Mass balance of the Greenland Ice Sheet from 1992 to 2018

The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades 1 , 2 , and it is expected to continue to be so 3 . Although increases in glacier flow 4 – 6 and surface melting 7 – 9 have been driven by oceanic 10 – 12 and atmospheric 13 , 14 warming, the magnitude an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature (London) Ročník 579; číslo 7798; s. 233 - 239
Hlavní autori: Shepherd, Andrew, Ivins, Erik, Rignot, Eric, Smith, Ben, van den Broeke, Michiel, Velicogna, Isabella, Whitehouse, Pippa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Nature Publishing Group UK 01.03.2020
Nature Publishing Group
Predmet:
ISSN:0028-0836, 1476-4687, 1476-4687
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades 1 , 2 , and it is expected to continue to be so 3 . Although increases in glacier flow 4 – 6 and surface melting 7 – 9 have been driven by oceanic 10 – 12 and atmospheric 13 , 14 warming, the magnitude and trajectory of the ice sheet’s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions 15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ 16 . Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario 17 , which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate. Three techniques for estimating mass losses from the Greenland Ice Sheet produce comparable results for the period 1992–2018 that approach the trajectory of the highest rates of sea-level rise projected by the IPCC.
AbstractList The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades1,2, and it is expected to continue to be so3. Although increases in glacier flow4-6 and surface melting7-9 have been driven by oceanic10-12 and atmospheric13,14 warming, the magnitude and trajectory of the ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades1,2, and it is expected to continue to be so3. Although increases in glacier flow4-6 and surface melting7-9 have been driven by oceanic10-12 and atmospheric13,14 warming, the magnitude and trajectory of the ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades.sup.1,2, and it is expected to continue to be so.sup.3. Although increases in glacier flow.sup.4-6 and surface melting.sup.7-9 have been driven by oceanic.sup.10-12 and atmospheric.sup.13,14 warming, the magnitude and trajectory of the ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 [plus or minus] 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 [plus or minus] 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 [plus or minus] 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 [plus or minus] 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 [plus or minus] 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 [plus or minus] 37 billion tonnes per year in the 1990s to 87 [plus or minus] 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 [plus or minus] 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions.sup.15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ.sup.16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario.sup.17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades 1 , 2 , and it is expected to continue to be so 3 . Although increases in glacier flow 4 – 6 and surface melting 7 – 9 have been driven by oceanic 10 – 12 and atmospheric 13 , 14 warming, the magnitude and trajectory of the ice sheet’s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions 15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ 16 . Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario 17 , which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate. Three techniques for estimating mass losses from the Greenland Ice Sheet produce comparable results for the period 1992–2018 that approach the trajectory of the highest rates of sea-level rise projected by the IPCC.
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades, and it is expected to continue to be so. Although increases in glacier flow and surface melting have been driven by oceanic and atmospheric warming, the magnitude and trajectory ofthe ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions15 and ocean temperatures fell at the terminus ofJakobshavn Isbræ 16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades1,2, and it is expected to continue to be so3. Although increases in glacier flow4,5,6 and surface melting7,8,9 have been driven by oceanic10,11,12 and atmospheric13,14 warming, the magnitude and trajectory of the ice sheet’s mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.
In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future3. Although increases in glacier flow4–6 and surface melting7–9 have been driven by oceanic10–12 and atmospheric13,14 warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. Although the ice sheet was close to a state of balance in the 1990s, annual losses have risen since then, peaking at 335 ± 62 billion tonnes per year in 2011. In all, Greenland lost 3,800 ± 339 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.6 ± 0.9 millimetres. Using three regional climate models, we show that reduced surface mass balance has driven 1,971 ± 555 billion tonnes (52%) of the ice loss owing to increased meltwater runoff. The remaining 1,827 ± 538 billion tonnes (48%) of ice loss was due to increased glacier discharge, which rose from 41 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. Between 2013 and 2017, the total rate of ice loss slowed to 217 ± 32 billion tonnes per year, on average, as atmospheric circulation favoured cooler conditions15 and as ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the IPCC’s predicted rates for their high-end climate warming scenario17, which forecast an additional 50 to 120 millimetres of global sea-level rise by 2100 when compared to their central estimate.
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades.sup.1,2, and it is expected to continue to be so.sup.3. Although increases in glacier flow.sup.4-6 and surface melting.sup.7-9 have been driven by oceanic.sup.10-12 and atmospheric.sup.13,14 warming, the magnitude and trajectory of the ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 [plus or minus] 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 [plus or minus] 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 [plus or minus] 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 [plus or minus] 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 [plus or minus] 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 [plus or minus] 37 billion tonnes per year in the 1990s to 87 [plus or minus] 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 [plus or minus] 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions.sup.15 and ocean temperatures fell at the terminus of Jakobshavn Isbræ.sup.16. Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario.sup.17, which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate. Three techniques for estimating mass losses from the Greenland Ice Sheet produce comparable results for the period 1992-2018 that approach the trajectory of the highest rates of sea-level rise projected by the IPCC.
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades , and it is expected to continue to be so . Although increases in glacier flow and surface melting have been driven by oceanic and atmospheric warming, the magnitude and trajectory of the ice sheet's mass imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet's volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. The ice sheet was close to a state of balance in the 1990s, but annual losses have risen since then, peaking at 345 ± 66 billion tonnes per year in 2011. In all, Greenland lost 3,902 ± 342 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.8 ± 0.9 millimetres. Using three regional climate models, we show that the reduced surface mass balance has driven 1,964 ± 565 billion tonnes (50.3 per cent) of the ice loss owing to increased meltwater runoff. The remaining 1,938 ± 541 billion tonnes (49.7 per cent) of ice loss was due to increased glacier dynamical imbalance, which rose from 46 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. The total rate of ice loss slowed to 222 ± 30 billion tonnes per year between 2013 and 2017, on average, as atmospheric circulation favoured cooler conditions and ocean temperatures fell at the terminus of Jakobshavn Isbræ . Cumulative ice losses from Greenland as a whole have been close to the rates predicted by the Intergovernmental Panel on Climate Change for their high-end climate warming scenario , which forecast an additional 70 to 130 millimetres of global sea-level rise by 2100 compared with their central estimate.
Audience Academic
Author Smith, Ben
Whitehouse, Pippa
Velicogna, Isabella
Rignot, Eric
Shepherd, Andrew
van den Broeke, Michiel
Ivins, Erik
Author_xml – sequence: 1
  fullname: Shepherd, Andrew
– sequence: 2
  fullname: Ivins, Erik
– sequence: 3
  fullname: Rignot, Eric
– sequence: 4
  fullname: Smith, Ben
– sequence: 5
  fullname: van den Broeke, Michiel
– sequence: 6
  fullname: Velicogna, Isabella
– sequence: 7
  fullname: Whitehouse, Pippa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31822019$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03025884$$DView record in HAL
BookMark eNp9kl1v0zAUhi00xLbCD-AGReyGCWX4I3Gcy6qCrVIBiQ1xadnOSeopjTs7meDf45Bt0KlDkWPr6HleJT7nGB10rgOEXhN8RjATH0JGcsFTTMqUiDxP6TN0RLKCpxkXxQE6wpiKFAvGD9FxCNcY45wU2Qt0yIigNGpHqPysQki0alVnIHF10q8hOfcAXaxUyTIWL9cAfVJ7t0lIWdKkd0l0xUv0vFZtgFd3-wx9__TxanGRrr6eLxfzVaoEK_r4hhxrIoTmAjPQ3OiasYrhTKsSK11jwTUzgsbFOFUFY4YABsWqiuZVwWaITbmthQak89rKWyqdstN5aBupjNQgKeVC0owSVkbrdLLWqpVbbzfK__rjXMxXcqxhhmkuRHZLIvtuYrfe3QwQermxwUAbbwDcECRlNCtJnsdvnKGTR-i1G3wX_z9SguKCstiZB6pRLUjb1a73yoyhcs4pIbgUfKTSPVQDHXjVxkbXNpZ3-Ld7eLO1N_Jf6GwPFJ8KNtbsTT3dESLTw8--UUMIcnn5bZd9_zQ7v_qx-LJLv7m7q0FvoHrowv3wRaCYAONdCB5qaWyvehtTvbKtJFiOYy6nMZdRkeOYy7EN5JF5H_4_h05OiGzXgP_buqel318SAtA
CitedBy_id crossref_primary_10_5194_cp_19_1585_2023
crossref_primary_10_1111_bor_12594
crossref_primary_10_5194_tc_16_1927_2022
crossref_primary_10_5194_tc_14_3785_2020
crossref_primary_10_1088_1748_9326_ac3d58
crossref_primary_10_5194_tc_17_2705_2023
crossref_primary_10_5194_essd_15_5467_2023
crossref_primary_10_1007_s00703_025_01072_0
crossref_primary_10_1016_j_scitotenv_2021_148032
crossref_primary_10_5194_tc_16_4379_2022
crossref_primary_10_5194_tc_19_1205_2025
crossref_primary_10_1029_2021GL097114
crossref_primary_10_1029_2022GL099276
crossref_primary_10_5194_tc_16_3933_2022
crossref_primary_10_1029_2022GL102426
crossref_primary_10_1038_s41558_022_01371_z
crossref_primary_10_1016_j_epsl_2020_116647
crossref_primary_10_1038_s41558_020_0893_y
crossref_primary_10_1016_j_rse_2023_113730
crossref_primary_10_1038_s41467_024_45487_6
crossref_primary_10_1038_s41586_025_09347_7
crossref_primary_10_1007_s10712_024_09866_4
crossref_primary_10_1029_2022GL101210
crossref_primary_10_3389_fbuil_2022_796471
crossref_primary_10_1029_2023EF003679
crossref_primary_10_1109_TGRS_2023_3347543
crossref_primary_10_5194_tc_18_1467_2024
crossref_primary_10_1038_s41467_021_26229_4
crossref_primary_10_1038_s44221_023_00030_7
crossref_primary_10_1016_j_accre_2020_11_010
crossref_primary_10_1038_s41586_022_05301_z
crossref_primary_10_5194_tc_15_233_2021
crossref_primary_10_1017_jog_2020_7
crossref_primary_10_1029_2022JC018528
crossref_primary_10_5194_tc_17_327_2023
crossref_primary_10_5194_tc_18_5825_2024
crossref_primary_10_5194_tc_14_4299_2020
crossref_primary_10_1016_j_jhydrol_2021_126750
crossref_primary_10_1029_2022GL102689
crossref_primary_10_5194_os_17_1081_2021
crossref_primary_10_1109_TGRS_2022_3216218
crossref_primary_10_5194_essd_15_1675_2023
crossref_primary_10_1080_15481603_2023_2207301
crossref_primary_10_1088_1361_6633_acaf8e
crossref_primary_10_1016_j_rsase_2023_101104
crossref_primary_10_5194_tc_15_2601_2021
crossref_primary_10_5194_tc_19_1937_2025
crossref_primary_10_1029_2022JD036970
crossref_primary_10_1038_s41586_023_06863_2
crossref_primary_10_1029_2021GL095141
crossref_primary_10_1038_s41893_022_00922_8
crossref_primary_10_1109_JSTARS_2025_3563254
crossref_primary_10_3389_feart_2022_938246
crossref_primary_10_1002_joc_6879
crossref_primary_10_1038_s41586_022_05224_9
crossref_primary_10_1126_science_adp7708
crossref_primary_10_1029_2020JC017080
crossref_primary_10_5194_tc_15_5785_2021
crossref_primary_10_18822_byusu20230143_59
crossref_primary_10_1038_s43017_025_00681_y
crossref_primary_10_5194_tc_14_2235_2020
crossref_primary_10_5194_tc_15_5705_2021
crossref_primary_10_1002_esp_70116
crossref_primary_10_1186_s40623_022_01752_w
crossref_primary_10_5194_os_19_141_2023
crossref_primary_10_5194_essd_13_3491_2021
crossref_primary_10_1029_2021EF002152
crossref_primary_10_1029_2021GL094040
crossref_primary_10_5194_tc_18_475_2024
crossref_primary_10_1016_j_polar_2023_100940
crossref_primary_10_1144_M56_2021_22
crossref_primary_10_1016_j_marmicro_2022_102158
crossref_primary_10_1016_j_accre_2025_05_004
crossref_primary_10_1016_j_jag_2022_102913
crossref_primary_10_1126_science_aaz5845
crossref_primary_10_1016_j_rse_2022_113394
crossref_primary_10_1002_joc_6771
crossref_primary_10_1119_5_0067924
crossref_primary_10_1038_s43247_024_01968_6
crossref_primary_10_1038_s41561_021_00813_1
crossref_primary_10_1371_journal_pclm_0000203
crossref_primary_10_1016_j_jhydrol_2024_130622
crossref_primary_10_1029_2021JG006289
crossref_primary_10_5194_tc_15_5739_2021
crossref_primary_10_1029_2021EF002378
crossref_primary_10_1093_gji_ggac264
crossref_primary_10_1038_s41467_024_54045_z
crossref_primary_10_1029_2022EF002751
crossref_primary_10_5194_tc_16_2449_2022
crossref_primary_10_1080_01431161_2024_2339198
crossref_primary_10_1073_pnas_2017989118
crossref_primary_10_1093_advances_nmab104
crossref_primary_10_3390_app11031115
crossref_primary_10_1029_2021RG000757
crossref_primary_10_5194_tc_17_789_2023
crossref_primary_10_1175_JCLI_D_19_0835_1
crossref_primary_10_1029_2021JF006505
crossref_primary_10_1029_2021GL097085
crossref_primary_10_5194_tc_19_63_2025
crossref_primary_10_1002_qj_4374
crossref_primary_10_1029_2019MS002031
crossref_primary_10_1088_1748_9326_adeea9
crossref_primary_10_5194_tc_16_807_2022
crossref_primary_10_1371_journal_pone_0259816
crossref_primary_10_1038_s41561_025_01746_9
crossref_primary_10_3390_rs12122014
crossref_primary_10_1038_s41586_020_2742_6
crossref_primary_10_1080_10095020_2023_2252034
crossref_primary_10_1029_2022GL098915
crossref_primary_10_1038_s41586_021_03436_z
crossref_primary_10_1080_01490419_2023_2276478
crossref_primary_10_3389_feart_2021_667717
crossref_primary_10_1016_j_rse_2021_112805
crossref_primary_10_1073_pnas_2425248122
crossref_primary_10_1109_TGRS_2023_3290952
crossref_primary_10_3390_rs13020302
crossref_primary_10_1016_j_quascirev_2022_107530
crossref_primary_10_5194_tc_14_3487_2020
crossref_primary_10_5194_tc_14_3071_2020
crossref_primary_10_5194_tc_17_5255_2023
crossref_primary_10_1029_2020RG000712
crossref_primary_10_3390_rs15051354
crossref_primary_10_1111_josp_12396
crossref_primary_10_5194_essd_12_2013_2020
crossref_primary_10_1016_j_rse_2024_113994
crossref_primary_10_1016_j_rse_2023_113450
crossref_primary_10_1029_2021GL097081
crossref_primary_10_1029_2022GL102146
crossref_primary_10_1029_2021JF006309
crossref_primary_10_5194_esd_12_783_2021
crossref_primary_10_1016_j_quascirev_2022_107680
crossref_primary_10_5194_tc_15_3751_2021
crossref_primary_10_1038_s41558_020_00941_3
crossref_primary_10_1038_s41467_022_34524_x
crossref_primary_10_5194_tc_15_485_2021
crossref_primary_10_1016_j_quaint_2021_06_001
crossref_primary_10_1038_s41467_022_34414_2
crossref_primary_10_3389_feart_2023_960363
crossref_primary_10_1017_jog_2024_73
crossref_primary_10_1016_j_polar_2024_101158
crossref_primary_10_1017_jog_2023_89
crossref_primary_10_5194_tc_17_3083_2023
crossref_primary_10_1016_j_oceaneng_2025_121765
crossref_primary_10_5194_tc_14_3309_2020
crossref_primary_10_1016_j_jqsrt_2021_107845
crossref_primary_10_5194_bg_19_271_2022
crossref_primary_10_5194_tc_19_3009_2025
crossref_primary_10_5194_amt_15_4063_2022
crossref_primary_10_1029_2020JF005775
crossref_primary_10_3390_rs16101673
crossref_primary_10_1073_pnas_2406930121
crossref_primary_10_1002_joc_7689
crossref_primary_10_1016_j_polar_2020_100557
crossref_primary_10_3390_rs13112213
crossref_primary_10_5194_tc_19_3107_2025
crossref_primary_10_1007_s00382_024_07271_6
crossref_primary_10_1029_2023JB026653
crossref_primary_10_1017_jog_2023_1
crossref_primary_10_1007_s11306_024_02147_6
crossref_primary_10_1029_2020JB020713
crossref_primary_10_1016_j_rse_2024_114529
crossref_primary_10_1016_j_rse_2025_114868
crossref_primary_10_1038_s41586_021_03302_y
crossref_primary_10_1038_s41598_024_82692_1
crossref_primary_10_1371_journal_pclm_0000379
crossref_primary_10_1038_s41597_023_02887_5
crossref_primary_10_1038_s41561_022_01035_9
crossref_primary_10_1109_JSTARS_2025_3584511
crossref_primary_10_1029_2021GL092942
crossref_primary_10_3390_rs14112563
crossref_primary_10_3389_fclim_2021_689823
crossref_primary_10_1029_2022GC010813
crossref_primary_10_1080_15230430_2021_1946241
crossref_primary_10_5194_essd_15_133_2023
crossref_primary_10_1029_2021JF006249
crossref_primary_10_1038_s43017_023_00509_7
crossref_primary_10_5194_tc_19_1221_2025
crossref_primary_10_1029_2020PA004019
crossref_primary_10_1038_s41598_022_10628_8
crossref_primary_10_1017_jog_2022_2
crossref_primary_10_3389_fmars_2020_00606
crossref_primary_10_1017_jog_2023_60
crossref_primary_10_1038_s41586_023_05762_w
crossref_primary_10_1029_2023JF007082
crossref_primary_10_1108_IJBPA_02_2020_111
crossref_primary_10_1029_2023GL104095
crossref_primary_10_5194_tc_14_4181_2020
crossref_primary_10_1017_jog_2024_30
crossref_primary_10_1017_jog_2023_64
crossref_primary_10_1017_jog_2022_76
crossref_primary_10_1016_j_pocean_2021_102655
crossref_primary_10_5194_essd_17_3047_2025
crossref_primary_10_1029_2021JC017274
crossref_primary_10_1038_s41467_021_23739_z
crossref_primary_10_5194_esd_16_939_2025
crossref_primary_10_1038_s41598_021_83509_1
crossref_primary_10_1029_2023JB026740
crossref_primary_10_1016_j_jqsrt_2025_109543
crossref_primary_10_1038_s41558_025_02364_4
crossref_primary_10_1017_jog_2023_33
crossref_primary_10_1109_TGRS_2020_3027190
crossref_primary_10_3390_cli13050085
crossref_primary_10_5194_gc_3_381_2020
crossref_primary_10_5194_tc_17_4645_2023
crossref_primary_10_1038_s43247_021_00329_x
crossref_primary_10_5194_essd_14_973_2022
crossref_primary_10_1002_cpe_6130
crossref_primary_10_1007_s00382_025_07761_1
crossref_primary_10_5194_tc_17_3933_2023
crossref_primary_10_1029_2021JF006295
crossref_primary_10_5194_essd_12_1191_2020
crossref_primary_10_1029_2022GL100911
crossref_primary_10_1029_2023WR035483
crossref_primary_10_5194_tc_15_4221_2021
crossref_primary_10_1017_jog_2022_70
crossref_primary_10_1017_jog_2021_89
crossref_primary_10_1017_jog_2023_41
crossref_primary_10_1017_jog_2022_74
crossref_primary_10_5194_tc_19_2635_2025
crossref_primary_10_1017_jog_2022_54
crossref_primary_10_1038_s41467_023_39466_6
crossref_primary_10_1109_TGRS_2023_3296539
crossref_primary_10_1016_j_geomorph_2023_108778
crossref_primary_10_5194_tc_19_3089_2025
crossref_primary_10_1029_2023GL102954
crossref_primary_10_1063_5_0216921
crossref_primary_10_1080_17538947_2025_2513045
crossref_primary_10_5194_essd_16_5405_2024
crossref_primary_10_1016_j_gloplacha_2021_103503
crossref_primary_10_1016_j_asr_2021_01_022
crossref_primary_10_5194_tc_17_1_2023
crossref_primary_10_1017_jog_2023_11
crossref_primary_10_3390_rs14236069
crossref_primary_10_1017_jog_2023_104
crossref_primary_10_5194_esd_13_1351_2022
crossref_primary_10_5194_tc_15_3279_2021
crossref_primary_10_5194_tc_17_5131_2023
crossref_primary_10_1029_2023GL102828
crossref_primary_10_1080_02626667_2022_2030060
crossref_primary_10_1029_2021JF006395
crossref_primary_10_1017_jog_2022_51
crossref_primary_10_1002_wene_388
crossref_primary_10_1038_s41598_024_61930_6
crossref_primary_10_3389_feart_2020_616105
crossref_primary_10_1038_s41558_022_01441_2
crossref_primary_10_5194_esd_15_1161_2024
crossref_primary_10_1029_2022JF006914
crossref_primary_10_3389_feart_2022_978137
crossref_primary_10_1029_2021GL094546
crossref_primary_10_1029_2023MS003610
crossref_primary_10_1002_env_2762
crossref_primary_10_1016_j_rse_2024_114469
crossref_primary_10_1017_jog_2022_21
crossref_primary_10_5194_essd_14_479_2022
crossref_primary_10_5194_tc_14_1425_2020
crossref_primary_10_1017_aog_2023_53
crossref_primary_10_3390_su13031228
crossref_primary_10_5194_cp_20_701_2024
crossref_primary_10_5194_tc_16_3375_2022
crossref_primary_10_3390_rs13245149
crossref_primary_10_1029_2020JC016433
crossref_primary_10_5194_tc_15_1823_2021
crossref_primary_10_1007_s12665_025_12389_9
crossref_primary_10_1080_00167487_2024_2437946
crossref_primary_10_1038_s43247_021_00296_3
crossref_primary_10_1007_s41976_025_00224_5
crossref_primary_10_5194_tc_19_3599_2025
crossref_primary_10_1017_jog_2022_31
crossref_primary_10_1017_jog_2021_63
crossref_primary_10_5194_essd_14_763_2022
crossref_primary_10_1038_s41597_025_04948_3
crossref_primary_10_3390_rs14215534
crossref_primary_10_1017_jog_2020_91
crossref_primary_10_5194_tc_18_4065_2024
crossref_primary_10_3390_jmse10030355
crossref_primary_10_1109_JSTARS_2022_3204544
crossref_primary_10_1029_2020GL090471
crossref_primary_10_1017_jog_2021_56
crossref_primary_10_1007_s00190_021_01476_x
crossref_primary_10_1029_2020JB021537
crossref_primary_10_3390_rs12162609
crossref_primary_10_1038_s41598_024_64529_z
crossref_primary_10_1007_s00382_022_06184_6
crossref_primary_10_1029_2022EF003052
crossref_primary_10_1109_LGRS_2020_3025569
crossref_primary_10_5194_tc_18_2455_2024
crossref_primary_10_1177_09596836231219491
crossref_primary_10_1029_2023JC019905
crossref_primary_10_1038_s41598_024_52124_1
crossref_primary_10_1002_lno_11686
crossref_primary_10_1029_2021JF006191
crossref_primary_10_5194_tc_17_2851_2023
crossref_primary_10_1016_j_marchem_2024_104442
crossref_primary_10_1109_LGRS_2021_3058956
crossref_primary_10_1029_2022GL101702
crossref_primary_10_5194_tc_14_3935_2020
crossref_primary_10_1073_pnas_2201871119
crossref_primary_10_1017_aog_2023_41
crossref_primary_10_1007_s12524_025_02131_0
crossref_primary_10_5194_esd_15_635_2024
crossref_primary_10_5194_acp_21_15351_2021
crossref_primary_10_5194_tc_19_1047_2025
crossref_primary_10_1007_s10712_021_09685_x
crossref_primary_10_1029_2021JC017552
crossref_primary_10_1016_j_quascirev_2023_108068
crossref_primary_10_1016_j_rse_2024_114020
crossref_primary_10_5194_tc_17_4729_2023
crossref_primary_10_1029_2020GL090452
crossref_primary_10_1029_2021GL094502
crossref_primary_10_3389_feart_2021_674983
crossref_primary_10_1029_2021GL092449
crossref_primary_10_5194_tc_16_2355_2022
crossref_primary_10_5194_tc_15_1005_2021
crossref_primary_10_1038_s41558_022_01357_x
crossref_primary_10_1017_jog_2021_31
crossref_primary_10_1016_j_earscirev_2024_105012
crossref_primary_10_3390_rs14092134
crossref_primary_10_1109_JSTARS_2022_3154968
crossref_primary_10_1016_j_quascirev_2023_108477
crossref_primary_10_1029_2021GL094252
crossref_primary_10_1038_s41467_025_62281_0
crossref_primary_10_1029_2020EF001525
crossref_primary_10_1017_jog_2022_124
crossref_primary_10_1080_03036758_2023_2232743
crossref_primary_10_5194_tc_17_4063_2023
crossref_primary_10_1126_science_ado5008
crossref_primary_10_1029_2022JF006753
crossref_primary_10_5194_essd_15_1597_2023
crossref_primary_10_5194_tc_18_5173_2024
crossref_primary_10_3390_rs15235439
crossref_primary_10_1029_2020JF006038
crossref_primary_10_1029_2022JF006857
crossref_primary_10_1038_s41467_023_37764_7
crossref_primary_10_1093_pnasnexus_pgae106
crossref_primary_10_1007_s00190_023_01781_7
crossref_primary_10_1007_s10712_023_09795_8
crossref_primary_10_5194_tc_16_3021_2022
crossref_primary_10_3389_feart_2023_969629
crossref_primary_10_5802_crgeos_305
crossref_primary_10_1007_s11629_021_6912_2
crossref_primary_10_1017_jog_2021_13
crossref_primary_10_5194_esd_12_819_2021
crossref_primary_10_3390_rs14010055
crossref_primary_10_1016_j_jcp_2022_111095
crossref_primary_10_3390_rs15235545
crossref_primary_10_1029_2021GL096690
crossref_primary_10_1029_2020GL091216
crossref_primary_10_1038_s41467_023_38806_w
crossref_primary_10_5194_essd_13_5001_2021
crossref_primary_10_1007_s10712_020_09612_6
crossref_primary_10_5194_tc_18_5067_2024
crossref_primary_10_1038_s41467_021_27031_y
crossref_primary_10_3390_rs14010062
crossref_primary_10_1029_2022JD036688
crossref_primary_10_3390_rs14092229
crossref_primary_10_3389_feart_2020_00253
crossref_primary_10_5194_tc_16_4679_2022
crossref_primary_10_1038_d41586_022_01986_4
crossref_primary_10_1007_s11430_020_9700_1
crossref_primary_10_1126_science_abb3566
crossref_primary_10_1016_j_margeo_2024_107375
crossref_primary_10_1029_2023GL103509
crossref_primary_10_5194_os_18_109_2022
crossref_primary_10_5194_gi_12_215_2023
crossref_primary_10_1029_2022GL100305
crossref_primary_10_1038_s41586_023_05876_1
crossref_primary_10_5194_esd_13_1077_2022
crossref_primary_10_1007_s00190_025_01943_9
crossref_primary_10_1126_science_abn7950
crossref_primary_10_3390_rs12162588
crossref_primary_10_5194_tc_18_1333_2024
crossref_primary_10_5194_tc_14_2253_2020
crossref_primary_10_1016_j_rse_2023_113701
crossref_primary_10_1016_j_rse_2023_113702
crossref_primary_10_3390_rs13020197
crossref_primary_10_5194_tc_19_3553_2025
crossref_primary_10_1038_s41467_023_37434_8
crossref_primary_10_5194_tc_18_911_2024
crossref_primary_10_1109_TGRS_2022_3208454
crossref_primary_10_1088_1361_6633_ac805b
crossref_primary_10_3390_s22239061
crossref_primary_10_1007_s00190_022_01651_8
crossref_primary_10_1007_s00190_022_01697_8
crossref_primary_10_1038_s41583_020_0311_5
crossref_primary_10_3390_geosciences11080350
crossref_primary_10_1111_bor_12683
crossref_primary_10_1029_2023GL104894
crossref_primary_10_5194_tc_19_2855_2025
crossref_primary_10_1029_2021GL096501
crossref_primary_10_1016_j_scitotenv_2025_178450
crossref_primary_10_1080_15230430_2023_2186456
crossref_primary_10_5194_hess_24_3899_2020
crossref_primary_10_3390_rs13224508
crossref_primary_10_1016_j_quascirev_2024_108770
crossref_primary_10_1029_2020JC016930
crossref_primary_10_3390_rs15010031
crossref_primary_10_1017_jog_2021_136
crossref_primary_10_1038_s43247_024_01548_8
crossref_primary_10_3390_atmos12080955
crossref_primary_10_3390_land14040705
crossref_primary_10_1088_1748_9326_ad13b8
crossref_primary_10_1109_TGRS_2024_3425500
crossref_primary_10_1016_j_jaridenv_2023_105012
crossref_primary_10_1109_JSTARS_2022_3184156
crossref_primary_10_1029_2021GL097507
crossref_primary_10_1016_j_quascirev_2023_108219
crossref_primary_10_5194_esd_15_859_2024
crossref_primary_10_1007_s40641_020_00164_w
crossref_primary_10_1038_s41597_023_02059_5
crossref_primary_10_2112_JCOASTRES_D_20_00101_1
crossref_primary_10_3390_rs16213934
crossref_primary_10_5194_sd_33_33_2024
crossref_primary_10_1029_2022GL099731
crossref_primary_10_3390_challe13020033
crossref_primary_10_1109_LGRS_2025_3570726
crossref_primary_10_1016_j_quascirev_2023_108345
crossref_primary_10_5194_os_19_321_2023
crossref_primary_10_5194_tc_16_17_2022
crossref_primary_10_1017_jog_2020_109
crossref_primary_10_5194_os_21_241_2025
crossref_primary_10_1038_s41467_025_59237_9
crossref_primary_10_3389_feart_2020_523646
crossref_primary_10_1017_jog_2021_141
crossref_primary_10_3389_feart_2020_00163
crossref_primary_10_5194_tc_18_2719_2024
crossref_primary_10_5194_tc_18_5673_2024
crossref_primary_10_1016_j_oneear_2020_11_002
Cites_doi 10.1002/2013JB010923
10.1029/2012JB009684
10.1038/ngeo1874
10.1002/jgrc.20271
10.1126/sciadv.1700584
10.1126/sciadv.1600931
10.1002/jgrb.50208
10.1002/2014JB011176
10.1146/annurev.earth.32.082503.144359
10.1007/s10712-015-9338-y
10.1038/nature12854
10.1016/j.quascirev.2009.03.004
10.5194/essd-10-1551-2018
10.1038/nature08471
10.3390/rs9040364
10.1038/s41561-019-0329-3
10.1073/pnas.1206785109
10.5194/tc-12-811-2018
10.1029/2019GL082182
10.1093/gji/ggu402
10.1007/s10712-016-9398-7
10.1029/2011GL047109
10.5194/tc-10-2361-2016
10.1016/j.epsl.2014.10.015
10.3189/002214311795306682
10.1002/2017WR021150
10.1126/science.1228102
10.5194/tc-7-241-2013
10.5194/tc-10-2953-2016
10.1073/pnas.1411680112
10.1017/jog.2016.133
10.3189/002214310792447734
10.1126/science.1219985
10.1029/2007JB005338
10.1002/grl.50270
10.1093/gji/ggu369
10.5194/tc-7-469-2013
10.1093/gji/ggx083
10.5194/tc-12-2087-2018
10.1038/s41586-018-0752-4
10.1073/pnas.1904242116
10.5194/tc-9-1831-2015
10.5194/tc-12-2211-2018
10.1126/science.1121381
10.5194/tc-8-125-2014
10.1016/j.quascirev.2003.11.001
10.1038/nclimate2463
10.3189/2012JoG11J242
10.1017/S0954102005002968
10.1029/2011JD016267
10.5194/tc-11-1015-2017
10.1093/gji/ggy293
10.3390/rs70709371
10.1002/2016JB013007
10.5194/tc-5-173-2011
10.1175/JCLI-D-16-0758.1
10.1002/jgrb.50058
10.1002/2014GL061052
10.1046/j.1365-246x.2000.00138.x
10.1002/2016GL069666
10.1029/2012GL051634
10.1002/2014JB011755
10.1038/nature03130
10.3389/feart.2018.00090
10.1038/nclimate3400
10.5194/os-12-1067-2016
10.1002/2016JB013073
10.1016/j.asr.2017.11.014
10.1126/science.246.4937.1587
10.3189/002214308786570908
10.1038/s41586-018-0179-y
10.3189/2013JoG12J147
10.1029/2002GL016473
10.1109/TGRS.2017.2709303
10.1073/pnas.1411762111
10.1093/gji/ggv461
10.1093/gji/ggs030
10.5194/tc-7-375-2013
10.1016/j.tecto.2009.08.031
10.3389/feart.2016.00110
10.1126/science.1178176
10.1002/2016WR019344
10.1002/2013GL059010
10.1016/j.quascirev.2014.07.018
10.1093/gji/ggt091
10.1029/2009GL038110
10.1073/pnas.1806562116
10.1088/1748-9326/7/4/045404
10.1002/2017GL074954
10.1029/2000JB900113
10.1029/2010JF001847
10.1175/BAMS-85-3-381
10.1175/2009JHM1140.1
10.5194/tc-12-3813-2018
10.5194/tc-7-599-2013
10.1016/j.rse.2016.12.029
10.5194/tc-8-743-2014
10.1038/ngeo102
10.1016/j.epsl.2018.05.015
10.1126/science.1130776
10.1016/j.rse.2015.07.012
10.1029/2001JD900183
10.1002/qj.2063
10.5194/tc-8-1539-2014
10.1038/s41558-018-0305-8
10.1038/ncomms9408
10.1126/science.1208336
10.1016/S0022-1694(02)00283-4
10.1038/ngeo316
10.1111/j.1365-246X.2007.03556.x
ContentType Journal Article
Contributor Schröder, Ludwig
Nield, Grace
Fettweis, Xavier
Gallee, Hubert
Spada, Giorgio
A, Geruo
Sasgen, Ingo
Gardner, Alex
Gunter, Brian
Wouters, Bert
Horwath, Martin
Otosaka, Ines
Rietbroek, Roelof
Konrad, Hannes
Mottram, Ruth
Bjørk, Anders A
Briggs, Kate
Wuite, Jan
Schrama, Ernst
Wagner, Thomas
Agosta, Cécile
Helm, Veit
Payne, Tony
Pie, Nadège
Sandberg Sørensen, Louise
Talpe, Matthieu
Babonis, Greg
Rignot, Eric
Vishwakarma, Bramha Dutt
Ahlstrøm, Andreas
Pattle, Mark E
Ivins, Erik
Luthcke, Scott
Wiese, David
Forsberg, Rene
Nilsson, Johan
Simonsen, Sebastian B
Joughin, Ian
Noël, Brice
Blazquez, Alejandro
Colgan, William
Melini, Daniele
Moore, Philip
Kjeldsen, Kristian K
Khan, Shfaqat
McMillan, Malcolm
Gourmelen, Noel
Barletta, Valentina R
Hanna, Edward
Mouginot, Jeremie
Wilton, David
van Wessem, Melchior
Tarasov, Lev
Langen, Peter L
Krinner, Gerhard
Moyano, Gorka
Horvath, Alexander
van de Berg, Willem Jan
Scambos, Ted
van der Wal, Wouter
Cullather, Richard
Engdahl, Marcus E
Loomis, Bryant
Nagler, Thomas
Nowicki, Sophie
Lecavalier, Benoit
Smith, Ben
Felikson, De
Contributor_xml – sequence: 1
  givenname: Andrew
  surname: Shepherd
  fullname: Shepherd, Andrew
– sequence: 2
  givenname: Erik
  surname: Ivins
  fullname: Ivins, Erik
– sequence: 3
  givenname: Eric
  surname: Rignot
  fullname: Rignot, Eric
– sequence: 4
  givenname: Ben
  surname: Smith
  fullname: Smith, Ben
– sequence: 5
  givenname: Michiel
  surname: van den Broeke
  fullname: van den Broeke, Michiel
– sequence: 6
  givenname: Isabella
  surname: Velicogna
  fullname: Velicogna, Isabella
– sequence: 7
  givenname: Pippa
  surname: Whitehouse
  fullname: Whitehouse, Pippa
– sequence: 8
  givenname: Kate
  surname: Briggs
  fullname: Briggs, Kate
– sequence: 9
  givenname: Ian
  surname: Joughin
  fullname: Joughin, Ian
– sequence: 10
  givenname: Gerhard
  surname: Krinner
  fullname: Krinner, Gerhard
– sequence: 11
  givenname: Sophie
  surname: Nowicki
  fullname: Nowicki, Sophie
– sequence: 12
  givenname: Tony
  surname: Payne
  fullname: Payne, Tony
– sequence: 13
  givenname: Ted
  surname: Scambos
  fullname: Scambos, Ted
– sequence: 14
  givenname: Nicole
  surname: Schlegel
  fullname: Schlegel, Nicole
– sequence: 15
  givenname: Geruo
  surname: A
  fullname: A, Geruo
– sequence: 16
  givenname: Cécile
  surname: Agosta
  fullname: Agosta, Cécile
– sequence: 17
  givenname: Andreas
  surname: Ahlstrøm
  fullname: Ahlstrøm, Andreas
– sequence: 18
  givenname: Greg
  surname: Babonis
  fullname: Babonis, Greg
– sequence: 19
  givenname: Valentina R
  surname: Barletta
  fullname: Barletta, Valentina R
– sequence: 20
  givenname: Anders A
  surname: Bjørk
  fullname: Bjørk, Anders A
– sequence: 21
  givenname: Alejandro
  surname: Blazquez
  fullname: Blazquez, Alejandro
– sequence: 22
  givenname: Jennifer
  surname: Bonin
  fullname: Bonin, Jennifer
– sequence: 23
  givenname: William
  surname: Colgan
  fullname: Colgan, William
– sequence: 24
  givenname: Beata
  surname: Csatho
  fullname: Csatho, Beata
– sequence: 25
  givenname: Richard
  surname: Cullather
  fullname: Cullather, Richard
– sequence: 26
  givenname: Marcus E
  surname: Engdahl
  fullname: Engdahl, Marcus E
– sequence: 27
  givenname: Denis
  surname: Felikson
  fullname: Felikson, Denis
– sequence: 28
  givenname: Xavier
  surname: Fettweis
  fullname: Fettweis, Xavier
– sequence: 29
  givenname: Rene
  surname: Forsberg
  fullname: Forsberg, Rene
– sequence: 30
  givenname: Anna E
  surname: Hogg
  fullname: Hogg, Anna E
– sequence: 31
  givenname: Hubert
  surname: Gallee
  fullname: Gallee, Hubert
– sequence: 32
  givenname: Alex
  surname: Gardner
  fullname: Gardner, Alex
– sequence: 33
  givenname: Lin
  surname: Gilbert
  fullname: Gilbert, Lin
– sequence: 34
  givenname: Noel
  surname: Gourmelen
  fullname: Gourmelen, Noel
– sequence: 35
  givenname: Andreas
  surname: Groh
  fullname: Groh, Andreas
– sequence: 36
  givenname: Brian
  surname: Gunter
  fullname: Gunter, Brian
– sequence: 37
  givenname: Edward
  surname: Hanna
  fullname: Hanna, Edward
– sequence: 38
  givenname: Christopher
  surname: Harig
  fullname: Harig, Christopher
– sequence: 39
  givenname: Veit
  surname: Helm
  fullname: Helm, Veit
– sequence: 40
  givenname: Alexander
  surname: Horvath
  fullname: Horvath, Alexander
– sequence: 41
  givenname: Martin
  surname: Horwath
  fullname: Horwath, Martin
– sequence: 42
  givenname: Shfaqat
  surname: Khan
  fullname: Khan, Shfaqat
– sequence: 43
  givenname: Kristian K
  surname: Kjeldsen
  fullname: Kjeldsen, Kristian K
– sequence: 44
  givenname: Hannes
  surname: Konrad
  fullname: Konrad, Hannes
– sequence: 45
  givenname: Peter L
  surname: Langen
  fullname: Langen, Peter L
– sequence: 46
  givenname: Benoit
  surname: Lecavalier
  fullname: Lecavalier, Benoit
– sequence: 47
  givenname: Bryant
  surname: Loomis
  fullname: Loomis, Bryant
– sequence: 48
  givenname: Scott
  surname: Luthcke
  fullname: Luthcke, Scott
– sequence: 49
  givenname: Malcolm
  surname: McMillan
  fullname: McMillan, Malcolm
– sequence: 50
  givenname: Daniele
  surname: Melini
  fullname: Melini, Daniele
– sequence: 51
  givenname: Sebastian
  surname: Mernild
  fullname: Mernild, Sebastian
– sequence: 52
  givenname: Yara
  surname: Mohajerani
  fullname: Mohajerani, Yara
– sequence: 53
  givenname: Philip
  surname: Moore
  fullname: Moore, Philip
– sequence: 54
  givenname: Ruth
  surname: Mottram
  fullname: Mottram, Ruth
– sequence: 55
  givenname: Jeremie
  surname: Mouginot
  fullname: Mouginot, Jeremie
– sequence: 56
  givenname: Gorka
  surname: Moyano
  fullname: Moyano, Gorka
– sequence: 57
  givenname: Alan
  surname: Muir
  fullname: Muir, Alan
– sequence: 58
  givenname: Thomas
  surname: Nagler
  fullname: Nagler, Thomas
– sequence: 59
  givenname: Grace
  surname: Nield
  fullname: Nield, Grace
– sequence: 60
  givenname: Johan
  surname: Nilsson
  fullname: Nilsson, Johan
– sequence: 61
  givenname: Brice
  surname: Noël
  fullname: Noël, Brice
– sequence: 62
  givenname: Ines
  surname: Otosaka
  fullname: Otosaka, Ines
– sequence: 63
  givenname: Mark E
  surname: Pattle
  fullname: Pattle, Mark E
– sequence: 64
  givenname: W Richard
  surname: Peltier
  fullname: Peltier, W Richard
– sequence: 65
  givenname: Nadège
  surname: Pie
  fullname: Pie, Nadège
– sequence: 66
  givenname: Roelof
  surname: Rietbroek
  fullname: Rietbroek, Roelof
– sequence: 67
  givenname: Helmut
  surname: Rott
  fullname: Rott, Helmut
– sequence: 68
  givenname: Louise
  surname: Sandberg Sørensen
  fullname: Sandberg Sørensen, Louise
– sequence: 69
  givenname: Ingo
  surname: Sasgen
  fullname: Sasgen, Ingo
– sequence: 70
  givenname: Himanshu
  surname: Save
  fullname: Save, Himanshu
– sequence: 71
  givenname: Bernd
  surname: Scheuchl
  fullname: Scheuchl, Bernd
– sequence: 72
  givenname: Ernst
  surname: Schrama
  fullname: Schrama, Ernst
– sequence: 73
  givenname: Ludwig
  surname: Schröder
  fullname: Schröder, Ludwig
– sequence: 74
  givenname: Ki-Weon
  surname: Seo
  fullname: Seo, Ki-Weon
– sequence: 75
  givenname: Sebastian B
  surname: Simonsen
  fullname: Simonsen, Sebastian B
– sequence: 76
  givenname: Thomas
  surname: Slater
  fullname: Slater, Thomas
– sequence: 77
  givenname: Giorgio
  surname: Spada
  fullname: Spada, Giorgio
– sequence: 78
  givenname: Tyler
  surname: Sutterley
  fullname: Sutterley, Tyler
– sequence: 79
  givenname: Matthieu
  surname: Talpe
  fullname: Talpe, Matthieu
– sequence: 80
  givenname: Lev
  surname: Tarasov
  fullname: Tarasov, Lev
– sequence: 81
  givenname: Willem Jan
  surname: van de Berg
  fullname: van de Berg, Willem Jan
– sequence: 82
  givenname: Wouter
  surname: van der Wal
  fullname: van der Wal, Wouter
– sequence: 83
  givenname: Melchior
  surname: van Wessem
  fullname: van Wessem, Melchior
– sequence: 84
  givenname: Bramha Dutt
  surname: Vishwakarma
  fullname: Vishwakarma, Bramha Dutt
– sequence: 85
  givenname: David
  surname: Wiese
  fullname: Wiese, David
– sequence: 86
  givenname: David
  surname: Wilton
  fullname: Wilton, David
– sequence: 87
  givenname: Thomas
  surname: Wagner
  fullname: Wagner, Thomas
– sequence: 88
  givenname: Bert
  surname: Wouters
  fullname: Wouters, Bert
– sequence: 89
  givenname: Jan
  surname: Wuite
  fullname: Wuite, Jan
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
COPYRIGHT 2020 Nature Publishing Group
Copyright Nature Publishing Group Mar 12, 2020
Attribution
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 12, 2020
– notice: Attribution
CorporateAuthor The IMBIE Team
IMBIE Team
CorporateAuthor_xml – name: The IMBIE Team
– name: IMBIE Team
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
1XC
VOOES
JLOSS
Q33
DOI 10.1038/s41586-019-1855-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Agricultural Science Database






MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Environmental Sciences
EISSN 1476-4687
EndPage 239
ExternalDocumentID oai_orbi_ulg_ac_be_2268_242139
oai:HAL:hal-03025884v1
A621109860
31822019
10_1038_s41586_019_1855_2
Genre Journal Article
GeographicLocations Greenland
GeographicLocations_xml – name: Greenland
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TUS
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
FA8
FAC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
TH9
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
ACMFV
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
PUEGO
1XC
AFKWF
ESTFP
VOOES
JLOSS
Q33
ID FETCH-LOGICAL-a837t-a8e50b188b6803eb6cbf33d304ba90abf086b3c823c8362a733c1e0ea3dd25d73
IEDL.DBID M7P
ISICitedReferencesCount 524
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000519378900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Sat Nov 29 01:28:56 EST 2025
Sat Oct 25 11:14:21 EDT 2025
Wed Oct 01 01:05:39 EDT 2025
Tue Oct 07 07:05:24 EDT 2025
Tue Nov 11 10:06:29 EST 2025
Sat Nov 29 11:47:04 EST 2025
Tue Jun 10 15:32:06 EDT 2025
Tue Nov 04 17:38:09 EST 2025
Thu Nov 13 15:22:28 EST 2025
Thu Nov 13 14:54:52 EST 2025
Mon Jul 21 05:59:16 EDT 2025
Tue Nov 18 22:40:04 EST 2025
Sat Nov 29 02:39:16 EST 2025
Fri Feb 21 02:37:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7798
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a837t-a8e50b188b6803eb6cbf33d304ba90abf086b3c823c8362a733c1e0ea3dd25d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
zenobe
scopus-id:2-s2.0-85078287272
ORCID 0000-0002-9020-1898
0000-0001-6334-1660
0000-0002-4140-3813
0000-0001-5947-7709
0000-0002-2689-8563
0000-0002-3366-0481
0000-0001-9155-5455
0000-0003-4091-1653
0000-0003-3346-9289
0000-0002-7159-5369
0000-0002-2959-5920
0000-0001-6328-5590
0000-0002-7719-7468
OpenAccessLink https://orbi.uliege.be/handle/2268/242139
PMID 31822019
PQID 2382072310
PQPubID 40569
PageCount 7
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_242139
hal_primary_oai_HAL_hal_03025884v1
proquest_miscellaneous_2324915582
proquest_journals_2382072310
gale_infotracmisc_A621109860
gale_infotracgeneralonefile_A621109860
gale_infotraccpiq_621109860
gale_infotracacademiconefile_A621109860
gale_incontextgauss_ISR_A621109860
gale_incontextgauss_ATWCN_A621109860
pubmed_primary_31822019
crossref_citationtrail_10_1038_s41586_019_1855_2
crossref_primary_10_1038_s41586_019_1855_2
springer_journals_10_1038_s41586_019_1855_2
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Straneo, Heimbach (CR12) 2013; 504
Lemos (CR100) 2018; 12
Fettweis (CR14) 2013; 7
Trusel (CR8) 2018; 564
Nick (CR25) 2012; 58
Joughin (CR26) 2008; 113
Mouginot (CR33) 2019; 116
Helm, Humbert, Miller (CR86) 2014; 8
Vernon (CR45) 2013; 7
Carrère, Lyard (CR81) 2003; 30
Lecavalier (CR34) 2014; 102
Schrama, Wouters, Rietbroek (CR56) 2014; 119
Seo (CR68) 2015; 120
Joughin, Abdalati, Fahnestock (CR102) 2004; 432
Flechtner (CR50) 2016; 37
Martinec (CR111) 2000; 142
Forsberg, Sørensen, Simonsen (CR62) 2017; 38
McMillan (CR28) 2016; 43
Leeson (CR23) 2015; 5
Shepherd (CR105) 2019; 46
Csatho (CR82) 2014; 111
Groh, Horwath (CR63) 2016; 18
Gunter (CR85) 2014; 8
Mouginot, Rignot, Scheuchl, Millan (CR98) 2017; 9
Rodell (CR74) 2004; 85
Harig, Simons (CR64) 2012; 109
Holland, Thomas, de Young, Ribergaard, Lyberth (CR10) 2008; 1
Hanna, Mernild, Cappelen, Steffen (CR13) 2012; 7
Gelaro (CR117) 2017; 30
Kjeldsen (CR87) 2013; 118
Fleming, Lambeck (CR112) 2004; 23
Felikson (CR88) 2017; 55
Fettweis (CR92) 2013; 7
Howat, Joughin, Fahnestock, Smith, Scambos (CR47) 2008; 54
Khazendar (CR16) 2019; 12
Luthcke (CR31) 2006; 314
Save, Bettadpur, Tapley (CR67) 2016; 121
(CR41) 2018; 558
Martinec, Hagedoorn (CR106) 2014; 199
Ivins (CR73) 2013; 118
Caron, Métivier, Greff-Lefftz, Fleitout, Rouby (CR95) 2017; 209
Bevis (CR15) 2019; 116
Markus (CR49) 2017; 190
Noël (CR116) 2016; 10
Sun, Riva, Ditmar (CR96) 2016; 121
Peltier, Argus, Drummond (CR51) 2015; 120
Langen, Fausto, Vandecrux, Mottram, Box (CR110) 2017; 4
Nagler, Rott, Hetzenecker, Wuite, Potin (CR97) 2015; 7
Noël (CR115) 2015; 9
Wilton (CR118) 2017; 63
Lucas-Picher (CR9) 2012; 117
Cheng, Tapley, Ries (CR76) 2013; 118
Morlighem (CR18) 2017; 44
Hofer, Tedstone, Fettweis, Bamber (CR22) 2017; 3
Shepherd, Nowicki (CR48) 2017; 7
Bonin, Chambers (CR60) 2013; 194
Paulson, Zhong, Wahr (CR52) 2007; 171
Seale, Christoffersen, Mugford, O’Leary (CR11) 2011; 116
Pritchard, Arthern, Vaughan, Edwards (CR27) 2009; 461
Sandberg Sørensen (CR29) 2018; 495
Khan (CR42) 2016; 2
Andrews, Moore, King (CR66) 2015; 200
Shepherd (CR1) 2012; 338
CR79
(CR2) 2018; 10
CR114
Moon, Joughin, Smith, Howat (CR4) 2012; 336
Blazquez (CR61) 2018; 215
Fretwell (CR107) 2013; 7
Fettweis (CR21) 2017; 11
Rignot, Mouginot (CR37) 2012; 39
Velicogna, Wahr (CR30) 2005; 32
Mernild, Liston, Hiemstra, Christensen (CR119) 2010; 11
Ivins, James (CR72) 2005; 17
Pujol (CR78) 2016; 12
A, Wahr, Zhong (CR55) 2013; 192
Balmaseda, Mogensen, Weaver (CR77) 2013; 139
King, Whitehouse, van der Wal (CR113) 2016; 204
Rignot, Mouginot, Scheuchl (CR108) 2011; 333
Zwally (CR39) 2011; 57
Vishwakarma, Horwath, Devaraju, Groh, Sneeuw (CR70) 2017; 53
Joughin, Smith, Howat (CR99) 2018; 12
van den Broeke (CR7) 2009; 326
Luthcke (CR65) 2013; 59
Klemann, Martinec (CR57) 2011; 511
Andersen (CR89) 2015; 409
Rignot (CR104) 2008; 1
Lambeck, Rouby, Purcell, Sun, Sambridge (CR94) 2014; 111
Ettema (CR43) 2009; 36
Rosenau, Scheinert, Dietrich (CR40) 2015; 169
Peltier (CR53) 2004; 32
Nilsson, Gardner, Sandberg Sørensen, Forsberg (CR83) 2016; 10
Wouters, Bamber, van den Broeke, Lenaerts, Sasgen (CR59) 2013; 6
Simpson, Milne, Huybrechts, Long (CR54) 2009; 28
Döll, Kaspar, Lehner (CR75) 2003; 270
van Wessem (CR91) 2014; 8
CR17
Bolch (CR44) 2013; 40
Sørensen (CR38) 2011; 5
Rignot, Mouginot, Scheuchl (CR109) 2011; 38
Rignot, Kanagaratnam (CR6) 2006; 311
Zwally, Bindschadler, Brenner, Major, Marsh (CR32) 1989; 246
Gogineni (CR103) 2001; 106
Enderlin (CR5) 2014; 41
Wiese, Landerer, Watkins (CR71) 2016; 52
Dobslaw (CR80) 2013; 118
Porter (CR36) 2018; 6
Gourmelen (CR84) 2018; 62
Joughin, Smith, Howat, Scambos, Moon (CR19) 2010; 56
Wahr, Wingham, Bentley (CR93) 2000; 105
Joughin (CR101) 2008; 113
Pattyn (CR3) 2018; 8
King (CR35) 2018; 12
CR20
Palmer, McMillan, Morlighem (CR24) 2015; 6
Velicogna, Sutterley, van den Broeke (CR69) 2014; 41
Swenson, Chambers, Wahr (CR58) 2008; 113
Colgan (CR90) 2019; 43
Noël (CR46) 2018; 12
T Moon (1855_CR4) 2012; 336
MA Balmaseda (1855_CR77) 2013; 139
A Shepherd (1855_CR1) 2012; 338
P Lucas-Picher (1855_CR9) 2012; 117
K-W Seo (1855_CR68) 2015; 120
B Wouters (1855_CR59) 2013; 6
A Shepherd (1855_CR105) 2019; 46
L Caron (1855_CR95) 2017; 209
J Mouginot (1855_CR98) 2017; 9
SB Luthcke (1855_CR31) 2006; 314
1855_CR79
S Gogineni (1855_CR103) 2001; 106
The IMBIE Team (1855_CR41) 2018; 558
E Rignot (1855_CR109) 2011; 38
DM Holland (1855_CR10) 2008; 1
D Felikson (1855_CR88) 2017; 55
H Save (1855_CR67) 2016; 121
J Bonin (1855_CR60) 2013; 194
I Velicogna (1855_CR69) 2014; 41
IM Howat (1855_CR47) 2008; 54
E Rignot (1855_CR37) 2012; 39
SA Khan (1855_CR42) 2016; 2
C Harig (1855_CR64) 2012; 109
DJ Wilton (1855_CR118) 2017; 63
V Helm (1855_CR86) 2014; 8
L Carrère (1855_CR81) 2003; 30
MD King (1855_CR35) 2018; 12
SH Mernild (1855_CR119) 2010; 11
SB Luthcke (1855_CR65) 2013; 59
A Paulson (1855_CR52) 2007; 171
ML Andersen (1855_CR89) 2015; 409
A Shepherd (1855_CR48) 2017; 7
R Gelaro (1855_CR117) 2017; 30
S Hofer (1855_CR22) 2017; 3
J Mouginot (1855_CR33) 2019; 116
E Rignot (1855_CR104) 2008; 1
E Rignot (1855_CR6) 2006; 311
S Swenson (1855_CR58) 2008; 113
B Noël (1855_CR116) 2016; 10
LS Sørensen (1855_CR38) 2011; 5
E Rignot (1855_CR108) 2011; 333
1855_CR114
S Palmer (1855_CR24) 2015; 6
MA King (1855_CR113) 2016; 204
J Wahr (1855_CR93) 2000; 105
Y Sun (1855_CR96) 2016; 121
I Joughin (1855_CR19) 2010; 56
I Velicogna (1855_CR30) 2005; 32
B Noël (1855_CR115) 2015; 9
X Fettweis (1855_CR92) 2013; 7
K Lambeck (1855_CR94) 2014; 111
M van den Broeke (1855_CR7) 2009; 326
J Nilsson (1855_CR83) 2016; 10
E Hanna (1855_CR13) 2012; 7
BS Lecavalier (1855_CR34) 2014; 102
Z Martinec (1855_CR106) 2014; 199
HJ Zwally (1855_CR32) 1989; 246
R Rosenau (1855_CR40) 2015; 169
CL Vernon (1855_CR45) 2013; 7
P Fretwell (1855_CR107) 2013; 7
M Rodell (1855_CR74) 2004; 85
EJO Schrama (1855_CR56) 2014; 119
M-I Pujol (1855_CR78) 2016; 12
M Bevis (1855_CR15) 2019; 116
L Sandberg Sørensen (1855_CR29) 2018; 495
A Lemos (1855_CR100) 2018; 12
WR Peltier (1855_CR53) 2004; 32
SB Andrews (1855_CR66) 2015; 200
I Joughin (1855_CR101) 2008; 113
HD Pritchard (1855_CR27) 2009; 461
HJ Zwally (1855_CR39) 2011; 57
B Noël (1855_CR46) 2018; 12
BC Gunter (1855_CR85) 2014; 8
LD Trusel (1855_CR8) 2018; 564
KK Kjeldsen (1855_CR87) 2013; 118
A Blazquez (1855_CR61) 2018; 215
P Döll (1855_CR75) 2003; 270
AA Leeson (1855_CR23) 2015; 5
DF Porter (1855_CR36) 2018; 6
T Markus (1855_CR49) 2017; 190
ER Ivins (1855_CR73) 2013; 118
X Fettweis (1855_CR21) 2017; 11
EM Enderlin (1855_CR5) 2014; 41
T Bolch (1855_CR44) 2013; 40
T Nagler (1855_CR97) 2015; 7
W Colgan (1855_CR90) 2019; 43
H Dobslaw (1855_CR80) 2013; 118
A Seale (1855_CR11) 2011; 116
F Flechtner (1855_CR50) 2016; 37
BD Vishwakarma (1855_CR70) 2017; 53
JM van Wessem (1855_CR91) 2014; 8
MJR Simpson (1855_CR54) 2009; 28
Z Martinec (1855_CR111) 2000; 142
F Straneo (1855_CR12) 2013; 504
I Joughin (1855_CR99) 2018; 12
M Cheng (1855_CR76) 2013; 118
1855_CR17
FM Nick (1855_CR25) 2012; 58
I Joughin (1855_CR26) 2008; 113
K Fleming (1855_CR112) 2004; 23
X Fettweis (1855_CR14) 2013; 7
G A (1855_CR55) 2013; 192
R Forsberg (1855_CR62) 2017; 38
BM Csatho (1855_CR82) 2014; 111
V Klemann (1855_CR57) 2011; 511
A Groh (1855_CR63) 2016; 18
I Joughin (1855_CR102) 2004; 432
ER Ivins (1855_CR72) 2005; 17
A Khazendar (1855_CR16) 2019; 12
M Morlighem (1855_CR18) 2017; 44
J Ettema (1855_CR43) 2009; 36
F Pattyn (1855_CR3) 2018; 8
1855_CR20
M McMillan (1855_CR28) 2016; 43
DN Wiese (1855_CR71) 2016; 52
WCRP Global Sea Level Budget Group (1855_CR2) 2018; 10
PL Langen (1855_CR110) 2017; 4
N Gourmelen (1855_CR84) 2018; 62
WR Peltier (1855_CR51) 2015; 120
References_xml – volume: 119
  start-page: 6048
  year: 2014
  end-page: 6066
  ident: CR56
  article-title: A mascon approach to assess ice sheet and glacier mass balances and their uncertainties from GRACE data
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2013JB010923
– volume: 118
  start-page: 698
  year: 2013
  end-page: 708
  ident: CR87
  article-title: Improved ice loss estimate of the northwestern Greenland ice sheet
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2012JB009684
– volume: 6
  start-page: 613
  year: 2013
  end-page: 616
  ident: CR59
  article-title: Limits in detecting acceleration of ice sheet mass loss due to climate variability
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1874
– volume: 118
  start-page: 3704
  year: 2013
  end-page: 3711
  ident: CR80
  article-title: Simulating high-frequency atmosphere-ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/jgrc.20271
– volume: 3
  start-page: e1700584
  year: 2017
  ident: CR22
  article-title: Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700584
– volume: 2
  start-page: e1600931
  year: 2016
  ident: CR42
  article-title: Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600931
– volume: 118
  start-page: 3126
  year: 2013
  end-page: 3141
  ident: CR73
  article-title: Antarctic contribution to sea level rise observed by GRACE with improved GIA correction
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/jgrb.50208
– volume: 120
  start-page: 450
  year: 2015
  end-page: 487
  ident: CR51
  article-title: Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2014JB011176
– volume: 32
  start-page: 111
  year: 2004
  end-page: 149
  ident: CR53
  article-title: Global glacial isostasy and the surface of the Ice-Age Earth: the ICE-5G (VM2) model and GRACE
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.32.082503.144359
– volume: 37
  start-page: 453
  year: 2016
  end-page: 470
  ident: CR50
  article-title: What can be expected from the GRACE-FO laser ranging interferometer for earth science applications?
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-015-9338-y
– volume: 504
  start-page: 36
  year: 2013
  end-page: 43
  ident: CR12
  article-title: North Atlantic warming and the retreat of Greenland’s outlet glaciers
  publication-title: Nature
  doi: 10.1038/nature12854
– volume: 28
  start-page: 1631
  year: 2009
  end-page: 1657
  ident: CR54
  article-title: Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2009.03.004
– volume: 10
  start-page: 1551
  year: 2018
  end-page: 1590
  ident: CR2
  article-title: Global sea-level budget 1993–present
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-10-1551-2018
– volume: 461
  start-page: 971
  year: 2009
  end-page: 975
  ident: CR27
  article-title: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets
  publication-title: Nature
  doi: 10.1038/nature08471
– volume: 9
  start-page: 364
  year: 2017
  ident: CR98
  article-title: Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data
  publication-title: Remote Sens.
  doi: 10.3390/rs9040364
– volume: 12
  start-page: 277
  year: 2019
  end-page: 283
  ident: CR16
  article-title: Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0329-3
– volume: 109
  start-page: 19934
  year: 2012
  end-page: 19937
  ident: CR64
  article-title: Mapping Greenland’s mass loss in space and time
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1206785109
– volume: 12
  start-page: 811
  year: 2018
  end-page: 831
  ident: CR46
  article-title: Modelling the climate and surface mass balance of polar ice sheets using RACMO2—Part 1: Greenland (1958–2016)
  publication-title: Cryosphere
  doi: 10.5194/tc-12-811-2018
– volume: 46
  start-page: 8174
  year: 2019
  end-page: 8183
  ident: CR105
  article-title: Trends in Antarctic Ice Sheet elevation and mass
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL082182
– volume: 200
  start-page: 503
  year: 2015
  end-page: 518
  ident: CR66
  article-title: Mass change from GRACE: a simulated comparison of Level-1B analysis techniques
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggu402
– volume: 38
  start-page: 89
  year: 2017
  end-page: 104
  ident: CR62
  article-title: Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-016-9398-7
– volume: 38
  start-page: L10504
  year: 2011
  ident: CR109
  article-title: Antarctic grounding line mapping from differential satellite radar interferometry
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL047109
– volume: 10
  start-page: 2361
  year: 2016
  end-page: 2377
  ident: CR116
  article-title: A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015)
  publication-title: Cryosphere
  doi: 10.5194/tc-10-2361-2016
– volume: 409
  start-page: 89
  year: 2015
  end-page: 95
  ident: CR89
  article-title: Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011)
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2014.10.015
– volume: 57
  start-page: 88
  year: 2011
  end-page: 102
  ident: CR39
  article-title: Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002
  publication-title: J. Glaciol.
  doi: 10.3189/002214311795306682
– volume: 53
  start-page: 9824
  year: 2017
  end-page: 9844
  ident: CR70
  article-title: A data-driven approach for repairing the hydrological catchment signal damage due to filtering of GRACE products
  publication-title: Wat. Resour. Res.
  doi: 10.1002/2017WR021150
– volume: 338
  start-page: 1183
  year: 2012
  end-page: 1189
  ident: CR1
  article-title: A reconciled estimate of ice-sheet mass balance
  publication-title: Science
  doi: 10.1126/science.1228102
– volume: 7
  start-page: 241
  year: 2013
  end-page: 248
  ident: CR14
  article-title: Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet
  publication-title: Cryosphere
  doi: 10.5194/tc-7-241-2013
– volume: 10
  start-page: 2953
  year: 2016
  end-page: 2969
  ident: CR83
  article-title: Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet
  publication-title: Cryosphere
  doi: 10.5194/tc-10-2953-2016
– volume: 111
  start-page: 18478
  year: 2014
  end-page: 18483
  ident: CR82
  article-title: Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1411680112
– volume: 63
  start-page: 176
  year: 2017
  end-page: 193
  ident: CR118
  article-title: High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2016.133
– volume: 56
  start-page: 415
  year: 2010
  end-page: 430
  ident: CR19
  article-title: Greenland flow variability from ice-sheet-wide velocity mapping
  publication-title: J. Glaciol.
  doi: 10.3189/002214310792447734
– volume: 336
  start-page: 576
  year: 2012
  end-page: 578
  ident: CR4
  article-title: 21st-century evolution of Greenland outlet glacier velocities
  publication-title: Science
  doi: 10.1126/science.1219985
– volume: 113
  start-page: B08410
  year: 2008
  ident: CR58
  article-title: Estimating geocenter variations from a combination of GRACE and ocean model output
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2007JB005338
– volume: 40
  start-page: 875
  year: 2013
  end-page: 881
  ident: CR44
  article-title: Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50270
– volume: 199
  start-page: 1823
  year: 2014
  end-page: 1846
  ident: CR106
  article-title: The rotational feedback on linear-momentum balance in glacial isostatic adjustment
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggu369
– volume: 7
  start-page: 469
  year: 2013
  end-page: 489
  ident: CR92
  article-title: Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR
  publication-title: Cryosphere
  doi: 10.5194/tc-7-469-2013
– volume: 209
  start-page: 1126
  year: 2017
  end-page: 1147
  ident: CR95
  article-title: Inverting Glacial Isostatic Adjustment signal using Bayesian framework and two linearly relaxing rheologies
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggx083
– volume: 12
  start-page: 2087
  year: 2018
  end-page: 2097
  ident: CR100
  article-title: Ice velocity of Jakobshavn Isbræ, Petermann Glacier, Nioghalvfjerdsfjorden, and Zachariæ Isstrøm, 2015–2017, from Sentinel 1-a/b SAR imagery
  publication-title: Cryosphere
  doi: 10.5194/tc-12-2087-2018
– volume: 564
  start-page: 104
  year: 2018
  end-page: 108
  ident: CR8
  article-title: Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming
  publication-title: Nature
  doi: 10.1038/s41586-018-0752-4
– volume: 116
  start-page: 9239
  year: 2019
  end-page: 9244
  ident: CR33
  article-title: Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1904242116
– volume: 9
  start-page: 1831
  year: 2015
  end-page: 1844
  ident: CR115
  article-title: Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland Ice Sheet
  publication-title: Cryosphere
  doi: 10.5194/tc-9-1831-2015
– volume: 12
  start-page: 2211
  year: 2018
  end-page: 2227
  ident: CR99
  article-title: Greenland Ice Mapping Project: ice flow velocity variation at sub-monthly to decadal timescales
  publication-title: Cryosphere
  doi: 10.5194/tc-12-2211-2018
– volume: 311
  start-page: 986
  year: 2006
  end-page: 990
  ident: CR6
  article-title: Changes in the velocity structure of the Greenland Ice Sheet
  publication-title: Science
  doi: 10.1126/science.1121381
– volume: 8
  start-page: 125
  year: 2014
  end-page: 135
  ident: CR91
  article-title: Updated cloud physics in a regional atmospheric climate model improves the modelled surface energy balance of Antarctica
  publication-title: Cryosphere
  doi: 10.5194/tc-8-125-2014
– volume: 23
  start-page: 1053
  year: 2004
  end-page: 1077
  ident: CR112
  article-title: Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2003.11.001
– volume: 43
  start-page: e2019430201
  year: 2019
  ident: CR90
  article-title: Greenland ice sheet mass balance assessed by PROMICE (1995–2015)
  publication-title: Geol. Surv. Denmark Greenl. Bull.
– volume: 5
  start-page: 51
  year: 2015
  end-page: 55
  ident: CR23
  article-title: Supraglacial lakes on the Greenland ice sheet advance inland under warming climate
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2463
– volume: 58
  start-page: 229
  year: 2012
  end-page: 239
  ident: CR25
  article-title: The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming
  publication-title: J. Glaciol.
  doi: 10.3189/2012JoG11J242
– ident: CR114
– volume: 32
  start-page: L18505
  year: 2005
  ident: CR30
  article-title: Greenland mass balance from GRACE
  publication-title: Geophys. Res. Lett.
– volume: 17
  start-page: 541
  year: 2005
  end-page: 553
  ident: CR72
  article-title: Antarctic glacial isostatic adjustment: a new assessment
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102005002968
– volume: 117
  start-page: 02108
  year: 2012
  ident: CR9
  article-title: Very high resolution regional climate model simulations over Greenland: identifying added value
  publication-title: J. Geophys. Res. D
  doi: 10.1029/2011JD016267
– volume: 11
  start-page: 1015
  year: 2017
  end-page: 1033
  ident: CR21
  article-title: Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model
  publication-title: Cryosphere
  doi: 10.5194/tc-11-1015-2017
– volume: 215
  start-page: 415
  year: 2018
  end-page: 430
  ident: CR61
  article-title: Exploring the uncertainty in GRACE estimates of the mass redistributions at the Earth surface: implications for the global water and sea level budgets
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggy293
– volume: 7
  start-page: 9371
  year: 2015
  end-page: 9389
  ident: CR97
  article-title: The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations
  publication-title: Remote Sens.
  doi: 10.3390/rs70709371
– volume: 121
  start-page: 7547
  year: 2016
  end-page: 7569
  ident: CR67
  article-title: High-resolution CSR GRACE RL05 mascons
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2016JB013007
– volume: 5
  start-page: 173
  year: 2011
  end-page: 186
  ident: CR38
  article-title: Mass balance of the Greenland ice sheet (2003–2008) from ICESat data—the impact of interpolation, sampling and firn density
  publication-title: Cryosphere
  doi: 10.5194/tc-5-173-2011
– volume: 30
  start-page: 5419
  year: 2017
  end-page: 5454
  ident: CR117
  article-title: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0758.1
– volume: 118
  start-page: 740
  year: 2013
  end-page: 747
  ident: CR76
  article-title: Deceleration in the Earth’s oblateness
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/jgrb.50058
– volume: 41
  start-page: 8130
  year: 2014
  end-page: 8137
  ident: CR69
  article-title: Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL061052
– volume: 142
  start-page: 117
  year: 2000
  end-page: 141
  ident: CR111
  article-title: Spectral–finite element approach to three-dimensional viscoelastic relaxation in a spherical earth
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246x.2000.00138.x
– volume: 43
  start-page: 7002
  year: 2016
  end-page: 7010
  ident: CR28
  article-title: A high-resolution record of Greenland mass balance
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL069666
– volume: 39
  start-page: L11501
  year: 2012
  ident: CR37
  article-title: Ice flow in Greenland for the International Polar Year 2008–2009
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2012GL051634
– volume: 120
  start-page: 3617
  year: 2015
  end-page: 3627
  ident: CR68
  article-title: Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003–2013
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2014JB011755
– volume: 432
  start-page: 608
  year: 2004
  end-page: 610
  ident: CR102
  article-title: Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier
  publication-title: Nature
  doi: 10.1038/nature03130
– volume: 6
  start-page: 90
  year: 2018
  ident: CR36
  article-title: Identifying spatial variability in Greenland’s outlet glacier response to ocean heat
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2018.00090
– volume: 7
  start-page: 672
  year: 2017
  end-page: 674
  ident: CR48
  article-title: Improvements in ice-sheet sea-level projections
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3400
– volume: 12
  start-page: 1067
  year: 2016
  end-page: 1090
  ident: CR78
  article-title: DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years
  publication-title: Ocean Sci.
  doi: 10.5194/os-12-1067-2016
– volume: 121
  start-page: 8352
  year: 2016
  end-page: 8370
  ident: CR96
  article-title: Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2016JB013073
– volume: 62
  start-page: 1226
  year: 2018
  end-page: 1242
  ident: CR84
  article-title: CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2017.11.014
– volume: 246
  start-page: 1587
  year: 1989
  end-page: 1589
  ident: CR32
  article-title: Growth of Greenland Ice Sheet: measurement
  publication-title: Science
  doi: 10.1126/science.246.4937.1587
– volume: 54
  start-page: 646
  year: 2008
  end-page: 660
  ident: CR47
  article-title: Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: ice dynamics and coupling to climate
  publication-title: J. Glaciol.
  doi: 10.3189/002214308786570908
– volume: 558
  start-page: 219
  year: 2018
  end-page: 222
  ident: CR41
  article-title: Mass balance of the Antarctic Ice Sheet from 1992 to 2017
  publication-title: Nature
  doi: 10.1038/s41586-018-0179-y
– volume: 59
  start-page: 613
  year: 2013
  end-page: 631
  ident: CR65
  article-title: Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution
  publication-title: J. Glaciol.
  doi: 10.3189/2013JoG12J147
– volume: 113
  start-page: F04006
  year: 2008
  ident: CR101
  article-title: Continued evolution of Jakobshavn Isbrae following its rapid speedup
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 30
  start-page: 1275
  year: 2003
  ident: CR81
  article-title: Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2002GL016473
– volume: 55
  start-page: 5494
  year: 2017
  end-page: 5505
  ident: CR88
  article-title: Comparison of elevation change detection methods from ICESat altimetry over the Greenland Ice Sheet
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2709303
– volume: 111
  start-page: 15861
  year: 2014
  end-page: 15862
  ident: CR94
  article-title: Closing the sea level budget at the Last Glacial Maximum
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1411762111
– volume: 18
  start-page: 12065
  year: 2016
  ident: CR63
  article-title: The method of tailored sensitivity kernels for GRACE mass change estimates
  publication-title: Geophys. Res. Abstr.
– volume: 204
  start-page: 324
  year: 2016
  end-page: 330
  ident: CR113
  article-title: Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggv461
– volume: 192
  start-page: 557
  year: 2013
  end-page: 572
  ident: CR55
  article-title: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggs030
– volume: 7
  start-page: 375
  year: 2013
  end-page: 393
  ident: CR107
  article-title: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica
  publication-title: Cryosphere
  doi: 10.5194/tc-7-375-2013
– volume: 511
  start-page: 99
  year: 2011
  end-page: 108
  ident: CR57
  article-title: Contribution of glacial-isostatic adjustment to the geocenter motion
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2009.08.031
– volume: 4
  start-page: 110
  year: 2017
  ident: CR110
  article-title: Liquid water flow and retention on the Greenland Ice Sheet in the regional climate model HIRHAM5: local and large-scale impacts
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2016.00110
– volume: 326
  start-page: 984
  year: 2009
  end-page: 986
  ident: CR7
  article-title: Partitioning recent Greenland mass loss
  publication-title: Science
  doi: 10.1126/science.1178176
– volume: 52
  start-page: 7490
  year: 2016
  end-page: 7502
  ident: CR71
  article-title: Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution
  publication-title: Wat. Resour. Res.
  doi: 10.1002/2016WR019344
– volume: 41
  start-page: 866
  year: 2014
  end-page: 872
  ident: CR5
  article-title: An improved mass budget for the Greenland ice sheet
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2013GL059010
– volume: 102
  start-page: 54
  year: 2014
  end-page: 84
  ident: CR34
  article-title: A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2014.07.018
– volume: 194
  start-page: 212
  year: 2013
  end-page: 229
  ident: CR60
  article-title: Uncertainty estimates of a GRACE inversion modelling technique over Greenland using a simulation
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggt091
– volume: 36
  start-page: L12501
  year: 2009
  ident: CR43
  article-title: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL038110
– volume: 116
  start-page: 1934
  year: 2019
  end-page: 1939
  ident: CR15
  article-title: Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806562116
– volume: 7
  start-page: 045404
  year: 2012
  ident: CR13
  article-title: Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/7/4/045404
– volume: 44
  start-page: 11,051
  year: 2017
  end-page: 11,061
  ident: CR18
  article-title: BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074954
– ident: CR79
– volume: 105
  start-page: 16279
  year: 2000
  end-page: 16294
  ident: CR93
  article-title: A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2000JB900113
– volume: 113
  start-page: F01004
  year: 2008
  ident: CR26
  article-title: Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 116
  start-page: F03013
  year: 2011
  ident: CR11
  article-title: Ocean forcing of the Greenland Ice Sheet: calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1029/2010JF001847
– volume: 85
  start-page: 381
  year: 2004
  end-page: 394
  ident: CR74
  article-title: The Global Land Data Assimilation System
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-85-3-381
– volume: 11
  start-page: 3
  year: 2010
  end-page: 25
  ident: CR119
  article-title: Greenland Ice Sheet surface mass-balance modeling in a 131-yr perspective, 1950–2080
  publication-title: J. Hydrometeorol.
  doi: 10.1175/2009JHM1140.1
– volume: 12
  start-page: 3813
  year: 2018
  end-page: 3825
  ident: CR35
  article-title: Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet
  publication-title: Cryosphere
  doi: 10.5194/tc-12-3813-2018
– volume: 7
  start-page: 599
  year: 2013
  end-page: 614
  ident: CR45
  article-title: Surface mass balance model intercomparison for the Greenland ice sheet
  publication-title: Cryosphere
  doi: 10.5194/tc-7-599-2013
– volume: 190
  start-page: 260
  year: 2017
  end-page: 273
  ident: CR49
  article-title: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.029
– volume: 8
  start-page: 743
  year: 2014
  end-page: 760
  ident: CR85
  article-title: Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change
  publication-title: Cryosphere
  doi: 10.5194/tc-8-743-2014
– volume: 1
  start-page: 106
  year: 2008
  end-page: 110
  ident: CR104
  article-title: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo102
– volume: 495
  start-page: 234
  year: 2018
  end-page: 241
  ident: CR29
  article-title: 25 years of elevation changes of the Greenland Ice Sheet from ERS, Envisat, and CryoSat-2 radar altimetry
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2018.05.015
– volume: 314
  start-page: 1286
  year: 2006
  end-page: 1289
  ident: CR31
  article-title: Recent Greenland ice mass loss by drainage system from satellite gravity observations
  publication-title: Science
  doi: 10.1126/science.1130776
– volume: 169
  start-page: 1
  year: 2015
  end-page: 19
  ident: CR40
  article-title: A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.07.012
– ident: CR17
– volume: 106
  start-page: 33761
  year: 2001
  end-page: 33772
  ident: CR103
  article-title: Coherent radar ice thickness measurements over the Greenland ice sheet
  publication-title: J. Geophys. Res. D Atmospheres
  doi: 10.1029/2001JD900183
– volume: 139
  start-page: 1132
  year: 2013
  end-page: 1161
  ident: CR77
  article-title: Evaluation of the ECMWF ocean reanalysis system ORAS4
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.2063
– volume: 8
  start-page: 1539
  year: 2014
  end-page: 1559
  ident: CR86
  article-title: Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2
  publication-title: Cryosphere
  doi: 10.5194/tc-8-1539-2014
– volume: 8
  start-page: 1053
  year: 2018
  end-page: 1061
  ident: CR3
  article-title: The Greenland and Antarctic ice sheets under 1.5 °C global warming
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0305-8
– volume: 6
  year: 2015
  ident: CR24
  article-title: Subglacial lake drainage detected beneath the Greenland ice sheet
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9408
– volume: 333
  start-page: 1427
  year: 2011
  end-page: 1430
  ident: CR108
  article-title: Ice flow of the Antarctic Ice Sheet
  publication-title: Science
  doi: 10.1126/science.1208336
– volume: 270
  start-page: 105
  year: 2003
  end-page: 134
  ident: CR75
  article-title: A global hydrological model for deriving water availability indicators: model tuning and validation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00283-4
– volume: 1
  start-page: 659
  year: 2008
  end-page: 664
  ident: CR10
  article-title: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo316
– volume: 171
  start-page: 497
  year: 2007
  end-page: 508
  ident: CR52
  article-title: Inference of mantle viscosity from GRACE and relative sea level data
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2007.03556.x
– ident: CR20
– volume: 113
  start-page: B08410
  year: 2008
  ident: 1855_CR58
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2007JB005338
– volume: 9
  start-page: 1831
  year: 2015
  ident: 1855_CR115
  publication-title: Cryosphere
  doi: 10.5194/tc-9-1831-2015
– volume: 58
  start-page: 229
  year: 2012
  ident: 1855_CR25
  publication-title: J. Glaciol.
  doi: 10.3189/2012JoG11J242
– volume: 11
  start-page: 3
  year: 2010
  ident: 1855_CR119
  publication-title: J. Hydrometeorol.
  doi: 10.1175/2009JHM1140.1
– volume: 11
  start-page: 1015
  year: 2017
  ident: 1855_CR21
  publication-title: Cryosphere
  doi: 10.5194/tc-11-1015-2017
– volume: 8
  start-page: 1053
  year: 2018
  ident: 1855_CR3
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0305-8
– volume: 38
  start-page: L10504
  year: 2011
  ident: 1855_CR109
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL047109
– volume: 12
  start-page: 3813
  year: 2018
  ident: 1855_CR35
  publication-title: Cryosphere
  doi: 10.5194/tc-12-3813-2018
– volume: 1
  start-page: 659
  year: 2008
  ident: 1855_CR10
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo316
– volume: 43
  start-page: e2019430201
  year: 2019
  ident: 1855_CR90
  publication-title: Geol. Surv. Denmark Greenl. Bull.
– volume: 52
  start-page: 7490
  year: 2016
  ident: 1855_CR71
  publication-title: Wat. Resour. Res.
  doi: 10.1002/2016WR019344
– volume: 41
  start-page: 866
  year: 2014
  ident: 1855_CR5
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2013GL059010
– ident: 1855_CR114
– volume: 7
  start-page: 672
  year: 2017
  ident: 1855_CR48
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3400
– volume: 55
  start-page: 5494
  year: 2017
  ident: 1855_CR88
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2709303
– volume: 57
  start-page: 88
  year: 2011
  ident: 1855_CR39
  publication-title: J. Glaciol.
  doi: 10.3189/002214311795306682
– volume: 9
  start-page: 364
  year: 2017
  ident: 1855_CR98
  publication-title: Remote Sens.
  doi: 10.3390/rs9040364
– volume: 30
  start-page: 5419
  year: 2017
  ident: 1855_CR117
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0758.1
– volume: 40
  start-page: 875
  year: 2013
  ident: 1855_CR44
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50270
– volume: 116
  start-page: 1934
  year: 2019
  ident: 1855_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806562116
– volume: 4
  start-page: 110
  year: 2017
  ident: 1855_CR110
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2016.00110
– volume: 190
  start-page: 260
  year: 2017
  ident: 1855_CR49
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.029
– volume: 118
  start-page: 740
  year: 2013
  ident: 1855_CR76
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/jgrb.50058
– volume: 7
  start-page: 599
  year: 2013
  ident: 1855_CR45
  publication-title: Cryosphere
  doi: 10.5194/tc-7-599-2013
– volume: 36
  start-page: L12501
  year: 2009
  ident: 1855_CR43
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL038110
– volume: 12
  start-page: 2087
  year: 2018
  ident: 1855_CR100
  publication-title: Cryosphere
  doi: 10.5194/tc-12-2087-2018
– volume: 120
  start-page: 450
  year: 2015
  ident: 1855_CR51
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2014JB011176
– volume: 10
  start-page: 2361
  year: 2016
  ident: 1855_CR116
  publication-title: Cryosphere
  doi: 10.5194/tc-10-2361-2016
– volume: 120
  start-page: 3617
  year: 2015
  ident: 1855_CR68
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2014JB011755
– volume: 204
  start-page: 324
  year: 2016
  ident: 1855_CR113
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggv461
– volume: 215
  start-page: 415
  year: 2018
  ident: 1855_CR61
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggy293
– ident: 1855_CR17
– volume: 41
  start-page: 8130
  year: 2014
  ident: 1855_CR69
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL061052
– volume: 7
  start-page: 241
  year: 2013
  ident: 1855_CR14
  publication-title: Cryosphere
  doi: 10.5194/tc-7-241-2013
– volume: 118
  start-page: 3126
  year: 2013
  ident: 1855_CR73
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/jgrb.50208
– volume: 194
  start-page: 212
  year: 2013
  ident: 1855_CR60
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggt091
– volume: 7
  start-page: 9371
  year: 2015
  ident: 1855_CR97
  publication-title: Remote Sens.
  doi: 10.3390/rs70709371
– volume: 3
  start-page: e1700584
  year: 2017
  ident: 1855_CR22
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700584
– volume: 54
  start-page: 646
  year: 2008
  ident: 1855_CR47
  publication-title: J. Glaciol.
  doi: 10.3189/002214308786570908
– volume: 111
  start-page: 18478
  year: 2014
  ident: 1855_CR82
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1411680112
– volume: 85
  start-page: 381
  year: 2004
  ident: 1855_CR74
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-85-3-381
– volume: 63
  start-page: 176
  year: 2017
  ident: 1855_CR118
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2016.133
– volume: 109
  start-page: 19934
  year: 2012
  ident: 1855_CR64
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1206785109
– volume: 5
  start-page: 173
  year: 2011
  ident: 1855_CR38
  publication-title: Cryosphere
  doi: 10.5194/tc-5-173-2011
– volume: 12
  start-page: 811
  year: 2018
  ident: 1855_CR46
  publication-title: Cryosphere
  doi: 10.5194/tc-12-811-2018
– volume: 23
  start-page: 1053
  year: 2004
  ident: 1855_CR112
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2003.11.001
– volume: 169
  start-page: 1
  year: 2015
  ident: 1855_CR40
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.07.012
– volume: 12
  start-page: 2211
  year: 2018
  ident: 1855_CR99
  publication-title: Cryosphere
  doi: 10.5194/tc-12-2211-2018
– volume: 119
  start-page: 6048
  year: 2014
  ident: 1855_CR56
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2013JB010923
– volume: 6
  year: 2015
  ident: 1855_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9408
– volume: 118
  start-page: 3704
  year: 2013
  ident: 1855_CR80
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/jgrc.20271
– volume: 105
  start-page: 16279
  year: 2000
  ident: 1855_CR93
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2000JB900113
– volume: 46
  start-page: 8174
  year: 2019
  ident: 1855_CR105
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL082182
– volume: 18
  start-page: 12065
  year: 2016
  ident: 1855_CR63
  publication-title: Geophys. Res. Abstr.
– volume: 12
  start-page: 277
  year: 2019
  ident: 1855_CR16
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0329-3
– volume: 270
  start-page: 105
  year: 2003
  ident: 1855_CR75
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00283-4
– volume: 62
  start-page: 1226
  year: 2018
  ident: 1855_CR84
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2017.11.014
– volume: 8
  start-page: 125
  year: 2014
  ident: 1855_CR91
  publication-title: Cryosphere
  doi: 10.5194/tc-8-125-2014
– volume: 56
  start-page: 415
  year: 2010
  ident: 1855_CR19
  publication-title: J. Glaciol.
  doi: 10.3189/002214310792447734
– volume: 246
  start-page: 1587
  year: 1989
  ident: 1855_CR32
  publication-title: Science
  doi: 10.1126/science.246.4937.1587
– volume: 106
  start-page: 33761
  year: 2001
  ident: 1855_CR103
  publication-title: J. Geophys. Res. D Atmospheres
  doi: 10.1029/2001JD900183
– volume: 44
  start-page: 11,051
  year: 2017
  ident: 1855_CR18
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074954
– volume: 102
  start-page: 54
  year: 2014
  ident: 1855_CR34
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2014.07.018
– volume: 200
  start-page: 503
  year: 2015
  ident: 1855_CR66
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggu402
– volume: 10
  start-page: 2953
  year: 2016
  ident: 1855_CR83
  publication-title: Cryosphere
  doi: 10.5194/tc-10-2953-2016
– volume: 564
  start-page: 104
  year: 2018
  ident: 1855_CR8
  publication-title: Nature
  doi: 10.1038/s41586-018-0752-4
– volume: 409
  start-page: 89
  year: 2015
  ident: 1855_CR89
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2014.10.015
– volume: 432
  start-page: 608
  year: 2004
  ident: 1855_CR102
  publication-title: Nature
  doi: 10.1038/nature03130
– volume: 314
  start-page: 1286
  year: 2006
  ident: 1855_CR31
  publication-title: Science
  doi: 10.1126/science.1130776
– volume: 30
  start-page: 1275
  year: 2003
  ident: 1855_CR81
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2002GL016473
– volume: 43
  start-page: 7002
  year: 2016
  ident: 1855_CR28
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL069666
– volume: 6
  start-page: 613
  year: 2013
  ident: 1855_CR59
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1874
– volume: 495
  start-page: 234
  year: 2018
  ident: 1855_CR29
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2018.05.015
– volume: 6
  start-page: 90
  year: 2018
  ident: 1855_CR36
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2018.00090
– volume: 326
  start-page: 984
  year: 2009
  ident: 1855_CR7
  publication-title: Science
  doi: 10.1126/science.1178176
– volume: 28
  start-page: 1631
  year: 2009
  ident: 1855_CR54
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2009.03.004
– volume: 171
  start-page: 497
  year: 2007
  ident: 1855_CR52
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2007.03556.x
– volume: 511
  start-page: 99
  year: 2011
  ident: 1855_CR57
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2009.08.031
– volume: 209
  start-page: 1126
  year: 2017
  ident: 1855_CR95
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggx083
– volume: 37
  start-page: 453
  year: 2016
  ident: 1855_CR50
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-015-9338-y
– volume: 39
  start-page: L11501
  year: 2012
  ident: 1855_CR37
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2012GL051634
– volume: 12
  start-page: 1067
  year: 2016
  ident: 1855_CR78
  publication-title: Ocean Sci.
  doi: 10.5194/os-12-1067-2016
– volume: 8
  start-page: 743
  year: 2014
  ident: 1855_CR85
  publication-title: Cryosphere
  doi: 10.5194/tc-8-743-2014
– volume: 111
  start-page: 15861
  year: 2014
  ident: 1855_CR94
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1411762111
– volume: 192
  start-page: 557
  year: 2013
  ident: 1855_CR55
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggs030
– volume: 116
  start-page: F03013
  year: 2011
  ident: 1855_CR11
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1029/2010JF001847
– ident: 1855_CR20
– volume: 7
  start-page: 375
  year: 2013
  ident: 1855_CR107
  publication-title: Cryosphere
  doi: 10.5194/tc-7-375-2013
– volume: 53
  start-page: 9824
  year: 2017
  ident: 1855_CR70
  publication-title: Wat. Resour. Res.
  doi: 10.1002/2017WR021150
– volume: 59
  start-page: 613
  year: 2013
  ident: 1855_CR65
  publication-title: J. Glaciol.
  doi: 10.3189/2013JoG12J147
– volume: 338
  start-page: 1183
  year: 2012
  ident: 1855_CR1
  publication-title: Science
  doi: 10.1126/science.1228102
– volume: 504
  start-page: 36
  year: 2013
  ident: 1855_CR12
  publication-title: Nature
  doi: 10.1038/nature12854
– ident: 1855_CR79
– volume: 8
  start-page: 1539
  year: 2014
  ident: 1855_CR86
  publication-title: Cryosphere
  doi: 10.5194/tc-8-1539-2014
– volume: 32
  start-page: L18505
  year: 2005
  ident: 1855_CR30
  publication-title: Geophys. Res. Lett.
– volume: 38
  start-page: 89
  year: 2017
  ident: 1855_CR62
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-016-9398-7
– volume: 199
  start-page: 1823
  year: 2014
  ident: 1855_CR106
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggu369
– volume: 118
  start-page: 698
  year: 2013
  ident: 1855_CR87
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2012JB009684
– volume: 311
  start-page: 986
  year: 2006
  ident: 1855_CR6
  publication-title: Science
  doi: 10.1126/science.1121381
– volume: 121
  start-page: 8352
  year: 2016
  ident: 1855_CR96
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2016JB013073
– volume: 10
  start-page: 1551
  year: 2018
  ident: 1855_CR2
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-10-1551-2018
– volume: 558
  start-page: 219
  year: 2018
  ident: 1855_CR41
  publication-title: Nature
  doi: 10.1038/s41586-018-0179-y
– volume: 113
  start-page: F04006
  year: 2008
  ident: 1855_CR101
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 142
  start-page: 117
  year: 2000
  ident: 1855_CR111
  publication-title: Geophys. J. Int.
  doi: 10.1046/j.1365-246x.2000.00138.x
– volume: 139
  start-page: 1132
  year: 2013
  ident: 1855_CR77
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.2063
– volume: 1
  start-page: 106
  year: 2008
  ident: 1855_CR104
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo102
– volume: 333
  start-page: 1427
  year: 2011
  ident: 1855_CR108
  publication-title: Science
  doi: 10.1126/science.1208336
– volume: 7
  start-page: 045404
  year: 2012
  ident: 1855_CR13
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/7/4/045404
– volume: 32
  start-page: 111
  year: 2004
  ident: 1855_CR53
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.32.082503.144359
– volume: 121
  start-page: 7547
  year: 2016
  ident: 1855_CR67
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1002/2016JB013007
– volume: 2
  start-page: e1600931
  year: 2016
  ident: 1855_CR42
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600931
– volume: 117
  start-page: 02108
  year: 2012
  ident: 1855_CR9
  publication-title: J. Geophys. Res. D
  doi: 10.1029/2011JD016267
– volume: 113
  start-page: F01004
  year: 2008
  ident: 1855_CR26
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 461
  start-page: 971
  year: 2009
  ident: 1855_CR27
  publication-title: Nature
  doi: 10.1038/nature08471
– volume: 336
  start-page: 576
  year: 2012
  ident: 1855_CR4
  publication-title: Science
  doi: 10.1126/science.1219985
– volume: 116
  start-page: 9239
  year: 2019
  ident: 1855_CR33
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1904242116
– volume: 7
  start-page: 469
  year: 2013
  ident: 1855_CR92
  publication-title: Cryosphere
  doi: 10.5194/tc-7-469-2013
– volume: 5
  start-page: 51
  year: 2015
  ident: 1855_CR23
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2463
– volume: 17
  start-page: 541
  year: 2005
  ident: 1855_CR72
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102005002968
SSID ssj0005174
Score 2.717291
Snippet The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades 1 , 2 , and it is expected to continue to be so 3 . Although...
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades , and it is expected to continue to be so . Although increases...
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades.sup.1,2, and it is expected to continue to be so.sup.3....
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades, and it is expected to continue to be so. Although increases in...
The Greenland Ice Sheet has been a major contributor to global sea-level rise in recent decades1,2, and it is expected to continue to be so3. Although...
In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future3. Although...
SourceID liege
hal
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 233
SubjectTerms 704/106/125
704/106/694
Analysis
Atmosphere
Atmospheric circulation
Atmospheric models
Climate Change
Climate models
Datasets
Earth sciences & physical geography
Environmental aspects
Environmental Sciences
Estimates
Glacial dynamics
Glacier flow
Glacier melting
Glaciers
Glaciohydrology
Global sea level
Global warming
Gravity
Greenland
Greenland ice sheet
Humanities and Social Sciences
Ice
Ice Cover
Ice sheets
Intergovernmental Panel on Climate Change
Mass (Physics)
Mass balance
Mass balance of ice sheets
Mean sea level
Measurement
Meltwater
multidisciplinary
Ocean temperature
Ocean warming
Oceans and Seas
Physical, chemical, mathematical & earth Sciences
Physique, chimie, mathématiques & sciences de la terre
Regional climate models
Regional climates
Runoff
Science
Science (multidisciplinary)
Sciences de la terre & géographie physique
Sea level
Sea level rise
Surface-ice melting
Temperature
Trends
Title Mass balance of the Greenland Ice Sheet from 1992 to 2018
URI https://link.springer.com/article/10.1038/s41586-019-1855-2
https://www.ncbi.nlm.nih.gov/pubmed/31822019
https://www.proquest.com/docview/2382072310
https://www.proquest.com/docview/2324915582
https://hal.science/hal-03025884
https://orbi.uliege.be/handle/2268/242139
Volume 579
WOSCitedRecordID wos000519378900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature & Scientific American Archives
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dcxIxEM9I0Rlf1NYvbGVOp6NWPXsk5S735FCmnXZakIFaGV8ySS5QZhiOcsDf724I4Cn2xQd2INkLuWyyu0l-2RCyH2jDZY8pP44T6h9ppn1Z1XhlGNg3ZcBmWDTh9WXUbPJuN265BbfMwSqXOtEq6iTVuEZ-CKaFBhF6I1_Htz7eGoW7q-4KjQIpYpQEZqF7rTXE448ozMtdTcYPMzBcHOfSsQ8Wq-rTnF1y2rlwg-DI4hC3rzd5oH_tnlqjdPr4f1_nCXnk3FGvtug_2-SeGe2QBxYWqrMdsu2GfuZ9cPGpD56SuAEOt6cQE6mNl_Y88CE9i99BlKR3DomdG2OmHh5d8RB46k1TD1wA_ox8Pz25qp_57gYGX8LEdQrUVANV4VyFPGBGhVr1GEtYcKRkHEjVgwmRYppT-IAllBFjumICI1mS0GoSsedka5SOzEviUUwIAx6DRwZOkIwNiw0PtZHgsMqElkiwbH-hXXhyvCVjKOw2OeNiITIBIhMoMgGPfFw9Ml7E5riLeR-FKjDmxQhBNX05yzJRu_pRb4paiPPgmIdBibzdxHbeaeeY3jumXgp11NIdZYA3xWhaOc7dHKceD27Fb7nvcrn9hSQ3FbOXYwQVoPOVhp66agOMGH5WuxSYBjqc4lnkeaVEPtuOLNKJGog5tWz2-2zYF1ILZQT44lwgSIDF8JfLjiucWsvEuteWyJtVNtYGoXojk86QB2b04KVyaPIXi3GyqhkYEArdDQr_tBw468L_KbpXd1dllzykuAhigYF7ZGs6mZnX5L6eTwfZpEwKUfsaaTeylAPl9UqZFI9Pmq02_Lo4_gK0EVwgpQ1Lv1naKlt9YmkHaKv68xdPqWbY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELb6AMEFaHmFFjCoQHmsurGbjX1AKCpUiZpGVRva3oztddJIUTbNJkH8KX4jM_tIWAi99cAhUWTPOt71PNefZwjZ8q0TusONJ2XIvF3LracrFkuGgX0zDmxGgiY8bVZbLXF-Lo-WyM_8LAzCKnOdmCjqMLL4jnwHTAvzq-iNfBpeelg1CndX8xIaKVscuB_fIWSLPzY-w_q-Ymz_S3uv7mVVBTwNwdgYvl3FN2UhTCB87kxgTYfzEMJ6o6WvTQecfMOtYPAB7a6rnNuy853mYcgqYZXDuMtkFfR4GSFk1ePTOaTkj6zP-S4qFzsxGEqBsbv0wEJWPFawg5k1WL5AMOZqH7fLF3m8f-3WJkZw_-7_9vjukTuZu01rqXyskSU3WCc3E9irjdfJWqbaYrqd5d9-e5_IQwgoqEHMp3U06lDwkWmCT0IUKG1A48mFc2OKR3MoAmvpOKLg4ogH5Ou13MxDsjKIBu4xoQwbAl9I8DjBydPScelEYJ0Gh1yHrET8fL2VzdKvYxWQvkpgAFyolEUUsIhCFlFwybvZJcM098hVxFvIRApzegwQNNTVkzhWtfbZXkvVAozzpQj8Enm5iKxxclwgepMRdSKYo9XZUQ24U8wWVqDcKFDaYe9S_db7utDbTVdy0TCbBUJQcbY4aZCM2TPAjOj1WlNhG9gohmetp-US-ZAIjopGpqemLCFLfk_6XaWtMk5BrCEUgiC4hL_MBUVlajtWcykpkRezbpwNQhEHLpogDdvFogoCHvmjVC5nMwMDyYDdYPD3uaDOB__n0j25eirPya16-7Cpmo3WwQa5zfCFTwKC3CQr49HEPSU37HTci0fPEm1Eybfrlt9fduW4rw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZ2AcQLsHErG2DQuBM1tdfUfkCo6qhWbVTTNmBvxnacrlLVdE1bxF_j13FOLt0CZW974KFVZZ-4Tnyu8edzCNnyrRM64saTMmTetuXW03WLJcPAvhkHNiNFE37db3S74uREHiyRX8VZGIRVFjoxVdRhbPEdeRVMC_Mb6I1UoxwWcbDT_jg687CCFO60FuU0MhbZcz9_QPiWfOjswFq_YKz96bi16-UVBjwNgdkEvl3dNzUhTCB87kxgTcR5CCG-0dLXJgKH33ArGHxA0-sG57bmfKd5GLJ62OAw7jJZbXDgYjyl3roAL_kjA3Sxo8pFNQGjKTCOlx5Yy7rHSjYxtwzLpwjMXB3g1vki7_evndvUILZv_8-P8g65lbvhtJnJzRpZcsN1cj2Fw9pknazlKi-hr_O83G_uEvkZAg1qEAtqHY0jCr4zTXFLiA6lHWg8OnVuQvHIDkXALZ3EFFwfcY98uZKbuU9WhvHQPSSUYUPgCwmeKDh_WjounQis0-Co65BViF-svbJ5WnasDjJQKTyAC5WxiwJ2UcguCi55O79klOUkuYx4CxlKYa6PIS51T0-TRDWPv7W6qhlg_C9F4FfI80VknaPDEtGrnCiKYY5W50c44E4xi1iJcqNEaUf9M3Wh92Wpt5et5KJhNkuEoPpsedIgJfNngJnSd5v7CtvAdjE8gz2rVcj7VIhUPDZ9NWMpWfp7OugpbZVxCmIQoRAcwSX8ZSE0KlfniTqXmAp5Nu_G2SBEcejiKdKwbSy2IOCRP8hkdD4zMJwM2A0Gf1cI7fng_1y6R5dP5Sm5AWKr9jvdvQ1yk-F7oBQbuUlWJuOpe0yu2dmkn4yfpIqJku9XLb6_AS91wQo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mass+balance+of+the+Greenland+Ice+Sheet+from+1992+to+2018&rft.jtitle=Nature+%28London%29&rft.date=2020-03-01&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=579&rft.issue=7798&rft.spage=233&rft.epage=239&rft_id=info:doi/10.1038%2Fs41586-019-1855-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_019_1855_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon