KRlpGQbSmjwHwfkROfMaTscLMo0UrZA2ecpb6cIKR6S-VGzq91OR_mj1-O_XJ2QTJZY_nYd1UplOZvaUbGTz6aCYNEj1ut1NHhulm8AquXtInr8BdlXF2w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB7xFHtanlqWl5HgaGjcJLYPaA88BKJUleiBm2UntqhY2tJQdvlR_EdmkhQOSNw4cEwijeR843na3wDsCZXFrmElz5o-5bGwjmNmG3GbeSWVRh2xJc9sS7bb6uZGd6bgZXIXho5VTmxiaajzQUY18kPiFU-IHlP_GT5wmhpF3dXJCI1KLS798z9M2YqjixPEd1-Is9Pu8Tmvpwpwh6kHJkw-JLFLbIgin8iQSp0nDl-mOrjU6aCyxGa5bUROOi0DxisSo_oMtT8EiSkdip2GWYwihCpPCnbeSjpCo28seZ9FqtHOiEZS91FR76nKIIgeVDQPiCCFiLTnXW8w-t97-uAHSud29vOb_ZZFmO3YoR8twZTvL8N8NU3zeQX8Nbrhv55TL4LZmmyFDQIr7tC3YpLB7scF7hJ2b2lu2S1a0oIRgxXuQIYPnNlaV33OyN9XZVJWjN3wbcxZsQrdr1jYGsz0B33_CxgGV15pryVJxMBQq8SqOFLe5TkKztdhtwbUDCuqEEOgm4Ywomkq0Ndhc4Kjqa1FYd5B_P355x1YOO9etUzron25AT9Ienm9Pt6EmcfR2G_BXPb02CtG26VmMjBfDPkryv8fLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+analysis+of+skeletal+muscle+macrophages+reveals+age-+associated+functional+subpopulations&rft.jtitle=bioRxiv&rft.au=Krasniewski%2C+Linda+K&rft.au=Chakraborty%2C+Papiya&rft.au=Chang-Yi%2C+Cui&rft.au=Mazan-Mamczarz%2C+Krystyna&rft.date=2022-02-24&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2022.02.23.481581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon