Mass balance of the Greenland Ice Sheet from 1992 to 2018
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades 1 , 2 , and it is expected to continue to be so 3 . Although increases in glacier flow 4 – 6 and surface melting 7 – 9 have been driven by oceanic 10 – 12 and atmospheric 13 , 14 warming, the magnitude an...
Uložené v:
| Vydané v: | Nature (London) Ročník 579; číslo 7798; s. 233 - 239 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.03.2020
Nature Publishing Group |
| Predmet: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades
1
,
2
, and it is expected to continue to be so
3
. Although increases in glacier flow
4
–
6
and surface melting
7
–
9
have been driven by oceanic
10
–
12
and atmospheric
13
,
14
warming, the magnitude and trajectory of the ice sheet’s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions
15
and ocean temperatures fell at the terminus of Jakobshavn Isbræ
16
. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario
17
, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.
Three techniques for estimating mass losses from the Greenland Ice Sheet produce comparable results for the period 1992–2018 that approach the trajectory of the highest rates of sea-level rise projected by the IPCC. |
|---|---|
| AbstractList | The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades1,2, and it is expected to continue to be so3. Although increases in glacier flow4-6 and surface melting7-9 have been driven by oceanic10-12 and atmospheric13,14 warming, the magnitude and trajectory of the ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades1,2, and it is expected to continue to be so3. Although increases in glacier flow4-6 and surface melting7-9 have been driven by oceanic10-12 and atmospheric13,14 warming, the magnitude and trajectory of the ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate. The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades.sup.1,2, and it is expected to continue to be so.sup.3. Although increases in glacier flow.sup.4-6 and surface melting.sup.7-9 have been driven by oceanic.sup.10-12 and atmospheric.sup.13,14 warming, the magnitude and trajectory of the ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 [plus or minus] 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 [plus or minus] 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 [plus or minus] 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 [plus or minus] 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 [plus or minus] 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 [plus or minus] 37 billion tonnes per year in the 1990s to 87 [plus or minus] 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 [plus or minus] 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions.sup.15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ.sup.16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario.sup.17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate. The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades 1 , 2 , and it is expected to continue to be so 3 . Although increases in glacier flow 4 – 6 and surface melting 7 – 9 have been driven by oceanic 10 – 12 and atmospheric 13 , 14 warming, the magnitude and trajectory of the ice sheet’s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions 15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ 16 . Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario 17 , which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate. Three techniques for estimating mass losses from the Greenland Ice Sheet produce comparable results for the period 1992–2018 that approach the trajectory of the highest rates of sea-level rise projected by the IPCC. The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades, and it is expected to continue to be so. Although increases in glacier flow and surface melting have been driven by oceanic and atmospheric warming, the magnitude and trajectory ofthe ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions15 and ocean temperatures fell at the terminus ofJakobshavn Isbræ 16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate. The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades1,2, and it is expected to continue to be so3. Although increases in glacier flow4,5,6 and surface melting7,8,9 have been driven by oceanic10,11,12 and atmospheric13,14 warming, the magnitude and trajectory of the ice sheet’s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate. In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future3. Although increases in glacier flow4–6 and surface melting7–9 have been driven by oceanic10–12 and atmospheric13,14 warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. Although the ice sheet was close to a state of balance in the 1990s, annual losses have risen since then, peaking at 335 ± 62 billion tonnes per year in 2011. In all, Greenland lost 3,800 ± 339 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.6 ± 0.9 millimetres. Using three regional climate models, we show that reduced surface mass balance has driven 1,971 ± 555 billion tonnes (52%) of the ice loss owing to increased meltwater runoff. The remaining 1,827 ± 538 billion tonnes (48%) of ice loss was due to increased glacier discharge, which rose from 41 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. Between 2013 and 2017, the total rate of ice loss slowed to 217 ± 32 billion tonnes per year, on average, as atmospheric circulation favoured cooler conditions15 and as ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the IPCC’s predicted rates for their high-end climate warming scenario17, which forecast an additional 50 to 120 millimetres of global sea-level rise by 2100 when compared to their central estimate. The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades.sup.1,2, and it is expected to continue to be so.sup.3. Although increases in glacier flow.sup.4-6 and surface melting.sup.7-9 have been driven by oceanic.sup.10-12 and atmospheric.sup.13,14 warming, the magnitude and trajectory of the ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 [plus or minus] 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 [plus or minus] 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 [plus or minus] 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 [plus or minus] 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 [plus or minus] 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 [plus or minus] 37 billion tonnes per year in the 1990s to 87 [plus or minus] 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 [plus or minus] 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions.sup.15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ.sup.16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario.sup.17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate. Three techniques for estimating mass losses from the Greenland Ice Sheet produce comparable results for the period 1992-2018 that approach the trajectory of the highest rates of sea-level rise projected by the IPCC. The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades , and it is expected to continue to be so . Although increases in glacier flow and surface melting have been driven by oceanic and atmospheric warming, the magnitude and trajectory of the ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions and ocean temperatures fell at the terminus of Jakobshavn Isbræ . Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario , which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate. |
| Audience | Academic |
| Author | Smith, Ben Whitehouse, Pippa Velicogna, Isabella Rignot, Eric Shepherd, Andrew van den Broeke, Michiel Ivins, Erik |
| Author_xml | – sequence: 1 fullname: Shepherd, Andrew – sequence: 2 fullname: Ivins, Erik – sequence: 3 fullname: Rignot, Eric – sequence: 4 fullname: Smith, Ben – sequence: 5 fullname: van den Broeke, Michiel – sequence: 6 fullname: Velicogna, Isabella – sequence: 7 fullname: Whitehouse, Pippa |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31822019$$D View this record in MEDLINE/PubMed https://hal.science/hal-03025884$$DView record in HAL |
| BookMark | eNp9kl1v0zAUhi00xLbCD-AGReyGCWX4I3Gcy6qCrVIBiQ1xadnOSeopjTs7meDf45Bt0KlDkWPr6HleJT7nGB10rgOEXhN8RjATH0JGcsFTTMqUiDxP6TN0RLKCpxkXxQE6wpiKFAvGD9FxCNcY45wU2Qt0yIigNGpHqPysQki0alVnIHF10q8hOfcAXaxUyTIWL9cAfVJ7t0lIWdKkd0l0xUv0vFZtgFd3-wx9__TxanGRrr6eLxfzVaoEK_r4hhxrIoTmAjPQ3OiasYrhTKsSK11jwTUzgsbFOFUFY4YABsWqiuZVwWaITbmthQak89rKWyqdstN5aBupjNQgKeVC0owSVkbrdLLWqpVbbzfK__rjXMxXcqxhhmkuRHZLIvtuYrfe3QwQermxwUAbbwDcECRlNCtJnsdvnKGTR-i1G3wX_z9SguKCstiZB6pRLUjb1a73yoyhcs4pIbgUfKTSPVQDHXjVxkbXNpZ3-Ld7eLO1N_Jf6GwPFJ8KNtbsTT3dESLTw8--UUMIcnn5bZd9_zQ7v_qx-LJLv7m7q0FvoHrowv3wRaCYAONdCB5qaWyvehtTvbKtJFiOYy6nMZdRkeOYy7EN5JF5H_4_h05OiGzXgP_buqel318SAtA |
| CitedBy_id | crossref_primary_10_5194_cp_19_1585_2023 crossref_primary_10_1111_bor_12594 crossref_primary_10_5194_tc_16_1927_2022 crossref_primary_10_5194_tc_14_3785_2020 crossref_primary_10_1088_1748_9326_ac3d58 crossref_primary_10_5194_tc_17_2705_2023 crossref_primary_10_5194_essd_15_5467_2023 crossref_primary_10_1007_s00703_025_01072_0 crossref_primary_10_1016_j_scitotenv_2021_148032 crossref_primary_10_5194_tc_16_4379_2022 crossref_primary_10_5194_tc_19_1205_2025 crossref_primary_10_1029_2021GL097114 crossref_primary_10_1029_2022GL099276 crossref_primary_10_5194_tc_16_3933_2022 crossref_primary_10_1029_2022GL102426 crossref_primary_10_1038_s41558_022_01371_z crossref_primary_10_1016_j_epsl_2020_116647 crossref_primary_10_1038_s41558_020_0893_y crossref_primary_10_1016_j_rse_2023_113730 crossref_primary_10_1038_s41467_024_45487_6 crossref_primary_10_1038_s41586_025_09347_7 crossref_primary_10_1007_s10712_024_09866_4 crossref_primary_10_1029_2022GL101210 crossref_primary_10_3389_fbuil_2022_796471 crossref_primary_10_1029_2023EF003679 crossref_primary_10_1109_TGRS_2023_3347543 crossref_primary_10_5194_tc_18_1467_2024 crossref_primary_10_1038_s41467_021_26229_4 crossref_primary_10_1038_s44221_023_00030_7 crossref_primary_10_1016_j_accre_2020_11_010 crossref_primary_10_1038_s41586_022_05301_z crossref_primary_10_5194_tc_15_233_2021 crossref_primary_10_1017_jog_2020_7 crossref_primary_10_1029_2022JC018528 crossref_primary_10_5194_tc_17_327_2023 crossref_primary_10_5194_tc_18_5825_2024 crossref_primary_10_5194_tc_14_4299_2020 crossref_primary_10_1016_j_jhydrol_2021_126750 crossref_primary_10_1029_2022GL102689 crossref_primary_10_5194_os_17_1081_2021 crossref_primary_10_1109_TGRS_2022_3216218 crossref_primary_10_5194_essd_15_1675_2023 crossref_primary_10_1080_15481603_2023_2207301 crossref_primary_10_1088_1361_6633_acaf8e crossref_primary_10_1016_j_rsase_2023_101104 crossref_primary_10_5194_tc_15_2601_2021 crossref_primary_10_5194_tc_19_1937_2025 crossref_primary_10_1029_2022JD036970 crossref_primary_10_1038_s41586_023_06863_2 crossref_primary_10_1029_2021GL095141 crossref_primary_10_1038_s41893_022_00922_8 crossref_primary_10_1109_JSTARS_2025_3563254 crossref_primary_10_3389_feart_2022_938246 crossref_primary_10_1002_joc_6879 crossref_primary_10_1038_s41586_022_05224_9 crossref_primary_10_1126_science_adp7708 crossref_primary_10_1029_2020JC017080 crossref_primary_10_5194_tc_15_5785_2021 crossref_primary_10_18822_byusu20230143_59 crossref_primary_10_1038_s43017_025_00681_y crossref_primary_10_5194_tc_14_2235_2020 crossref_primary_10_5194_tc_15_5705_2021 crossref_primary_10_1002_esp_70116 crossref_primary_10_1186_s40623_022_01752_w crossref_primary_10_5194_os_19_141_2023 crossref_primary_10_5194_essd_13_3491_2021 crossref_primary_10_1029_2021EF002152 crossref_primary_10_1029_2021GL094040 crossref_primary_10_5194_tc_18_475_2024 crossref_primary_10_1016_j_polar_2023_100940 crossref_primary_10_1144_M56_2021_22 crossref_primary_10_1016_j_marmicro_2022_102158 crossref_primary_10_1016_j_accre_2025_05_004 crossref_primary_10_1016_j_jag_2022_102913 crossref_primary_10_1126_science_aaz5845 crossref_primary_10_1016_j_rse_2022_113394 crossref_primary_10_1002_joc_6771 crossref_primary_10_1119_5_0067924 crossref_primary_10_1038_s43247_024_01968_6 crossref_primary_10_1038_s41561_021_00813_1 crossref_primary_10_1371_journal_pclm_0000203 crossref_primary_10_1016_j_jhydrol_2024_130622 crossref_primary_10_1029_2021JG006289 crossref_primary_10_5194_tc_15_5739_2021 crossref_primary_10_1029_2021EF002378 crossref_primary_10_1093_gji_ggac264 crossref_primary_10_1038_s41467_024_54045_z crossref_primary_10_1029_2022EF002751 crossref_primary_10_5194_tc_16_2449_2022 crossref_primary_10_1080_01431161_2024_2339198 crossref_primary_10_1073_pnas_2017989118 crossref_primary_10_1093_advances_nmab104 crossref_primary_10_3390_app11031115 crossref_primary_10_1029_2021RG000757 crossref_primary_10_5194_tc_17_789_2023 crossref_primary_10_1175_JCLI_D_19_0835_1 crossref_primary_10_1029_2021JF006505 crossref_primary_10_1029_2021GL097085 crossref_primary_10_5194_tc_19_63_2025 crossref_primary_10_1002_qj_4374 crossref_primary_10_1029_2019MS002031 crossref_primary_10_1088_1748_9326_adeea9 crossref_primary_10_5194_tc_16_807_2022 crossref_primary_10_1371_journal_pone_0259816 crossref_primary_10_1038_s41561_025_01746_9 crossref_primary_10_3390_rs12122014 crossref_primary_10_1038_s41586_020_2742_6 crossref_primary_10_1080_10095020_2023_2252034 crossref_primary_10_1029_2022GL098915 crossref_primary_10_1038_s41586_021_03436_z crossref_primary_10_1080_01490419_2023_2276478 crossref_primary_10_3389_feart_2021_667717 crossref_primary_10_1016_j_rse_2021_112805 crossref_primary_10_1073_pnas_2425248122 crossref_primary_10_1109_TGRS_2023_3290952 crossref_primary_10_3390_rs13020302 crossref_primary_10_1016_j_quascirev_2022_107530 crossref_primary_10_5194_tc_14_3487_2020 crossref_primary_10_5194_tc_14_3071_2020 crossref_primary_10_5194_tc_17_5255_2023 crossref_primary_10_1029_2020RG000712 crossref_primary_10_3390_rs15051354 crossref_primary_10_1111_josp_12396 crossref_primary_10_5194_essd_12_2013_2020 crossref_primary_10_1016_j_rse_2024_113994 crossref_primary_10_1016_j_rse_2023_113450 crossref_primary_10_1029_2021GL097081 crossref_primary_10_1029_2022GL102146 crossref_primary_10_1029_2021JF006309 crossref_primary_10_5194_esd_12_783_2021 crossref_primary_10_1016_j_quascirev_2022_107680 crossref_primary_10_5194_tc_15_3751_2021 crossref_primary_10_1038_s41558_020_00941_3 crossref_primary_10_1038_s41467_022_34524_x crossref_primary_10_5194_tc_15_485_2021 crossref_primary_10_1016_j_quaint_2021_06_001 crossref_primary_10_1038_s41467_022_34414_2 crossref_primary_10_3389_feart_2023_960363 crossref_primary_10_1017_jog_2024_73 crossref_primary_10_1016_j_polar_2024_101158 crossref_primary_10_1017_jog_2023_89 crossref_primary_10_5194_tc_17_3083_2023 crossref_primary_10_1016_j_oceaneng_2025_121765 crossref_primary_10_5194_tc_14_3309_2020 crossref_primary_10_1016_j_jqsrt_2021_107845 crossref_primary_10_5194_bg_19_271_2022 crossref_primary_10_5194_tc_19_3009_2025 crossref_primary_10_5194_amt_15_4063_2022 crossref_primary_10_1029_2020JF005775 crossref_primary_10_3390_rs16101673 crossref_primary_10_1073_pnas_2406930121 crossref_primary_10_1002_joc_7689 crossref_primary_10_1016_j_polar_2020_100557 crossref_primary_10_3390_rs13112213 crossref_primary_10_5194_tc_19_3107_2025 crossref_primary_10_1007_s00382_024_07271_6 crossref_primary_10_1029_2023JB026653 crossref_primary_10_1017_jog_2023_1 crossref_primary_10_1007_s11306_024_02147_6 crossref_primary_10_1029_2020JB020713 crossref_primary_10_1016_j_rse_2024_114529 crossref_primary_10_1016_j_rse_2025_114868 crossref_primary_10_1038_s41586_021_03302_y crossref_primary_10_1038_s41598_024_82692_1 crossref_primary_10_1371_journal_pclm_0000379 crossref_primary_10_1038_s41597_023_02887_5 crossref_primary_10_1038_s41561_022_01035_9 crossref_primary_10_1109_JSTARS_2025_3584511 crossref_primary_10_1029_2021GL092942 crossref_primary_10_3390_rs14112563 crossref_primary_10_3389_fclim_2021_689823 crossref_primary_10_1029_2022GC010813 crossref_primary_10_1080_15230430_2021_1946241 crossref_primary_10_5194_essd_15_133_2023 crossref_primary_10_1029_2021JF006249 crossref_primary_10_1038_s43017_023_00509_7 crossref_primary_10_5194_tc_19_1221_2025 crossref_primary_10_1029_2020PA004019 crossref_primary_10_1038_s41598_022_10628_8 crossref_primary_10_1017_jog_2022_2 crossref_primary_10_3389_fmars_2020_00606 crossref_primary_10_1017_jog_2023_60 crossref_primary_10_1038_s41586_023_05762_w crossref_primary_10_1029_2023JF007082 crossref_primary_10_1108_IJBPA_02_2020_111 crossref_primary_10_1029_2023GL104095 crossref_primary_10_5194_tc_14_4181_2020 crossref_primary_10_1017_jog_2024_30 crossref_primary_10_1017_jog_2023_64 crossref_primary_10_1017_jog_2022_76 crossref_primary_10_1016_j_pocean_2021_102655 crossref_primary_10_5194_essd_17_3047_2025 crossref_primary_10_1029_2021JC017274 crossref_primary_10_1038_s41467_021_23739_z crossref_primary_10_5194_esd_16_939_2025 crossref_primary_10_1038_s41598_021_83509_1 crossref_primary_10_1029_2023JB026740 crossref_primary_10_1016_j_jqsrt_2025_109543 crossref_primary_10_1038_s41558_025_02364_4 crossref_primary_10_1017_jog_2023_33 crossref_primary_10_1109_TGRS_2020_3027190 crossref_primary_10_3390_cli13050085 crossref_primary_10_5194_gc_3_381_2020 crossref_primary_10_5194_tc_17_4645_2023 crossref_primary_10_1038_s43247_021_00329_x crossref_primary_10_5194_essd_14_973_2022 crossref_primary_10_1002_cpe_6130 crossref_primary_10_1007_s00382_025_07761_1 crossref_primary_10_5194_tc_17_3933_2023 crossref_primary_10_1029_2021JF006295 crossref_primary_10_5194_essd_12_1191_2020 crossref_primary_10_1029_2022GL100911 crossref_primary_10_1029_2023WR035483 crossref_primary_10_5194_tc_15_4221_2021 crossref_primary_10_1017_jog_2022_70 crossref_primary_10_1017_jog_2021_89 crossref_primary_10_1017_jog_2023_41 crossref_primary_10_1017_jog_2022_74 crossref_primary_10_5194_tc_19_2635_2025 crossref_primary_10_1017_jog_2022_54 crossref_primary_10_1038_s41467_023_39466_6 crossref_primary_10_1109_TGRS_2023_3296539 crossref_primary_10_1016_j_geomorph_2023_108778 crossref_primary_10_5194_tc_19_3089_2025 crossref_primary_10_1029_2023GL102954 crossref_primary_10_1063_5_0216921 crossref_primary_10_1080_17538947_2025_2513045 crossref_primary_10_5194_essd_16_5405_2024 crossref_primary_10_1016_j_gloplacha_2021_103503 crossref_primary_10_1016_j_asr_2021_01_022 crossref_primary_10_5194_tc_17_1_2023 crossref_primary_10_1017_jog_2023_11 crossref_primary_10_3390_rs14236069 crossref_primary_10_1017_jog_2023_104 crossref_primary_10_5194_esd_13_1351_2022 crossref_primary_10_5194_tc_15_3279_2021 crossref_primary_10_5194_tc_17_5131_2023 crossref_primary_10_1029_2023GL102828 crossref_primary_10_1080_02626667_2022_2030060 crossref_primary_10_1029_2021JF006395 crossref_primary_10_1017_jog_2022_51 crossref_primary_10_1002_wene_388 crossref_primary_10_1038_s41598_024_61930_6 crossref_primary_10_3389_feart_2020_616105 crossref_primary_10_1038_s41558_022_01441_2 crossref_primary_10_5194_esd_15_1161_2024 crossref_primary_10_1029_2022JF006914 crossref_primary_10_3389_feart_2022_978137 crossref_primary_10_1029_2021GL094546 crossref_primary_10_1029_2023MS003610 crossref_primary_10_1002_env_2762 crossref_primary_10_1016_j_rse_2024_114469 crossref_primary_10_1017_jog_2022_21 crossref_primary_10_5194_essd_14_479_2022 crossref_primary_10_5194_tc_14_1425_2020 crossref_primary_10_1017_aog_2023_53 crossref_primary_10_3390_su13031228 crossref_primary_10_5194_cp_20_701_2024 crossref_primary_10_5194_tc_16_3375_2022 crossref_primary_10_3390_rs13245149 crossref_primary_10_1029_2020JC016433 crossref_primary_10_5194_tc_15_1823_2021 crossref_primary_10_1007_s12665_025_12389_9 crossref_primary_10_1080_00167487_2024_2437946 crossref_primary_10_1038_s43247_021_00296_3 crossref_primary_10_1007_s41976_025_00224_5 crossref_primary_10_5194_tc_19_3599_2025 crossref_primary_10_1017_jog_2022_31 crossref_primary_10_1017_jog_2021_63 crossref_primary_10_5194_essd_14_763_2022 crossref_primary_10_1038_s41597_025_04948_3 crossref_primary_10_3390_rs14215534 crossref_primary_10_1017_jog_2020_91 crossref_primary_10_5194_tc_18_4065_2024 crossref_primary_10_3390_jmse10030355 crossref_primary_10_1109_JSTARS_2022_3204544 crossref_primary_10_1029_2020GL090471 crossref_primary_10_1017_jog_2021_56 crossref_primary_10_1007_s00190_021_01476_x crossref_primary_10_1029_2020JB021537 crossref_primary_10_3390_rs12162609 crossref_primary_10_1038_s41598_024_64529_z crossref_primary_10_1007_s00382_022_06184_6 crossref_primary_10_1029_2022EF003052 crossref_primary_10_1109_LGRS_2020_3025569 crossref_primary_10_5194_tc_18_2455_2024 crossref_primary_10_1177_09596836231219491 crossref_primary_10_1029_2023JC019905 crossref_primary_10_1038_s41598_024_52124_1 crossref_primary_10_1002_lno_11686 crossref_primary_10_1029_2021JF006191 crossref_primary_10_5194_tc_17_2851_2023 crossref_primary_10_1016_j_marchem_2024_104442 crossref_primary_10_1109_LGRS_2021_3058956 crossref_primary_10_1029_2022GL101702 crossref_primary_10_5194_tc_14_3935_2020 crossref_primary_10_1073_pnas_2201871119 crossref_primary_10_1017_aog_2023_41 crossref_primary_10_1007_s12524_025_02131_0 crossref_primary_10_5194_esd_15_635_2024 crossref_primary_10_5194_acp_21_15351_2021 crossref_primary_10_5194_tc_19_1047_2025 crossref_primary_10_1007_s10712_021_09685_x crossref_primary_10_1029_2021JC017552 crossref_primary_10_1016_j_quascirev_2023_108068 crossref_primary_10_1016_j_rse_2024_114020 crossref_primary_10_5194_tc_17_4729_2023 crossref_primary_10_1029_2020GL090452 crossref_primary_10_1029_2021GL094502 crossref_primary_10_3389_feart_2021_674983 crossref_primary_10_1029_2021GL092449 crossref_primary_10_5194_tc_16_2355_2022 crossref_primary_10_5194_tc_15_1005_2021 crossref_primary_10_1038_s41558_022_01357_x crossref_primary_10_1017_jog_2021_31 crossref_primary_10_1016_j_earscirev_2024_105012 crossref_primary_10_3390_rs14092134 crossref_primary_10_1109_JSTARS_2022_3154968 crossref_primary_10_1016_j_quascirev_2023_108477 crossref_primary_10_1029_2021GL094252 crossref_primary_10_1038_s41467_025_62281_0 crossref_primary_10_1029_2020EF001525 crossref_primary_10_1017_jog_2022_124 crossref_primary_10_1080_03036758_2023_2232743 crossref_primary_10_5194_tc_17_4063_2023 crossref_primary_10_1126_science_ado5008 crossref_primary_10_1029_2022JF006753 crossref_primary_10_5194_essd_15_1597_2023 crossref_primary_10_5194_tc_18_5173_2024 crossref_primary_10_3390_rs15235439 crossref_primary_10_1029_2020JF006038 crossref_primary_10_1029_2022JF006857 crossref_primary_10_1038_s41467_023_37764_7 crossref_primary_10_1093_pnasnexus_pgae106 crossref_primary_10_1007_s00190_023_01781_7 crossref_primary_10_1007_s10712_023_09795_8 crossref_primary_10_5194_tc_16_3021_2022 crossref_primary_10_3389_feart_2023_969629 crossref_primary_10_5802_crgeos_305 crossref_primary_10_1007_s11629_021_6912_2 crossref_primary_10_1017_jog_2021_13 crossref_primary_10_5194_esd_12_819_2021 crossref_primary_10_3390_rs14010055 crossref_primary_10_1016_j_jcp_2022_111095 crossref_primary_10_3390_rs15235545 crossref_primary_10_1029_2021GL096690 crossref_primary_10_1029_2020GL091216 crossref_primary_10_1038_s41467_023_38806_w crossref_primary_10_5194_essd_13_5001_2021 crossref_primary_10_1007_s10712_020_09612_6 crossref_primary_10_5194_tc_18_5067_2024 crossref_primary_10_1038_s41467_021_27031_y crossref_primary_10_3390_rs14010062 crossref_primary_10_1029_2022JD036688 crossref_primary_10_3390_rs14092229 crossref_primary_10_3389_feart_2020_00253 crossref_primary_10_5194_tc_16_4679_2022 crossref_primary_10_1038_d41586_022_01986_4 crossref_primary_10_1007_s11430_020_9700_1 crossref_primary_10_1126_science_abb3566 crossref_primary_10_1016_j_margeo_2024_107375 crossref_primary_10_1029_2023GL103509 crossref_primary_10_5194_os_18_109_2022 crossref_primary_10_5194_gi_12_215_2023 crossref_primary_10_1029_2022GL100305 crossref_primary_10_1038_s41586_023_05876_1 crossref_primary_10_5194_esd_13_1077_2022 crossref_primary_10_1007_s00190_025_01943_9 crossref_primary_10_1126_science_abn7950 crossref_primary_10_3390_rs12162588 crossref_primary_10_5194_tc_18_1333_2024 crossref_primary_10_5194_tc_14_2253_2020 crossref_primary_10_1016_j_rse_2023_113701 crossref_primary_10_1016_j_rse_2023_113702 crossref_primary_10_3390_rs13020197 crossref_primary_10_5194_tc_19_3553_2025 crossref_primary_10_1038_s41467_023_37434_8 crossref_primary_10_5194_tc_18_911_2024 crossref_primary_10_1109_TGRS_2022_3208454 crossref_primary_10_1088_1361_6633_ac805b crossref_primary_10_3390_s22239061 crossref_primary_10_1007_s00190_022_01651_8 crossref_primary_10_1007_s00190_022_01697_8 crossref_primary_10_1038_s41583_020_0311_5 crossref_primary_10_3390_geosciences11080350 crossref_primary_10_1111_bor_12683 crossref_primary_10_1029_2023GL104894 crossref_primary_10_5194_tc_19_2855_2025 crossref_primary_10_1029_2021GL096501 crossref_primary_10_1016_j_scitotenv_2025_178450 crossref_primary_10_1080_15230430_2023_2186456 crossref_primary_10_5194_hess_24_3899_2020 crossref_primary_10_3390_rs13224508 crossref_primary_10_1016_j_quascirev_2024_108770 crossref_primary_10_1029_2020JC016930 crossref_primary_10_3390_rs15010031 crossref_primary_10_1017_jog_2021_136 crossref_primary_10_1038_s43247_024_01548_8 crossref_primary_10_3390_atmos12080955 crossref_primary_10_3390_land14040705 crossref_primary_10_1088_1748_9326_ad13b8 crossref_primary_10_1109_TGRS_2024_3425500 crossref_primary_10_1016_j_jaridenv_2023_105012 crossref_primary_10_1109_JSTARS_2022_3184156 crossref_primary_10_1029_2021GL097507 crossref_primary_10_1016_j_quascirev_2023_108219 crossref_primary_10_5194_esd_15_859_2024 crossref_primary_10_1007_s40641_020_00164_w crossref_primary_10_1038_s41597_023_02059_5 crossref_primary_10_2112_JCOASTRES_D_20_00101_1 crossref_primary_10_3390_rs16213934 crossref_primary_10_5194_sd_33_33_2024 crossref_primary_10_1029_2022GL099731 crossref_primary_10_3390_challe13020033 crossref_primary_10_1109_LGRS_2025_3570726 crossref_primary_10_1016_j_quascirev_2023_108345 crossref_primary_10_5194_os_19_321_2023 crossref_primary_10_5194_tc_16_17_2022 crossref_primary_10_1017_jog_2020_109 crossref_primary_10_5194_os_21_241_2025 crossref_primary_10_1038_s41467_025_59237_9 crossref_primary_10_3389_feart_2020_523646 crossref_primary_10_1017_jog_2021_141 crossref_primary_10_3389_feart_2020_00163 crossref_primary_10_5194_tc_18_2719_2024 crossref_primary_10_5194_tc_18_5673_2024 crossref_primary_10_1016_j_oneear_2020_11_002 |
| Cites_doi | 10.1002/2013JB010923 10.1029/2012JB009684 10.1038/ngeo1874 10.1002/jgrc.20271 10.1126/sciadv.1700584 10.1126/sciadv.1600931 10.1002/jgrb.50208 10.1002/2014JB011176 10.1146/annurev.earth.32.082503.144359 10.1007/s10712-015-9338-y 10.1038/nature12854 10.1016/j.quascirev.2009.03.004 10.5194/essd-10-1551-2018 10.1038/nature08471 10.3390/rs9040364 10.1038/s41561-019-0329-3 10.1073/pnas.1206785109 10.5194/tc-12-811-2018 10.1029/2019GL082182 10.1093/gji/ggu402 10.1007/s10712-016-9398-7 10.1029/2011GL047109 10.5194/tc-10-2361-2016 10.1016/j.epsl.2014.10.015 10.3189/002214311795306682 10.1002/2017WR021150 10.1126/science.1228102 10.5194/tc-7-241-2013 10.5194/tc-10-2953-2016 10.1073/pnas.1411680112 10.1017/jog.2016.133 10.3189/002214310792447734 10.1126/science.1219985 10.1029/2007JB005338 10.1002/grl.50270 10.1093/gji/ggu369 10.5194/tc-7-469-2013 10.1093/gji/ggx083 10.5194/tc-12-2087-2018 10.1038/s41586-018-0752-4 10.1073/pnas.1904242116 10.5194/tc-9-1831-2015 10.5194/tc-12-2211-2018 10.1126/science.1121381 10.5194/tc-8-125-2014 10.1016/j.quascirev.2003.11.001 10.1038/nclimate2463 10.3189/2012JoG11J242 10.1017/S0954102005002968 10.1029/2011JD016267 10.5194/tc-11-1015-2017 10.1093/gji/ggy293 10.3390/rs70709371 10.1002/2016JB013007 10.5194/tc-5-173-2011 10.1175/JCLI-D-16-0758.1 10.1002/jgrb.50058 10.1002/2014GL061052 10.1046/j.1365-246x.2000.00138.x 10.1002/2016GL069666 10.1029/2012GL051634 10.1002/2014JB011755 10.1038/nature03130 10.3389/feart.2018.00090 10.1038/nclimate3400 10.5194/os-12-1067-2016 10.1002/2016JB013073 10.1016/j.asr.2017.11.014 10.1126/science.246.4937.1587 10.3189/002214308786570908 10.1038/s41586-018-0179-y 10.3189/2013JoG12J147 10.1029/2002GL016473 10.1109/TGRS.2017.2709303 10.1073/pnas.1411762111 10.1093/gji/ggv461 10.1093/gji/ggs030 10.5194/tc-7-375-2013 10.1016/j.tecto.2009.08.031 10.3389/feart.2016.00110 10.1126/science.1178176 10.1002/2016WR019344 10.1002/2013GL059010 10.1016/j.quascirev.2014.07.018 10.1093/gji/ggt091 10.1029/2009GL038110 10.1073/pnas.1806562116 10.1088/1748-9326/7/4/045404 10.1002/2017GL074954 10.1029/2000JB900113 10.1029/2010JF001847 10.1175/BAMS-85-3-381 10.1175/2009JHM1140.1 10.5194/tc-12-3813-2018 10.5194/tc-7-599-2013 10.1016/j.rse.2016.12.029 10.5194/tc-8-743-2014 10.1038/ngeo102 10.1016/j.epsl.2018.05.015 10.1126/science.1130776 10.1016/j.rse.2015.07.012 10.1029/2001JD900183 10.1002/qj.2063 10.5194/tc-8-1539-2014 10.1038/s41558-018-0305-8 10.1038/ncomms9408 10.1126/science.1208336 10.1016/S0022-1694(02)00283-4 10.1038/ngeo316 10.1111/j.1365-246X.2007.03556.x |
| ContentType | Journal Article |
| Contributor | Schröder, Ludwig Nield, Grace Fettweis, Xavier Gallee, Hubert Spada, Giorgio A, Geruo Sasgen, Ingo Gardner, Alex Gunter, Brian Wouters, Bert Horwath, Martin Otosaka, Ines Rietbroek, Roelof Konrad, Hannes Mottram, Ruth Bjørk, Anders A Briggs, Kate Wuite, Jan Schrama, Ernst Wagner, Thomas Agosta, Cécile Helm, Veit Payne, Tony Pie, Nadège Sandberg Sørensen, Louise Talpe, Matthieu Babonis, Greg Rignot, Eric Vishwakarma, Bramha Dutt Ahlstrøm, Andreas Pattle, Mark E Ivins, Erik Luthcke, Scott Wiese, David Forsberg, Rene Nilsson, Johan Simonsen, Sebastian B Joughin, Ian Noël, Brice Blazquez, Alejandro Colgan, William Melini, Daniele Moore, Philip Kjeldsen, Kristian K Khan, Shfaqat McMillan, Malcolm Gourmelen, Noel Barletta, Valentina R Hanna, Edward Mouginot, Jeremie Wilton, David van Wessem, Melchior Tarasov, Lev Langen, Peter L Krinner, Gerhard Moyano, Gorka Horvath, Alexander van de Berg, Willem Jan Scambos, Ted van der Wal, Wouter Cullather, Richard Engdahl, Marcus E Loomis, Bryant Nagler, Thomas Nowicki, Sophie Lecavalier, Benoit Smith, Ben Felikson, De |
| Contributor_xml | – sequence: 1 givenname: Andrew surname: Shepherd fullname: Shepherd, Andrew – sequence: 2 givenname: Erik surname: Ivins fullname: Ivins, Erik – sequence: 3 givenname: Eric surname: Rignot fullname: Rignot, Eric – sequence: 4 givenname: Ben surname: Smith fullname: Smith, Ben – sequence: 5 givenname: Michiel surname: van den Broeke fullname: van den Broeke, Michiel – sequence: 6 givenname: Isabella surname: Velicogna fullname: Velicogna, Isabella – sequence: 7 givenname: Pippa surname: Whitehouse fullname: Whitehouse, Pippa – sequence: 8 givenname: Kate surname: Briggs fullname: Briggs, Kate – sequence: 9 givenname: Ian surname: Joughin fullname: Joughin, Ian – sequence: 10 givenname: Gerhard surname: Krinner fullname: Krinner, Gerhard – sequence: 11 givenname: Sophie surname: Nowicki fullname: Nowicki, Sophie – sequence: 12 givenname: Tony surname: Payne fullname: Payne, Tony – sequence: 13 givenname: Ted surname: Scambos fullname: Scambos, Ted – sequence: 14 givenname: Nicole surname: Schlegel fullname: Schlegel, Nicole – sequence: 15 givenname: Geruo surname: A fullname: A, Geruo – sequence: 16 givenname: Cécile surname: Agosta fullname: Agosta, Cécile – sequence: 17 givenname: Andreas surname: Ahlstrøm fullname: Ahlstrøm, Andreas – sequence: 18 givenname: Greg surname: Babonis fullname: Babonis, Greg – sequence: 19 givenname: Valentina R surname: Barletta fullname: Barletta, Valentina R – sequence: 20 givenname: Anders A surname: Bjørk fullname: Bjørk, Anders A – sequence: 21 givenname: Alejandro surname: Blazquez fullname: Blazquez, Alejandro – sequence: 22 givenname: Jennifer surname: Bonin fullname: Bonin, Jennifer – sequence: 23 givenname: William surname: Colgan fullname: Colgan, William – sequence: 24 givenname: Beata surname: Csatho fullname: Csatho, Beata – sequence: 25 givenname: Richard surname: Cullather fullname: Cullather, Richard – sequence: 26 givenname: Marcus E surname: Engdahl fullname: Engdahl, Marcus E – sequence: 27 givenname: Denis surname: Felikson fullname: Felikson, Denis – sequence: 28 givenname: Xavier surname: Fettweis fullname: Fettweis, Xavier – sequence: 29 givenname: Rene surname: Forsberg fullname: Forsberg, Rene – sequence: 30 givenname: Anna E surname: Hogg fullname: Hogg, Anna E – sequence: 31 givenname: Hubert surname: Gallee fullname: Gallee, Hubert – sequence: 32 givenname: Alex surname: Gardner fullname: Gardner, Alex – sequence: 33 givenname: Lin surname: Gilbert fullname: Gilbert, Lin – sequence: 34 givenname: Noel surname: Gourmelen fullname: Gourmelen, Noel – sequence: 35 givenname: Andreas surname: Groh fullname: Groh, Andreas – sequence: 36 givenname: Brian surname: Gunter fullname: Gunter, Brian – sequence: 37 givenname: Edward surname: Hanna fullname: Hanna, Edward – sequence: 38 givenname: Christopher surname: Harig fullname: Harig, Christopher – sequence: 39 givenname: Veit surname: Helm fullname: Helm, Veit – sequence: 40 givenname: Alexander surname: Horvath fullname: Horvath, Alexander – sequence: 41 givenname: Martin surname: Horwath fullname: Horwath, Martin – sequence: 42 givenname: Shfaqat surname: Khan fullname: Khan, Shfaqat – sequence: 43 givenname: Kristian K surname: Kjeldsen fullname: Kjeldsen, Kristian K – sequence: 44 givenname: Hannes surname: Konrad fullname: Konrad, Hannes – sequence: 45 givenname: Peter L surname: Langen fullname: Langen, Peter L – sequence: 46 givenname: Benoit surname: Lecavalier fullname: Lecavalier, Benoit – sequence: 47 givenname: Bryant surname: Loomis fullname: Loomis, Bryant – sequence: 48 givenname: Scott surname: Luthcke fullname: Luthcke, Scott – sequence: 49 givenname: Malcolm surname: McMillan fullname: McMillan, Malcolm – sequence: 50 givenname: Daniele surname: Melini fullname: Melini, Daniele – sequence: 51 givenname: Sebastian surname: Mernild fullname: Mernild, Sebastian – sequence: 52 givenname: Yara surname: Mohajerani fullname: Mohajerani, Yara – sequence: 53 givenname: Philip surname: Moore fullname: Moore, Philip – sequence: 54 givenname: Ruth surname: Mottram fullname: Mottram, Ruth – sequence: 55 givenname: Jeremie surname: Mouginot fullname: Mouginot, Jeremie – sequence: 56 givenname: Gorka surname: Moyano fullname: Moyano, Gorka – sequence: 57 givenname: Alan surname: Muir fullname: Muir, Alan – sequence: 58 givenname: Thomas surname: Nagler fullname: Nagler, Thomas – sequence: 59 givenname: Grace surname: Nield fullname: Nield, Grace – sequence: 60 givenname: Johan surname: Nilsson fullname: Nilsson, Johan – sequence: 61 givenname: Brice surname: Noël fullname: Noël, Brice – sequence: 62 givenname: Ines surname: Otosaka fullname: Otosaka, Ines – sequence: 63 givenname: Mark E surname: Pattle fullname: Pattle, Mark E – sequence: 64 givenname: W Richard surname: Peltier fullname: Peltier, W Richard – sequence: 65 givenname: Nadège surname: Pie fullname: Pie, Nadège – sequence: 66 givenname: Roelof surname: Rietbroek fullname: Rietbroek, Roelof – sequence: 67 givenname: Helmut surname: Rott fullname: Rott, Helmut – sequence: 68 givenname: Louise surname: Sandberg Sørensen fullname: Sandberg Sørensen, Louise – sequence: 69 givenname: Ingo surname: Sasgen fullname: Sasgen, Ingo – sequence: 70 givenname: Himanshu surname: Save fullname: Save, Himanshu – sequence: 71 givenname: Bernd surname: Scheuchl fullname: Scheuchl, Bernd – sequence: 72 givenname: Ernst surname: Schrama fullname: Schrama, Ernst – sequence: 73 givenname: Ludwig surname: Schröder fullname: Schröder, Ludwig – sequence: 74 givenname: Ki-Weon surname: Seo fullname: Seo, Ki-Weon – sequence: 75 givenname: Sebastian B surname: Simonsen fullname: Simonsen, Sebastian B – sequence: 76 givenname: Thomas surname: Slater fullname: Slater, Thomas – sequence: 77 givenname: Giorgio surname: Spada fullname: Spada, Giorgio – sequence: 78 givenname: Tyler surname: Sutterley fullname: Sutterley, Tyler – sequence: 79 givenname: Matthieu surname: Talpe fullname: Talpe, Matthieu – sequence: 80 givenname: Lev surname: Tarasov fullname: Tarasov, Lev – sequence: 81 givenname: Willem Jan surname: van de Berg fullname: van de Berg, Willem Jan – sequence: 82 givenname: Wouter surname: van der Wal fullname: van der Wal, Wouter – sequence: 83 givenname: Melchior surname: van Wessem fullname: van Wessem, Melchior – sequence: 84 givenname: Bramha Dutt surname: Vishwakarma fullname: Vishwakarma, Bramha Dutt – sequence: 85 givenname: David surname: Wiese fullname: Wiese, David – sequence: 86 givenname: David surname: Wilton fullname: Wilton, David – sequence: 87 givenname: Thomas surname: Wagner fullname: Wagner, Thomas – sequence: 88 givenname: Bert surname: Wouters fullname: Wouters, Bert – sequence: 89 givenname: Jan surname: Wuite fullname: Wuite, Jan |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 COPYRIGHT 2020 Nature Publishing Group Copyright Nature Publishing Group Mar 12, 2020 Attribution |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: COPYRIGHT 2020 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 12, 2020 – notice: Attribution |
| CorporateAuthor | The IMBIE Team IMBIE Team |
| CorporateAuthor_xml | – name: The IMBIE Team – name: IMBIE Team |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 1XC VOOES JLOSS Q33 |
| DOI | 10.1038/s41586-019-1855-2 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics Environmental Sciences |
| EISSN | 1476-4687 |
| EndPage | 239 |
| ExternalDocumentID | oai_orbi_ulg_ac_be_2268_242139 oai:HAL:hal-03025884v1 A621109860 31822019 10_1038_s41586_019_1855_2 |
| Genre | Journal Article |
| GeographicLocations | Greenland |
| GeographicLocations_xml | – name: Greenland |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN FA8 FAC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT TH9 TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 ACMFV AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 PUEGO 1XC AFKWF ESTFP VOOES JLOSS Q33 |
| ID | FETCH-LOGICAL-a837t-a8e50b188b6803eb6cbf33d304ba90abf086b3c823c8362a733c1e0ea3dd25d73 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 524 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519378900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Sat Nov 29 01:28:56 EST 2025 Sat Oct 25 11:14:21 EDT 2025 Wed Oct 01 01:05:39 EDT 2025 Tue Oct 07 07:05:24 EDT 2025 Tue Nov 11 10:06:29 EST 2025 Sat Nov 29 11:47:04 EST 2025 Tue Jun 10 15:32:06 EDT 2025 Tue Nov 04 17:38:09 EST 2025 Thu Nov 13 15:22:28 EST 2025 Thu Nov 13 14:54:52 EST 2025 Mon Jul 21 05:59:16 EDT 2025 Tue Nov 18 22:40:04 EST 2025 Sat Nov 29 02:39:16 EST 2025 Fri Feb 21 02:37:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7798 |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a837t-a8e50b188b6803eb6cbf33d304ba90abf086b3c823c8362a733c1e0ea3dd25d73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 zenobe scopus-id:2-s2.0-85078287272 |
| ORCID | 0000-0002-9020-1898 0000-0001-6334-1660 0000-0002-4140-3813 0000-0001-5947-7709 0000-0002-2689-8563 0000-0002-3366-0481 0000-0001-9155-5455 0000-0003-4091-1653 0000-0003-3346-9289 0000-0002-7159-5369 0000-0002-2959-5920 0000-0001-6328-5590 0000-0002-7719-7468 |
| OpenAccessLink | https://orbi.uliege.be/handle/2268/242139 |
| PMID | 31822019 |
| PQID | 2382072310 |
| PQPubID | 40569 |
| PageCount | 7 |
| ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_242139 hal_primary_oai_HAL_hal_03025884v1 proquest_miscellaneous_2324915582 proquest_journals_2382072310 gale_infotracmisc_A621109860 gale_infotracgeneralonefile_A621109860 gale_infotraccpiq_621109860 gale_infotracacademiconefile_A621109860 gale_incontextgauss_ISR_A621109860 gale_incontextgauss_ATWCN_A621109860 pubmed_primary_31822019 crossref_citationtrail_10_1038_s41586_019_1855_2 crossref_primary_10_1038_s41586_019_1855_2 springer_journals_10_1038_s41586_019_1855_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Straneo, Heimbach (CR12) 2013; 504 Lemos (CR100) 2018; 12 Fettweis (CR14) 2013; 7 Trusel (CR8) 2018; 564 Nick (CR25) 2012; 58 Joughin (CR26) 2008; 113 Mouginot (CR33) 2019; 116 Helm, Humbert, Miller (CR86) 2014; 8 Vernon (CR45) 2013; 7 Carrère, Lyard (CR81) 2003; 30 Lecavalier (CR34) 2014; 102 Schrama, Wouters, Rietbroek (CR56) 2014; 119 Seo (CR68) 2015; 120 Joughin, Abdalati, Fahnestock (CR102) 2004; 432 Flechtner (CR50) 2016; 37 Martinec (CR111) 2000; 142 Forsberg, Sørensen, Simonsen (CR62) 2017; 38 McMillan (CR28) 2016; 43 Leeson (CR23) 2015; 5 Shepherd (CR105) 2019; 46 Csatho (CR82) 2014; 111 Groh, Horwath (CR63) 2016; 18 Gunter (CR85) 2014; 8 Mouginot, Rignot, Scheuchl, Millan (CR98) 2017; 9 Rodell (CR74) 2004; 85 Harig, Simons (CR64) 2012; 109 Holland, Thomas, de Young, Ribergaard, Lyberth (CR10) 2008; 1 Hanna, Mernild, Cappelen, Steffen (CR13) 2012; 7 Gelaro (CR117) 2017; 30 Kjeldsen (CR87) 2013; 118 Fleming, Lambeck (CR112) 2004; 23 Felikson (CR88) 2017; 55 Fettweis (CR92) 2013; 7 Howat, Joughin, Fahnestock, Smith, Scambos (CR47) 2008; 54 Khazendar (CR16) 2019; 12 Luthcke (CR31) 2006; 314 Save, Bettadpur, Tapley (CR67) 2016; 121 (CR41) 2018; 558 Martinec, Hagedoorn (CR106) 2014; 199 Ivins (CR73) 2013; 118 Caron, Métivier, Greff-Lefftz, Fleitout, Rouby (CR95) 2017; 209 Bevis (CR15) 2019; 116 Markus (CR49) 2017; 190 Noël (CR116) 2016; 10 Sun, Riva, Ditmar (CR96) 2016; 121 Peltier, Argus, Drummond (CR51) 2015; 120 Langen, Fausto, Vandecrux, Mottram, Box (CR110) 2017; 4 Nagler, Rott, Hetzenecker, Wuite, Potin (CR97) 2015; 7 Noël (CR115) 2015; 9 Wilton (CR118) 2017; 63 Lucas-Picher (CR9) 2012; 117 Cheng, Tapley, Ries (CR76) 2013; 118 Morlighem (CR18) 2017; 44 Hofer, Tedstone, Fettweis, Bamber (CR22) 2017; 3 Shepherd, Nowicki (CR48) 2017; 7 Bonin, Chambers (CR60) 2013; 194 Paulson, Zhong, Wahr (CR52) 2007; 171 Seale, Christoffersen, Mugford, O’Leary (CR11) 2011; 116 Pritchard, Arthern, Vaughan, Edwards (CR27) 2009; 461 Sandberg Sørensen (CR29) 2018; 495 Khan (CR42) 2016; 2 Andrews, Moore, King (CR66) 2015; 200 Shepherd (CR1) 2012; 338 CR79 (CR2) 2018; 10 CR114 Moon, Joughin, Smith, Howat (CR4) 2012; 336 Blazquez (CR61) 2018; 215 Fretwell (CR107) 2013; 7 Fettweis (CR21) 2017; 11 Rignot, Mouginot (CR37) 2012; 39 Velicogna, Wahr (CR30) 2005; 32 Mernild, Liston, Hiemstra, Christensen (CR119) 2010; 11 Ivins, James (CR72) 2005; 17 Pujol (CR78) 2016; 12 A, Wahr, Zhong (CR55) 2013; 192 Balmaseda, Mogensen, Weaver (CR77) 2013; 139 King, Whitehouse, van der Wal (CR113) 2016; 204 Rignot, Mouginot, Scheuchl (CR108) 2011; 333 Zwally (CR39) 2011; 57 Vishwakarma, Horwath, Devaraju, Groh, Sneeuw (CR70) 2017; 53 Joughin, Smith, Howat (CR99) 2018; 12 van den Broeke (CR7) 2009; 326 Luthcke (CR65) 2013; 59 Klemann, Martinec (CR57) 2011; 511 Andersen (CR89) 2015; 409 Rignot (CR104) 2008; 1 Lambeck, Rouby, Purcell, Sun, Sambridge (CR94) 2014; 111 Ettema (CR43) 2009; 36 Rosenau, Scheinert, Dietrich (CR40) 2015; 169 Peltier (CR53) 2004; 32 Nilsson, Gardner, Sandberg Sørensen, Forsberg (CR83) 2016; 10 Wouters, Bamber, van den Broeke, Lenaerts, Sasgen (CR59) 2013; 6 Simpson, Milne, Huybrechts, Long (CR54) 2009; 28 Döll, Kaspar, Lehner (CR75) 2003; 270 van Wessem (CR91) 2014; 8 CR17 Bolch (CR44) 2013; 40 Sørensen (CR38) 2011; 5 Rignot, Mouginot, Scheuchl (CR109) 2011; 38 Rignot, Kanagaratnam (CR6) 2006; 311 Zwally, Bindschadler, Brenner, Major, Marsh (CR32) 1989; 246 Gogineni (CR103) 2001; 106 Enderlin (CR5) 2014; 41 Wiese, Landerer, Watkins (CR71) 2016; 52 Dobslaw (CR80) 2013; 118 Porter (CR36) 2018; 6 Gourmelen (CR84) 2018; 62 Joughin, Smith, Howat, Scambos, Moon (CR19) 2010; 56 Wahr, Wingham, Bentley (CR93) 2000; 105 Joughin (CR101) 2008; 113 Pattyn (CR3) 2018; 8 King (CR35) 2018; 12 CR20 Palmer, McMillan, Morlighem (CR24) 2015; 6 Velicogna, Sutterley, van den Broeke (CR69) 2014; 41 Swenson, Chambers, Wahr (CR58) 2008; 113 Colgan (CR90) 2019; 43 Noël (CR46) 2018; 12 T Moon (1855_CR4) 2012; 336 MA Balmaseda (1855_CR77) 2013; 139 A Shepherd (1855_CR1) 2012; 338 P Lucas-Picher (1855_CR9) 2012; 117 K-W Seo (1855_CR68) 2015; 120 B Wouters (1855_CR59) 2013; 6 A Shepherd (1855_CR105) 2019; 46 L Caron (1855_CR95) 2017; 209 J Mouginot (1855_CR98) 2017; 9 SB Luthcke (1855_CR31) 2006; 314 1855_CR79 S Gogineni (1855_CR103) 2001; 106 The IMBIE Team (1855_CR41) 2018; 558 E Rignot (1855_CR109) 2011; 38 DM Holland (1855_CR10) 2008; 1 D Felikson (1855_CR88) 2017; 55 H Save (1855_CR67) 2016; 121 J Bonin (1855_CR60) 2013; 194 I Velicogna (1855_CR69) 2014; 41 IM Howat (1855_CR47) 2008; 54 E Rignot (1855_CR37) 2012; 39 SA Khan (1855_CR42) 2016; 2 C Harig (1855_CR64) 2012; 109 DJ Wilton (1855_CR118) 2017; 63 V Helm (1855_CR86) 2014; 8 L Carrère (1855_CR81) 2003; 30 MD King (1855_CR35) 2018; 12 SH Mernild (1855_CR119) 2010; 11 SB Luthcke (1855_CR65) 2013; 59 A Paulson (1855_CR52) 2007; 171 ML Andersen (1855_CR89) 2015; 409 A Shepherd (1855_CR48) 2017; 7 R Gelaro (1855_CR117) 2017; 30 S Hofer (1855_CR22) 2017; 3 J Mouginot (1855_CR33) 2019; 116 E Rignot (1855_CR104) 2008; 1 E Rignot (1855_CR6) 2006; 311 S Swenson (1855_CR58) 2008; 113 B Noël (1855_CR116) 2016; 10 LS Sørensen (1855_CR38) 2011; 5 E Rignot (1855_CR108) 2011; 333 1855_CR114 S Palmer (1855_CR24) 2015; 6 MA King (1855_CR113) 2016; 204 J Wahr (1855_CR93) 2000; 105 Y Sun (1855_CR96) 2016; 121 I Joughin (1855_CR19) 2010; 56 I Velicogna (1855_CR30) 2005; 32 B Noël (1855_CR115) 2015; 9 X Fettweis (1855_CR92) 2013; 7 K Lambeck (1855_CR94) 2014; 111 M van den Broeke (1855_CR7) 2009; 326 J Nilsson (1855_CR83) 2016; 10 E Hanna (1855_CR13) 2012; 7 BS Lecavalier (1855_CR34) 2014; 102 Z Martinec (1855_CR106) 2014; 199 HJ Zwally (1855_CR32) 1989; 246 R Rosenau (1855_CR40) 2015; 169 CL Vernon (1855_CR45) 2013; 7 P Fretwell (1855_CR107) 2013; 7 M Rodell (1855_CR74) 2004; 85 EJO Schrama (1855_CR56) 2014; 119 M-I Pujol (1855_CR78) 2016; 12 M Bevis (1855_CR15) 2019; 116 L Sandberg Sørensen (1855_CR29) 2018; 495 A Lemos (1855_CR100) 2018; 12 WR Peltier (1855_CR53) 2004; 32 SB Andrews (1855_CR66) 2015; 200 I Joughin (1855_CR101) 2008; 113 HD Pritchard (1855_CR27) 2009; 461 HJ Zwally (1855_CR39) 2011; 57 B Noël (1855_CR46) 2018; 12 BC Gunter (1855_CR85) 2014; 8 LD Trusel (1855_CR8) 2018; 564 KK Kjeldsen (1855_CR87) 2013; 118 A Blazquez (1855_CR61) 2018; 215 P Döll (1855_CR75) 2003; 270 AA Leeson (1855_CR23) 2015; 5 DF Porter (1855_CR36) 2018; 6 T Markus (1855_CR49) 2017; 190 ER Ivins (1855_CR73) 2013; 118 X Fettweis (1855_CR21) 2017; 11 EM Enderlin (1855_CR5) 2014; 41 T Bolch (1855_CR44) 2013; 40 T Nagler (1855_CR97) 2015; 7 W Colgan (1855_CR90) 2019; 43 H Dobslaw (1855_CR80) 2013; 118 A Seale (1855_CR11) 2011; 116 F Flechtner (1855_CR50) 2016; 37 BD Vishwakarma (1855_CR70) 2017; 53 JM van Wessem (1855_CR91) 2014; 8 MJR Simpson (1855_CR54) 2009; 28 Z Martinec (1855_CR111) 2000; 142 F Straneo (1855_CR12) 2013; 504 I Joughin (1855_CR99) 2018; 12 M Cheng (1855_CR76) 2013; 118 1855_CR17 FM Nick (1855_CR25) 2012; 58 I Joughin (1855_CR26) 2008; 113 K Fleming (1855_CR112) 2004; 23 X Fettweis (1855_CR14) 2013; 7 G A (1855_CR55) 2013; 192 R Forsberg (1855_CR62) 2017; 38 BM Csatho (1855_CR82) 2014; 111 V Klemann (1855_CR57) 2011; 511 A Groh (1855_CR63) 2016; 18 I Joughin (1855_CR102) 2004; 432 ER Ivins (1855_CR72) 2005; 17 A Khazendar (1855_CR16) 2019; 12 M Morlighem (1855_CR18) 2017; 44 J Ettema (1855_CR43) 2009; 36 F Pattyn (1855_CR3) 2018; 8 1855_CR20 M McMillan (1855_CR28) 2016; 43 DN Wiese (1855_CR71) 2016; 52 WCRP Global Sea Level Budget Group (1855_CR2) 2018; 10 PL Langen (1855_CR110) 2017; 4 N Gourmelen (1855_CR84) 2018; 62 WR Peltier (1855_CR51) 2015; 120 |
| References_xml | – volume: 119 start-page: 6048 year: 2014 end-page: 6066 ident: CR56 article-title: A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2013JB010923 – volume: 118 start-page: 698 year: 2013 end-page: 708 ident: CR87 article-title: Improved ice loss estimate of the northwestern Greenland ice sheet publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2012JB009684 – volume: 6 start-page: 613 year: 2013 end-page: 616 ident: CR59 article-title: Limits in detecting acceleration of ice sheet mass loss due to climate variability publication-title: Nat. Geosci. doi: 10.1038/ngeo1874 – volume: 118 start-page: 3704 year: 2013 end-page: 3711 ident: CR80 article-title: Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05 publication-title: J. Geophys. Res. Oceans doi: 10.1002/jgrc.20271 – volume: 3 start-page: e1700584 year: 2017 ident: CR22 article-title: Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet publication-title: Sci. Adv. doi: 10.1126/sciadv.1700584 – volume: 2 start-page: e1600931 year: 2016 ident: CR42 article-title: Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet publication-title: Sci. Adv. doi: 10.1126/sciadv.1600931 – volume: 118 start-page: 3126 year: 2013 end-page: 3141 ident: CR73 article-title: Antarctic contribution to sea level rise observed by GRACE with improved GIA correction publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/jgrb.50208 – volume: 120 start-page: 450 year: 2015 end-page: 487 ident: CR51 article-title: Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2014JB011176 – volume: 32 start-page: 111 year: 2004 end-page: 149 ident: CR53 article-title: Global glacial isostasy and the surface of the Ice-Age Earth: the ICE-5G (VM2) model and GRACE publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.32.082503.144359 – volume: 37 start-page: 453 year: 2016 end-page: 470 ident: CR50 article-title: What can be expected from the GRACE-FO laser ranging interferometer for earth science applications? publication-title: Surv. Geophys. doi: 10.1007/s10712-015-9338-y – volume: 504 start-page: 36 year: 2013 end-page: 43 ident: CR12 article-title: North Atlantic warming and the retreat of Greenland’s outlet glaciers publication-title: Nature doi: 10.1038/nature12854 – volume: 28 start-page: 1631 year: 2009 end-page: 1657 ident: CR54 article-title: Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2009.03.004 – volume: 10 start-page: 1551 year: 2018 end-page: 1590 ident: CR2 article-title: Global sea-level budget 1993–present publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-10-1551-2018 – volume: 461 start-page: 971 year: 2009 end-page: 975 ident: CR27 article-title: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets publication-title: Nature doi: 10.1038/nature08471 – volume: 9 start-page: 364 year: 2017 ident: CR98 article-title: Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data publication-title: Remote Sens. doi: 10.3390/rs9040364 – volume: 12 start-page: 277 year: 2019 end-page: 283 ident: CR16 article-title: Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0329-3 – volume: 109 start-page: 19934 year: 2012 end-page: 19937 ident: CR64 article-title: Mapping Greenland’s mass loss in space and time publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1206785109 – volume: 12 start-page: 811 year: 2018 end-page: 831 ident: CR46 article-title: Modelling the climate and surface mass balance of polar ice sheets using RACMO2—Part 1: Greenland (1958–2016) publication-title: Cryosphere doi: 10.5194/tc-12-811-2018 – volume: 46 start-page: 8174 year: 2019 end-page: 8183 ident: CR105 article-title: Trends in Antarctic Ice Sheet elevation and mass publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL082182 – volume: 200 start-page: 503 year: 2015 end-page: 518 ident: CR66 article-title: Mass change from GRACE: a simulated comparison of Level-1B analysis techniques publication-title: Geophys. J. Int. doi: 10.1093/gji/ggu402 – volume: 38 start-page: 89 year: 2017 end-page: 104 ident: CR62 article-title: Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level publication-title: Surv. Geophys. doi: 10.1007/s10712-016-9398-7 – volume: 38 start-page: L10504 year: 2011 ident: CR109 article-title: Antarctic grounding line mapping from differential satellite radar interferometry publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL047109 – volume: 10 start-page: 2361 year: 2016 end-page: 2377 ident: CR116 article-title: A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015) publication-title: Cryosphere doi: 10.5194/tc-10-2361-2016 – volume: 409 start-page: 89 year: 2015 end-page: 95 ident: CR89 article-title: Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011) publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2014.10.015 – volume: 57 start-page: 88 year: 2011 end-page: 102 ident: CR39 article-title: Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002 publication-title: J. Glaciol. doi: 10.3189/002214311795306682 – volume: 53 start-page: 9824 year: 2017 end-page: 9844 ident: CR70 article-title: A data-driven approach for repairing the hydrological catchment signal damage due to filtering of GRACE products publication-title: Wat. Resour. Res. doi: 10.1002/2017WR021150 – volume: 338 start-page: 1183 year: 2012 end-page: 1189 ident: CR1 article-title: A reconciled estimate of ice-sheet mass balance publication-title: Science doi: 10.1126/science.1228102 – volume: 7 start-page: 241 year: 2013 end-page: 248 ident: CR14 article-title: Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet publication-title: Cryosphere doi: 10.5194/tc-7-241-2013 – volume: 10 start-page: 2953 year: 2016 end-page: 2969 ident: CR83 article-title: Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet publication-title: Cryosphere doi: 10.5194/tc-10-2953-2016 – volume: 111 start-page: 18478 year: 2014 end-page: 18483 ident: CR82 article-title: Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1411680112 – volume: 63 start-page: 176 year: 2017 end-page: 193 ident: CR118 article-title: High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data publication-title: J. Glaciol. doi: 10.1017/jog.2016.133 – volume: 56 start-page: 415 year: 2010 end-page: 430 ident: CR19 article-title: Greenland flow variability from ice-sheet-wide velocity mapping publication-title: J. Glaciol. doi: 10.3189/002214310792447734 – volume: 336 start-page: 576 year: 2012 end-page: 578 ident: CR4 article-title: 21st-century evolution of Greenland outlet glacier velocities publication-title: Science doi: 10.1126/science.1219985 – volume: 113 start-page: B08410 year: 2008 ident: CR58 article-title: Estimating geocenter variations from a combination of GRACE and ocean model output publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2007JB005338 – volume: 40 start-page: 875 year: 2013 end-page: 881 ident: CR44 article-title: Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50270 – volume: 199 start-page: 1823 year: 2014 end-page: 1846 ident: CR106 article-title: The rotational feedback on linear-momentum balance in glacial isostatic adjustment publication-title: Geophys. J. Int. doi: 10.1093/gji/ggu369 – volume: 7 start-page: 469 year: 2013 end-page: 489 ident: CR92 article-title: Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR publication-title: Cryosphere doi: 10.5194/tc-7-469-2013 – volume: 209 start-page: 1126 year: 2017 end-page: 1147 ident: CR95 article-title: Inverting Glacial Isostatic Adjustment signal using Bayesian framework and two linearly relaxing rheologies publication-title: Geophys. J. Int. doi: 10.1093/gji/ggx083 – volume: 12 start-page: 2087 year: 2018 end-page: 2097 ident: CR100 article-title: Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery publication-title: Cryosphere doi: 10.5194/tc-12-2087-2018 – volume: 564 start-page: 104 year: 2018 end-page: 108 ident: CR8 article-title: Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming publication-title: Nature doi: 10.1038/s41586-018-0752-4 – volume: 116 start-page: 9239 year: 2019 end-page: 9244 ident: CR33 article-title: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1904242116 – volume: 9 start-page: 1831 year: 2015 end-page: 1844 ident: CR115 article-title: Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet publication-title: Cryosphere doi: 10.5194/tc-9-1831-2015 – volume: 12 start-page: 2211 year: 2018 end-page: 2227 ident: CR99 article-title: Greenland Ice Mapping Project: ice flow velocity variation at sub-monthly to decadal timescales publication-title: Cryosphere doi: 10.5194/tc-12-2211-2018 – volume: 311 start-page: 986 year: 2006 end-page: 990 ident: CR6 article-title: Changes in the velocity structure of the Greenland Ice Sheet publication-title: Science doi: 10.1126/science.1121381 – volume: 8 start-page: 125 year: 2014 end-page: 135 ident: CR91 article-title: Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica publication-title: Cryosphere doi: 10.5194/tc-8-125-2014 – volume: 23 start-page: 1053 year: 2004 end-page: 1077 ident: CR112 article-title: Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2003.11.001 – volume: 43 start-page: e2019430201 year: 2019 ident: CR90 article-title: Greenland ice sheet mass balance assessed by PROMICE (1995–2015) publication-title: Geol. Surv. Denmark Greenl. Bull. – volume: 5 start-page: 51 year: 2015 end-page: 55 ident: CR23 article-title: Supraglacial lakes on the Greenland ice sheet advance inland under warming climate publication-title: Nat. Clim. Change doi: 10.1038/nclimate2463 – volume: 58 start-page: 229 year: 2012 end-page: 239 ident: CR25 article-title: The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming publication-title: J. Glaciol. doi: 10.3189/2012JoG11J242 – ident: CR114 – volume: 32 start-page: L18505 year: 2005 ident: CR30 article-title: Greenland mass balance from GRACE publication-title: Geophys. Res. Lett. – volume: 17 start-page: 541 year: 2005 end-page: 553 ident: CR72 article-title: Antarctic glacial isostatic adjustment: a new assessment publication-title: Antarct. Sci. doi: 10.1017/S0954102005002968 – volume: 117 start-page: 02108 year: 2012 ident: CR9 article-title: Very high resolution regional climate model simulations over Greenland: identifying added value publication-title: J. Geophys. Res. D doi: 10.1029/2011JD016267 – volume: 11 start-page: 1015 year: 2017 end-page: 1033 ident: CR21 article-title: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model publication-title: Cryosphere doi: 10.5194/tc-11-1015-2017 – volume: 215 start-page: 415 year: 2018 end-page: 430 ident: CR61 article-title: Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: implications for the global water and sea level budgets publication-title: Geophys. J. Int. doi: 10.1093/gji/ggy293 – volume: 7 start-page: 9371 year: 2015 end-page: 9389 ident: CR97 article-title: The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations publication-title: Remote Sens. doi: 10.3390/rs70709371 – volume: 121 start-page: 7547 year: 2016 end-page: 7569 ident: CR67 article-title: High-resolution CSR GRACE RL05 mascons publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2016JB013007 – volume: 5 start-page: 173 year: 2011 end-page: 186 ident: CR38 article-title: Mass balance of the Greenland ice sheet (2003–2008) from ICESat data—the impact of interpolation, sampling and firn density publication-title: Cryosphere doi: 10.5194/tc-5-173-2011 – volume: 30 start-page: 5419 year: 2017 end-page: 5454 ident: CR117 article-title: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) publication-title: J. Clim. doi: 10.1175/JCLI-D-16-0758.1 – volume: 118 start-page: 740 year: 2013 end-page: 747 ident: CR76 article-title: Deceleration in the Earth’s oblateness publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/jgrb.50058 – volume: 41 start-page: 8130 year: 2014 end-page: 8137 ident: CR69 article-title: Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL061052 – volume: 142 start-page: 117 year: 2000 end-page: 141 ident: CR111 article-title: Spectral–finite element approach to three-dimensional viscoelastic relaxation in a spherical earth publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246x.2000.00138.x – volume: 43 start-page: 7002 year: 2016 end-page: 7010 ident: CR28 article-title: A high-resolution record of Greenland mass balance publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL069666 – volume: 39 start-page: L11501 year: 2012 ident: CR37 article-title: Ice flow in Greenland for the International Polar Year 2008–2009 publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL051634 – volume: 120 start-page: 3617 year: 2015 end-page: 3627 ident: CR68 article-title: Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003–2013 publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2014JB011755 – volume: 432 start-page: 608 year: 2004 end-page: 610 ident: CR102 article-title: Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier publication-title: Nature doi: 10.1038/nature03130 – volume: 6 start-page: 90 year: 2018 ident: CR36 article-title: Identifying spatial variability in Greenland’s outlet glacier response to ocean heat publication-title: Front. Earth Sci. doi: 10.3389/feart.2018.00090 – volume: 7 start-page: 672 year: 2017 end-page: 674 ident: CR48 article-title: Improvements in ice-sheet sea-level projections publication-title: Nat. Clim. Change doi: 10.1038/nclimate3400 – volume: 12 start-page: 1067 year: 2016 end-page: 1090 ident: CR78 article-title: DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years publication-title: Ocean Sci. doi: 10.5194/os-12-1067-2016 – volume: 121 start-page: 8352 year: 2016 end-page: 8370 ident: CR96 article-title: Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2016JB013073 – volume: 62 start-page: 1226 year: 2018 end-page: 1242 ident: CR84 article-title: CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change publication-title: Adv. Space Res. doi: 10.1016/j.asr.2017.11.014 – volume: 246 start-page: 1587 year: 1989 end-page: 1589 ident: CR32 article-title: Growth of Greenland Ice Sheet: measurement publication-title: Science doi: 10.1126/science.246.4937.1587 – volume: 54 start-page: 646 year: 2008 end-page: 660 ident: CR47 article-title: Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: ice dynamics and coupling to climate publication-title: J. Glaciol. doi: 10.3189/002214308786570908 – volume: 558 start-page: 219 year: 2018 end-page: 222 ident: CR41 article-title: Mass balance of the Antarctic Ice Sheet from 1992 to 2017 publication-title: Nature doi: 10.1038/s41586-018-0179-y – volume: 59 start-page: 613 year: 2013 end-page: 631 ident: CR65 article-title: Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution publication-title: J. Glaciol. doi: 10.3189/2013JoG12J147 – volume: 113 start-page: F04006 year: 2008 ident: CR101 article-title: Continued evolution of Jakobshavn Isbrae following its rapid speedup publication-title: J. Geophys. Res. Earth Surf. – volume: 30 start-page: 1275 year: 2003 ident: CR81 article-title: Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations publication-title: Geophys. Res. Lett. doi: 10.1029/2002GL016473 – volume: 55 start-page: 5494 year: 2017 end-page: 5505 ident: CR88 article-title: Comparison of elevation change detection methods from ICESat altimetry over the Greenland Ice Sheet publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2709303 – volume: 111 start-page: 15861 year: 2014 end-page: 15862 ident: CR94 article-title: Closing the sea level budget at the Last Glacial Maximum publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1411762111 – volume: 18 start-page: 12065 year: 2016 ident: CR63 article-title: The method of tailored sensitivity kernels for GRACE mass change estimates publication-title: Geophys. Res. Abstr. – volume: 204 start-page: 324 year: 2016 end-page: 330 ident: CR113 article-title: Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations publication-title: Geophys. J. Int. doi: 10.1093/gji/ggv461 – volume: 192 start-page: 557 year: 2013 end-page: 572 ident: CR55 article-title: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada publication-title: Geophys. J. Int. doi: 10.1093/gji/ggs030 – volume: 7 start-page: 375 year: 2013 end-page: 393 ident: CR107 article-title: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica publication-title: Cryosphere doi: 10.5194/tc-7-375-2013 – volume: 511 start-page: 99 year: 2011 end-page: 108 ident: CR57 article-title: Contribution of glacial-isostatic adjustment to the geocenter motion publication-title: Tectonophysics doi: 10.1016/j.tecto.2009.08.031 – volume: 4 start-page: 110 year: 2017 ident: CR110 article-title: Liquid water flow and retention on the Greenland Ice Sheet in the regional climate model HIRHAM5: local and large-scale impacts publication-title: Front. Earth Sci. doi: 10.3389/feart.2016.00110 – volume: 326 start-page: 984 year: 2009 end-page: 986 ident: CR7 article-title: Partitioning recent Greenland mass loss publication-title: Science doi: 10.1126/science.1178176 – volume: 52 start-page: 7490 year: 2016 end-page: 7502 ident: CR71 article-title: Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution publication-title: Wat. Resour. Res. doi: 10.1002/2016WR019344 – volume: 41 start-page: 866 year: 2014 end-page: 872 ident: CR5 article-title: An improved mass budget for the Greenland ice sheet publication-title: Geophys. Res. Lett. doi: 10.1002/2013GL059010 – volume: 102 start-page: 54 year: 2014 end-page: 84 ident: CR34 article-title: A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2014.07.018 – volume: 194 start-page: 212 year: 2013 end-page: 229 ident: CR60 article-title: Uncertainty estimates of a GRACE inversion modelling technique over Greenland using a simulation publication-title: Geophys. J. Int. doi: 10.1093/gji/ggt091 – volume: 36 start-page: L12501 year: 2009 ident: CR43 article-title: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL038110 – volume: 116 start-page: 1934 year: 2019 end-page: 1939 ident: CR15 article-title: Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1806562116 – volume: 7 start-page: 045404 year: 2012 ident: CR13 article-title: Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/7/4/045404 – volume: 44 start-page: 11,051 year: 2017 end-page: 11,061 ident: CR18 article-title: BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074954 – ident: CR79 – volume: 105 start-page: 16279 year: 2000 end-page: 16294 ident: CR93 article-title: A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2000JB900113 – volume: 113 start-page: F01004 year: 2008 ident: CR26 article-title: Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland publication-title: J. Geophys. Res. Earth Surf. – volume: 116 start-page: F03013 year: 2011 ident: CR11 article-title: Ocean forcing of the Greenland Ice Sheet: calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers publication-title: J. Geophys. Res. Earth Surf. doi: 10.1029/2010JF001847 – volume: 85 start-page: 381 year: 2004 end-page: 394 ident: CR74 article-title: The Global Land Data Assimilation System publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-85-3-381 – volume: 11 start-page: 3 year: 2010 end-page: 25 ident: CR119 article-title: Greenland Ice Sheet surface mass-balance modeling in a 131-yr perspective, 1950–2080 publication-title: J. Hydrometeorol. doi: 10.1175/2009JHM1140.1 – volume: 12 start-page: 3813 year: 2018 end-page: 3825 ident: CR35 article-title: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet publication-title: Cryosphere doi: 10.5194/tc-12-3813-2018 – volume: 7 start-page: 599 year: 2013 end-page: 614 ident: CR45 article-title: Surface mass balance model intercomparison for the Greenland ice sheet publication-title: Cryosphere doi: 10.5194/tc-7-599-2013 – volume: 190 start-page: 260 year: 2017 end-page: 273 ident: CR49 article-title: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.029 – volume: 8 start-page: 743 year: 2014 end-page: 760 ident: CR85 article-title: Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change publication-title: Cryosphere doi: 10.5194/tc-8-743-2014 – volume: 1 start-page: 106 year: 2008 end-page: 110 ident: CR104 article-title: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling publication-title: Nat. Geosci. doi: 10.1038/ngeo102 – volume: 495 start-page: 234 year: 2018 end-page: 241 ident: CR29 article-title: 25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2018.05.015 – volume: 314 start-page: 1286 year: 2006 end-page: 1289 ident: CR31 article-title: Recent Greenland ice mass loss by drainage system from satellite gravity observations publication-title: Science doi: 10.1126/science.1130776 – volume: 169 start-page: 1 year: 2015 end-page: 19 ident: CR40 article-title: A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.07.012 – ident: CR17 – volume: 106 start-page: 33761 year: 2001 end-page: 33772 ident: CR103 article-title: Coherent radar ice thickness measurements over the Greenland ice sheet publication-title: J. Geophys. Res. D Atmospheres doi: 10.1029/2001JD900183 – volume: 139 start-page: 1132 year: 2013 end-page: 1161 ident: CR77 article-title: Evaluation of the ECMWF ocean reanalysis system ORAS4 publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.2063 – volume: 8 start-page: 1539 year: 2014 end-page: 1559 ident: CR86 article-title: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2 publication-title: Cryosphere doi: 10.5194/tc-8-1539-2014 – volume: 8 start-page: 1053 year: 2018 end-page: 1061 ident: CR3 article-title: The Greenland and Antarctic ice sheets under 1.5 °C global warming publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0305-8 – volume: 6 year: 2015 ident: CR24 article-title: Subglacial lake drainage detected beneath the Greenland ice sheet publication-title: Nat. Commun. doi: 10.1038/ncomms9408 – volume: 333 start-page: 1427 year: 2011 end-page: 1430 ident: CR108 article-title: Ice flow of the Antarctic Ice Sheet publication-title: Science doi: 10.1126/science.1208336 – volume: 270 start-page: 105 year: 2003 end-page: 134 ident: CR75 article-title: A global hydrological model for deriving water availability indicators: model tuning and validation publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00283-4 – volume: 1 start-page: 659 year: 2008 end-page: 664 ident: CR10 article-title: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters publication-title: Nat. Geosci. doi: 10.1038/ngeo316 – volume: 171 start-page: 497 year: 2007 end-page: 508 ident: CR52 article-title: Inference of mantle viscosity from GRACE and relative sea level data publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2007.03556.x – ident: CR20 – volume: 113 start-page: B08410 year: 2008 ident: 1855_CR58 publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2007JB005338 – volume: 9 start-page: 1831 year: 2015 ident: 1855_CR115 publication-title: Cryosphere doi: 10.5194/tc-9-1831-2015 – volume: 58 start-page: 229 year: 2012 ident: 1855_CR25 publication-title: J. Glaciol. doi: 10.3189/2012JoG11J242 – volume: 11 start-page: 3 year: 2010 ident: 1855_CR119 publication-title: J. Hydrometeorol. doi: 10.1175/2009JHM1140.1 – volume: 11 start-page: 1015 year: 2017 ident: 1855_CR21 publication-title: Cryosphere doi: 10.5194/tc-11-1015-2017 – volume: 8 start-page: 1053 year: 2018 ident: 1855_CR3 publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0305-8 – volume: 38 start-page: L10504 year: 2011 ident: 1855_CR109 publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL047109 – volume: 12 start-page: 3813 year: 2018 ident: 1855_CR35 publication-title: Cryosphere doi: 10.5194/tc-12-3813-2018 – volume: 1 start-page: 659 year: 2008 ident: 1855_CR10 publication-title: Nat. Geosci. doi: 10.1038/ngeo316 – volume: 43 start-page: e2019430201 year: 2019 ident: 1855_CR90 publication-title: Geol. Surv. Denmark Greenl. Bull. – volume: 52 start-page: 7490 year: 2016 ident: 1855_CR71 publication-title: Wat. Resour. Res. doi: 10.1002/2016WR019344 – volume: 41 start-page: 866 year: 2014 ident: 1855_CR5 publication-title: Geophys. Res. Lett. doi: 10.1002/2013GL059010 – ident: 1855_CR114 – volume: 7 start-page: 672 year: 2017 ident: 1855_CR48 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3400 – volume: 55 start-page: 5494 year: 2017 ident: 1855_CR88 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2709303 – volume: 57 start-page: 88 year: 2011 ident: 1855_CR39 publication-title: J. Glaciol. doi: 10.3189/002214311795306682 – volume: 9 start-page: 364 year: 2017 ident: 1855_CR98 publication-title: Remote Sens. doi: 10.3390/rs9040364 – volume: 30 start-page: 5419 year: 2017 ident: 1855_CR117 publication-title: J. Clim. doi: 10.1175/JCLI-D-16-0758.1 – volume: 40 start-page: 875 year: 2013 ident: 1855_CR44 publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50270 – volume: 116 start-page: 1934 year: 2019 ident: 1855_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1806562116 – volume: 4 start-page: 110 year: 2017 ident: 1855_CR110 publication-title: Front. Earth Sci. doi: 10.3389/feart.2016.00110 – volume: 190 start-page: 260 year: 2017 ident: 1855_CR49 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.029 – volume: 118 start-page: 740 year: 2013 ident: 1855_CR76 publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/jgrb.50058 – volume: 7 start-page: 599 year: 2013 ident: 1855_CR45 publication-title: Cryosphere doi: 10.5194/tc-7-599-2013 – volume: 36 start-page: L12501 year: 2009 ident: 1855_CR43 publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL038110 – volume: 12 start-page: 2087 year: 2018 ident: 1855_CR100 publication-title: Cryosphere doi: 10.5194/tc-12-2087-2018 – volume: 120 start-page: 450 year: 2015 ident: 1855_CR51 publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2014JB011176 – volume: 10 start-page: 2361 year: 2016 ident: 1855_CR116 publication-title: Cryosphere doi: 10.5194/tc-10-2361-2016 – volume: 120 start-page: 3617 year: 2015 ident: 1855_CR68 publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2014JB011755 – volume: 204 start-page: 324 year: 2016 ident: 1855_CR113 publication-title: Geophys. J. Int. doi: 10.1093/gji/ggv461 – volume: 215 start-page: 415 year: 2018 ident: 1855_CR61 publication-title: Geophys. J. Int. doi: 10.1093/gji/ggy293 – ident: 1855_CR17 – volume: 41 start-page: 8130 year: 2014 ident: 1855_CR69 publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL061052 – volume: 7 start-page: 241 year: 2013 ident: 1855_CR14 publication-title: Cryosphere doi: 10.5194/tc-7-241-2013 – volume: 118 start-page: 3126 year: 2013 ident: 1855_CR73 publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/jgrb.50208 – volume: 194 start-page: 212 year: 2013 ident: 1855_CR60 publication-title: Geophys. J. Int. doi: 10.1093/gji/ggt091 – volume: 7 start-page: 9371 year: 2015 ident: 1855_CR97 publication-title: Remote Sens. doi: 10.3390/rs70709371 – volume: 3 start-page: e1700584 year: 2017 ident: 1855_CR22 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700584 – volume: 54 start-page: 646 year: 2008 ident: 1855_CR47 publication-title: J. Glaciol. doi: 10.3189/002214308786570908 – volume: 111 start-page: 18478 year: 2014 ident: 1855_CR82 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1411680112 – volume: 85 start-page: 381 year: 2004 ident: 1855_CR74 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-85-3-381 – volume: 63 start-page: 176 year: 2017 ident: 1855_CR118 publication-title: J. Glaciol. doi: 10.1017/jog.2016.133 – volume: 109 start-page: 19934 year: 2012 ident: 1855_CR64 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1206785109 – volume: 5 start-page: 173 year: 2011 ident: 1855_CR38 publication-title: Cryosphere doi: 10.5194/tc-5-173-2011 – volume: 12 start-page: 811 year: 2018 ident: 1855_CR46 publication-title: Cryosphere doi: 10.5194/tc-12-811-2018 – volume: 23 start-page: 1053 year: 2004 ident: 1855_CR112 publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2003.11.001 – volume: 169 start-page: 1 year: 2015 ident: 1855_CR40 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.07.012 – volume: 12 start-page: 2211 year: 2018 ident: 1855_CR99 publication-title: Cryosphere doi: 10.5194/tc-12-2211-2018 – volume: 119 start-page: 6048 year: 2014 ident: 1855_CR56 publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2013JB010923 – volume: 6 year: 2015 ident: 1855_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms9408 – volume: 118 start-page: 3704 year: 2013 ident: 1855_CR80 publication-title: J. Geophys. Res. Oceans doi: 10.1002/jgrc.20271 – volume: 105 start-page: 16279 year: 2000 ident: 1855_CR93 publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2000JB900113 – volume: 46 start-page: 8174 year: 2019 ident: 1855_CR105 publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL082182 – volume: 18 start-page: 12065 year: 2016 ident: 1855_CR63 publication-title: Geophys. Res. Abstr. – volume: 12 start-page: 277 year: 2019 ident: 1855_CR16 publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0329-3 – volume: 270 start-page: 105 year: 2003 ident: 1855_CR75 publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00283-4 – volume: 62 start-page: 1226 year: 2018 ident: 1855_CR84 publication-title: Adv. Space Res. doi: 10.1016/j.asr.2017.11.014 – volume: 8 start-page: 125 year: 2014 ident: 1855_CR91 publication-title: Cryosphere doi: 10.5194/tc-8-125-2014 – volume: 56 start-page: 415 year: 2010 ident: 1855_CR19 publication-title: J. Glaciol. doi: 10.3189/002214310792447734 – volume: 246 start-page: 1587 year: 1989 ident: 1855_CR32 publication-title: Science doi: 10.1126/science.246.4937.1587 – volume: 106 start-page: 33761 year: 2001 ident: 1855_CR103 publication-title: J. Geophys. Res. D Atmospheres doi: 10.1029/2001JD900183 – volume: 44 start-page: 11,051 year: 2017 ident: 1855_CR18 publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074954 – volume: 102 start-page: 54 year: 2014 ident: 1855_CR34 publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2014.07.018 – volume: 200 start-page: 503 year: 2015 ident: 1855_CR66 publication-title: Geophys. J. Int. doi: 10.1093/gji/ggu402 – volume: 10 start-page: 2953 year: 2016 ident: 1855_CR83 publication-title: Cryosphere doi: 10.5194/tc-10-2953-2016 – volume: 564 start-page: 104 year: 2018 ident: 1855_CR8 publication-title: Nature doi: 10.1038/s41586-018-0752-4 – volume: 409 start-page: 89 year: 2015 ident: 1855_CR89 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2014.10.015 – volume: 432 start-page: 608 year: 2004 ident: 1855_CR102 publication-title: Nature doi: 10.1038/nature03130 – volume: 314 start-page: 1286 year: 2006 ident: 1855_CR31 publication-title: Science doi: 10.1126/science.1130776 – volume: 30 start-page: 1275 year: 2003 ident: 1855_CR81 publication-title: Geophys. Res. Lett. doi: 10.1029/2002GL016473 – volume: 43 start-page: 7002 year: 2016 ident: 1855_CR28 publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL069666 – volume: 6 start-page: 613 year: 2013 ident: 1855_CR59 publication-title: Nat. Geosci. doi: 10.1038/ngeo1874 – volume: 495 start-page: 234 year: 2018 ident: 1855_CR29 publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2018.05.015 – volume: 6 start-page: 90 year: 2018 ident: 1855_CR36 publication-title: Front. Earth Sci. doi: 10.3389/feart.2018.00090 – volume: 326 start-page: 984 year: 2009 ident: 1855_CR7 publication-title: Science doi: 10.1126/science.1178176 – volume: 28 start-page: 1631 year: 2009 ident: 1855_CR54 publication-title: Quat. Sci. Rev. doi: 10.1016/j.quascirev.2009.03.004 – volume: 171 start-page: 497 year: 2007 ident: 1855_CR52 publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2007.03556.x – volume: 511 start-page: 99 year: 2011 ident: 1855_CR57 publication-title: Tectonophysics doi: 10.1016/j.tecto.2009.08.031 – volume: 209 start-page: 1126 year: 2017 ident: 1855_CR95 publication-title: Geophys. J. Int. doi: 10.1093/gji/ggx083 – volume: 37 start-page: 453 year: 2016 ident: 1855_CR50 publication-title: Surv. Geophys. doi: 10.1007/s10712-015-9338-y – volume: 39 start-page: L11501 year: 2012 ident: 1855_CR37 publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL051634 – volume: 12 start-page: 1067 year: 2016 ident: 1855_CR78 publication-title: Ocean Sci. doi: 10.5194/os-12-1067-2016 – volume: 8 start-page: 743 year: 2014 ident: 1855_CR85 publication-title: Cryosphere doi: 10.5194/tc-8-743-2014 – volume: 111 start-page: 15861 year: 2014 ident: 1855_CR94 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1411762111 – volume: 192 start-page: 557 year: 2013 ident: 1855_CR55 publication-title: Geophys. J. Int. doi: 10.1093/gji/ggs030 – volume: 116 start-page: F03013 year: 2011 ident: 1855_CR11 publication-title: J. Geophys. Res. Earth Surf. doi: 10.1029/2010JF001847 – ident: 1855_CR20 – volume: 7 start-page: 375 year: 2013 ident: 1855_CR107 publication-title: Cryosphere doi: 10.5194/tc-7-375-2013 – volume: 53 start-page: 9824 year: 2017 ident: 1855_CR70 publication-title: Wat. Resour. Res. doi: 10.1002/2017WR021150 – volume: 59 start-page: 613 year: 2013 ident: 1855_CR65 publication-title: J. Glaciol. doi: 10.3189/2013JoG12J147 – volume: 338 start-page: 1183 year: 2012 ident: 1855_CR1 publication-title: Science doi: 10.1126/science.1228102 – volume: 504 start-page: 36 year: 2013 ident: 1855_CR12 publication-title: Nature doi: 10.1038/nature12854 – ident: 1855_CR79 – volume: 8 start-page: 1539 year: 2014 ident: 1855_CR86 publication-title: Cryosphere doi: 10.5194/tc-8-1539-2014 – volume: 32 start-page: L18505 year: 2005 ident: 1855_CR30 publication-title: Geophys. Res. Lett. – volume: 38 start-page: 89 year: 2017 ident: 1855_CR62 publication-title: Surv. Geophys. doi: 10.1007/s10712-016-9398-7 – volume: 199 start-page: 1823 year: 2014 ident: 1855_CR106 publication-title: Geophys. J. Int. doi: 10.1093/gji/ggu369 – volume: 118 start-page: 698 year: 2013 ident: 1855_CR87 publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2012JB009684 – volume: 311 start-page: 986 year: 2006 ident: 1855_CR6 publication-title: Science doi: 10.1126/science.1121381 – volume: 121 start-page: 8352 year: 2016 ident: 1855_CR96 publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2016JB013073 – volume: 10 start-page: 1551 year: 2018 ident: 1855_CR2 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-10-1551-2018 – volume: 558 start-page: 219 year: 2018 ident: 1855_CR41 publication-title: Nature doi: 10.1038/s41586-018-0179-y – volume: 113 start-page: F04006 year: 2008 ident: 1855_CR101 publication-title: J. Geophys. Res. Earth Surf. – volume: 142 start-page: 117 year: 2000 ident: 1855_CR111 publication-title: Geophys. J. Int. doi: 10.1046/j.1365-246x.2000.00138.x – volume: 139 start-page: 1132 year: 2013 ident: 1855_CR77 publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.2063 – volume: 1 start-page: 106 year: 2008 ident: 1855_CR104 publication-title: Nat. Geosci. doi: 10.1038/ngeo102 – volume: 333 start-page: 1427 year: 2011 ident: 1855_CR108 publication-title: Science doi: 10.1126/science.1208336 – volume: 7 start-page: 045404 year: 2012 ident: 1855_CR13 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/7/4/045404 – volume: 32 start-page: 111 year: 2004 ident: 1855_CR53 publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev.earth.32.082503.144359 – volume: 121 start-page: 7547 year: 2016 ident: 1855_CR67 publication-title: J. Geophys. Res. Solid Earth doi: 10.1002/2016JB013007 – volume: 2 start-page: e1600931 year: 2016 ident: 1855_CR42 publication-title: Sci. Adv. doi: 10.1126/sciadv.1600931 – volume: 117 start-page: 02108 year: 2012 ident: 1855_CR9 publication-title: J. Geophys. Res. D doi: 10.1029/2011JD016267 – volume: 113 start-page: F01004 year: 2008 ident: 1855_CR26 publication-title: J. Geophys. Res. Earth Surf. – volume: 461 start-page: 971 year: 2009 ident: 1855_CR27 publication-title: Nature doi: 10.1038/nature08471 – volume: 336 start-page: 576 year: 2012 ident: 1855_CR4 publication-title: Science doi: 10.1126/science.1219985 – volume: 116 start-page: 9239 year: 2019 ident: 1855_CR33 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1904242116 – volume: 7 start-page: 469 year: 2013 ident: 1855_CR92 publication-title: Cryosphere doi: 10.5194/tc-7-469-2013 – volume: 5 start-page: 51 year: 2015 ident: 1855_CR23 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2463 – volume: 17 start-page: 541 year: 2005 ident: 1855_CR72 publication-title: Antarct. Sci. doi: 10.1017/S0954102005002968 |
| SSID | ssj0005174 |
| Score | 2.717291 |
| Snippet | The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades
1
,
2
, and it is expected to continue to be so
3
. Although... The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades , and it is expected to continue to be so . Although increases... The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades.sup.1,2, and it is expected to continue to be so.sup.3.... The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades, and it is expected to continue to be so. Although increases in... The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades1,2, and it is expected to continue to be so3. Although... In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future3. Although... |
| SourceID | liege hal proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 233 |
| SubjectTerms | 704/106/125 704/106/694 Analysis Atmosphere Atmospheric circulation Atmospheric models Climate Change Climate models Datasets Earth sciences & physical geography Environmental aspects Environmental Sciences Estimates Glacial dynamics Glacier flow Glacier melting Glaciers Glaciohydrology Global sea level Global warming Gravity Greenland Greenland ice sheet Humanities and Social Sciences Ice Ice Cover Ice sheets Intergovernmental Panel on Climate Change Mass (Physics) Mass balance Mass balance of ice sheets Mean sea level Measurement Meltwater multidisciplinary Ocean temperature Ocean warming Oceans and Seas Physical, chemical, mathematical & earth Sciences Physique, chimie, mathématiques & sciences de la terre Regional climate models Regional climates Runoff Science Science (multidisciplinary) Sciences de la terre & géographie physique Sea level Sea level rise Surface-ice melting Temperature Trends |
| Title | Mass balance of the Greenland Ice Sheet from 1992 to 2018 |
| URI | https://link.springer.com/article/10.1038/s41586-019-1855-2 https://www.ncbi.nlm.nih.gov/pubmed/31822019 https://www.proquest.com/docview/2382072310 https://www.proquest.com/docview/2324915582 https://hal.science/hal-03025884 https://orbi.uliege.be/handle/2268/242139 |
| Volume | 579 |
| WOSCitedRecordID | wos000519378900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature & Scientific American Archives customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dcxIxEM9I0Rlf1NYvbGVOp6NWPXsk5S735FCmnXZakIFaGV8ySS5QZhiOcsDf724I4Cn2xQd2INkLuWyyu0l-2RCyH2jDZY8pP44T6h9ppn1Z1XhlGNg3ZcBmWDTh9WXUbPJuN265BbfMwSqXOtEq6iTVuEZ-CKaFBhF6I1_Htz7eGoW7q-4KjQIpYpQEZqF7rTXE448ozMtdTcYPMzBcHOfSsQ8Wq-rTnF1y2rlwg-DI4hC3rzd5oH_tnlqjdPr4f1_nCXnk3FGvtug_2-SeGe2QBxYWqrMdsu2GfuZ9cPGpD56SuAEOt6cQE6mNl_Y88CE9i99BlKR3DomdG2OmHh5d8RB46k1TD1wA_ox8Pz25qp_57gYGX8LEdQrUVANV4VyFPGBGhVr1GEtYcKRkHEjVgwmRYppT-IAllBFjumICI1mS0GoSsedka5SOzEviUUwIAx6DRwZOkIwNiw0PtZHgsMqElkiwbH-hXXhyvCVjKOw2OeNiITIBIhMoMgGPfFw9Ml7E5riLeR-FKjDmxQhBNX05yzJRu_pRb4paiPPgmIdBibzdxHbeaeeY3jumXgp11NIdZYA3xWhaOc7dHKceD27Fb7nvcrn9hSQ3FbOXYwQVoPOVhp66agOMGH5WuxSYBjqc4lnkeaVEPtuOLNKJGog5tWz2-2zYF1ILZQT44lwgSIDF8JfLjiucWsvEuteWyJtVNtYGoXojk86QB2b04KVyaPIXi3GyqhkYEArdDQr_tBw468L_KbpXd1dllzykuAhigYF7ZGs6mZnX5L6eTwfZpEwKUfsaaTeylAPl9UqZFI9Pmq02_Lo4_gK0EVwgpQ1Lv1naKlt9YmkHaKv68xdPqWbY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELb6AMEFaHmFFjCoQHmsurGbjX1AKCpUiZpGVRva3oztddJIUTbNJkH8KX4jM_tIWAi99cAhUWTPOt71PNefZwjZ8q0TusONJ2XIvF3LracrFkuGgX0zDmxGgiY8bVZbLXF-Lo-WyM_8LAzCKnOdmCjqMLL4jnwHTAvzq-iNfBpeelg1CndX8xIaKVscuB_fIWSLPzY-w_q-Ymz_S3uv7mVVBTwNwdgYvl3FN2UhTCB87kxgTYfzEMJ6o6WvTQecfMOtYPAB7a6rnNuy853mYcgqYZXDuMtkFfR4GSFk1ePTOaTkj6zP-S4qFzsxGEqBsbv0wEJWPFawg5k1WL5AMOZqH7fLF3m8f-3WJkZw_-7_9vjukTuZu01rqXyskSU3WCc3E9irjdfJWqbaYrqd5d9-e5_IQwgoqEHMp3U06lDwkWmCT0IUKG1A48mFc2OKR3MoAmvpOKLg4ogH5Ou13MxDsjKIBu4xoQwbAl9I8DjBydPScelEYJ0Gh1yHrET8fL2VzdKvYxWQvkpgAFyolEUUsIhCFlFwybvZJcM098hVxFvIRApzegwQNNTVkzhWtfbZXkvVAozzpQj8Enm5iKxxclwgepMRdSKYo9XZUQ24U8wWVqDcKFDaYe9S_db7utDbTVdy0TCbBUJQcbY4aZCM2TPAjOj1WlNhG9gohmetp-US-ZAIjopGpqemLCFLfk_6XaWtMk5BrCEUgiC4hL_MBUVlajtWcykpkRezbpwNQhEHLpogDdvFogoCHvmjVC5nMwMDyYDdYPD3uaDOB__n0j25eirPya16-7Cpmo3WwQa5zfCFTwKC3CQr49HEPSU37HTci0fPEm1Eybfrlt9fduW4rw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZ2AcQLsHErG2DQuBM1tdfUfkCo6qhWbVTTNmBvxnacrlLVdE1bxF_j13FOLt0CZW974KFVZZ-4Tnyu8edzCNnyrRM64saTMmTetuXW03WLJcPAvhkHNiNFE37db3S74uREHiyRX8VZGIRVFjoxVdRhbPEdeRVMC_Mb6I1UoxwWcbDT_jg687CCFO60FuU0MhbZcz9_QPiWfOjswFq_YKz96bi16-UVBjwNgdkEvl3dNzUhTCB87kxgTcR5CCG-0dLXJgKH33ArGHxA0-sG57bmfKd5GLJ62OAw7jJZbXDgYjyl3roAL_kjA3Sxo8pFNQGjKTCOlx5Yy7rHSjYxtwzLpwjMXB3g1vki7_evndvUILZv_8-P8g65lbvhtJnJzRpZcsN1cj2Fw9pknazlKi-hr_O83G_uEvkZAg1qEAtqHY0jCr4zTXFLiA6lHWg8OnVuQvHIDkXALZ3EFFwfcY98uZKbuU9WhvHQPSSUYUPgCwmeKDh_WjounQis0-Co65BViF-svbJ5WnasDjJQKTyAC5WxiwJ2UcguCi55O79klOUkuYx4CxlKYa6PIS51T0-TRDWPv7W6qhlg_C9F4FfI80VknaPDEtGrnCiKYY5W50c44E4xi1iJcqNEaUf9M3Wh92Wpt5et5KJhNkuEoPpsedIgJfNngJnSd5v7CtvAdjE8gz2rVcj7VIhUPDZ9NWMpWfp7OugpbZVxCmIQoRAcwSX8ZSE0KlfniTqXmAp5Nu_G2SBEcejiKdKwbSy2IOCRP8hkdD4zMJwM2A0Gf1cI7fng_1y6R5dP5Sm5AWKr9jvdvQ1yk-F7oBQbuUlWJuOpe0yu2dmkn4yfpIqJku9XLb6_AS91wQo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass+balance+of+the+Greenland+Ice+Sheet+from+1992+to+2018&rft.jtitle=Nature+%28London%29&rft.date=2020-03-01&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=579&rft.issue=7798&rft.spage=233&rft.epage=239&rft_id=info:doi/10.1038%2Fs41586-019-1855-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_019_1855_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |