Probability theory and statistical inference : econometric modeling with observational data

This major textbook is intended for students taking introductory courses in Probability Theory and Statistical Inference. The text is extremely student-friendly, with pathways designed for semester usage, and although aimed primarily at students of econometrics and economics, will have considerable...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Spanos, Aris
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: Cambridge Cambridge University Press 1999
Cambridge Univ. Press
Vydanie:1
Predmet:
ISBN:9780521413541, 0521413540, 0521424089, 9780521424080
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This major textbook is intended for students taking introductory courses in Probability Theory and Statistical Inference. The text is extremely student-friendly, with pathways designed for semester usage, and although aimed primarily at students of econometrics and economics, will have considerable utility for courses in all disciplines using observational data.
AbstractList This major textbook is intended for students taking introductory courses in Probability Theory and Statistical Inference. The text is extremely student-friendly, with pathways designed for semester usage, and although aimed primarily at students of econometrics and economics, will have considerable utility for courses in all disciplines using observational data.
This major new textbook from a distinguished econometrician is intended for students taking introductory courses in probability theory and statistical inference. No prior knowledge other than a basic familiarity with descriptive statistics is assumed. The primary objective of this book is to establish the framework for the empirical modelling of observational (non-experimental) data. This framework known as 'Probabilistic Reduction' is formulated with a view to accommodating the peculiarities of observational (as opposed to experimental) data in a unifying and logically coherent way. Probability Theory and Statistical Inference differs from traditional textbooks in so far as it emphasizes concepts, ideas, notions and procedures which are appropriate for modelling observational data. Aimed at students at second-year undergraduate level and above studying econometrics and economics, this textbook will also be useful for students in other disciplines which make extensive use of observational data, including finance, biology, sociology and psychology and climatology.
Author Spanos, Aris
Author_xml – sequence: 1
  fullname: Spanos, Aris
BackLink https://cir.nii.ac.jp/crid/1130282270957415936$$DView record in CiNii
http://www.econis.eu/PPNSET?PPN=250730197$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
BookMark eNotkE1PHDEMhoMoCLrsb2gOqFIPK8X5mCTcYAW0ElJ7qHrpYZTJeLopswkkKWj_fbMsPtiy_PiV_X4kH2KKeESWVhumAEBxEPb4vecgQSgJJ-TMGsaZ5uyUnEutLGhrxBlZlvKXteBcG8POye8fOQ1uCHOoO1o3mPKOujjSUl0NpQbvZhrihBmjR3pF0aeYtlhz8HSbRpxD_ENfQ93QNBTML20rxbYzuuouyMnk5oLL97ogv-5uf66_rh6-339bXz-snBHSiBUykJPrhnEyyKd2PlfIBiuUtR123X44KnBW6k5qb4F32ktptRDOgkcQC_LlIOzKI76WTZpr6V9mHFJ6LH0zBoDpZpW2rLGfDuz-k1D6pxy2Lu96rpgWDJrqgnw-EE85Pf_DUvs3IY-xZjf3tzdrzrgUe_DyAMYQeh_2GUAwbpq5zCotQVnRif-bGXrp
ContentType eBook
Book
DBID RYH
OQ6
DEWEY 330.015195
DatabaseName CiNii Complete
ECONIS
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISBN 9780511152139
0511152132
9781107111790
110711179X
Edition 1
1. publ.
ExternalDocumentID 9781107111790
250730197
EBC202437
BA42858856
GroupedDBID -G2
-VX
089
20A
38.
A4I
A4J
AAAAZ
AABBV
AAHFW
AAQLY
ABARN
ABESS
ABFFC
ABMRC
ABZUC
ACCTN
ACLGV
ACNOG
AD4
ADCGF
ADQZK
ADVEM
ADWXY
AEDFS
AERYV
AEWAL
AEWQY
AGSJN
AHAWV
AHJKY
AHWGJ
AIAQS
AJFER
AJXXZ
ALMA_UNASSIGNED_HOLDINGS
AMJDZ
ANGWU
ASYWF
AUKZS
AYSPE
AZZ
BBABE
BFIBU
BOIVQ
CCHSS
COBLI
COXPH
CZZ
DLNRW
DUGUG
EBSCA
ECOWB
EDVGL
FH2
FVPQW
HF4
ICERG
IDFYU
IVN
JJU
JNA
MWOYL
MYL
OLDIN
OTBUH
OZASK
OZBHS
PP-
PQQKQ
RYH
S2E
SACVX
SN-
XI1
ZXKUE
AADVP
OQ6
ID FETCH-LOGICAL-a83483-e014fa6bdf8e2f35425e0b935996e6614fad51a947647c91267c449733a91ce13
ISBN 9780521413541
0521413540
0521424089
9780521424080
IngestDate Mon Sep 15 23:48:52 EDT 2025
Sat Mar 08 17:07:33 EST 2025
Wed Dec 10 11:12:57 EST 2025
Fri Jun 27 00:22:01 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 98020720
LCCallNum_Ident HB139 .S66 1999
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a83483-e014fa6bdf8e2f35425e0b935996e6614fad51a947647c91267c449733a91ce13
Notes Includes bibliographical references (p. 787-805) and index
OCLC 475917983
PQID EBC202437
PageCount 843
ParticipantIDs askewsholts_vlebooks_9781107111790
econis_primary_250730197
proquest_ebookcentral_EBC202437
nii_cinii_1130282270957415936
PublicationCentury 1900
PublicationDate 1999
1999-09-02
PublicationDateYYYYMMDD 1999-01-01
1999-09-02
PublicationDate_xml – year: 1999
  text: 1999
PublicationDecade 1990
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: Cambridge [u.a.]
PublicationYear 1999
Publisher Cambridge University Press
Cambridge Univ. Press
Publisher_xml – name: Cambridge University Press
– name: Cambridge Univ. Press
SSID ssj0000227880
ssib029093651
Score 1.7868078
Snippet This major textbook is intended for students taking introductory courses in Probability Theory and Statistical Inference. The text is extremely...
This major new textbook from a distinguished econometrician is intended for students taking introductory courses in probability theory and statistical...
SourceID askewsholts
econis
proquest
nii
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Econometrics
Mathematical statistics
Probabilities
Schätztheorie
Theorie
Wahrscheinlichkeitsrechnung
Ökonometrielehrbuch
TableOfContents 10.3 Attempts to build a bridge between probability and observed data -- 10.4 Toward a tentative bridge -- 10.5 The probabilistic reduction approach to specification -- 10.6 Parametric versus non-parametric models -- 10.7 Summary and conclusions -- 10.8 Exercises -- 11 An introduction to statistical inference -- 11.1 Introduction -- 11.2 An introduction to the classical approach -- 11.3 The classical versus the Bayesian approach -- 11.4 Experimental versus observational data -- 11.5 Neglected facets of statistical inference -- 11.6 Sampling distributions -- 11.7 Functions of random variables -- 11.8 Computer intensive techniques for approximating sampling distributions* -- 11.9 Exercises -- 12 Estimation I: Properties of estimators -- 12.1 Introduction -- 12.2 Defining an estimator -- 12.3 Finite sample properties -- 12.4 Asymptotic properties -- 12.5 The simple Normal model -- 12.6 Sufficient statistics and optimal estimators* -- 12.7 What comes next? -- 12.8 Exercises -- 13 Estimation II: Methods of estimation -- 13.1 Introduction -- 13.2 Moment matching principle -- 13.3 The least-squares method -- 13.4 The method of moments -- 13.5 The maximum likelihood method -- 13.6 Exercises -- 14 Hypothesis testing -- 14.1 Introduction -- 14.2 Leading up to the Fisher approach -- 14.3 The Neyman-Pearson framework -- 14.4 Asymptotic test procedures* -- 14.5 Fisher versus Neyman-Pearson -- 14.6 Conclusion -- 14.7 Exercises -- 15 Misspecification testing -- 15.1 Introduction -- 15.2 Misspecification testing: formulating the problem -- 15.3 A smorgasbord of misspecification tests -- 15.4 The probabilistic reduction approach and misspecification -- 15.5 Empirical examples -- 15.6 Conclusion -- 15.7 Exercises -- References -- Index
5.4 Assessing distribution assumptions -- 5.5 Independence and the t-plot -- 5.6 Homogeneity and the t-plot -- 5.7 The empirical cdf and related graphs* -- 5.8 Generating pseudo-random numbers* -- 5.9 Summary -- 5.10 Exercises -- 6 The notion of a non-random sample -- 6.1 Introduction -- 6.2 Non-random sample: a preliminary view -- 6.3 Dependence between two random variables: joint distributions -- 6.4 Dependence between two random variables: moments -- 6.5 Dependence and the measurement system -- 6.6 Joint distributions and dependence -- 6.7 From probabilistic concepts to observed data -- 6.8 What comes next? -- 6.9 Exercises -- 7 Regression and related notions -- 7.1 Introduction -- 7.2 Conditioning and regression -- 7.3 Reduction and stochastic conditioning -- 7.4 Weak exogeneity* -- 7.5 The notion of a statistical generating mechanism (GM) -- 7.6 The biometric tradition in statistics -- 7.7 Summary -- 7.8 Exercises -- 8 Stochastic processes -- 8.1 Introduction -- 8.2 The notion of a stochastic process -- 8.3 Stochastic processes: a preliminary view -- 8.4 Dependence restrictions -- 8.5 Homogeneity restrictions -- 8.6 "Building block" stochastic processes -- 8.7 Markov processes -- 8.8 Random walk processes -- 8.9 Martingale processes -- 8.10 Gaussian processes -- 8.11 Point processes -- 8.12 Exercises -- 9 Limit theorems -- 9.1 Introduction to limit theorems -- 9.2 Tracing the roots of limit theorems -- 9.3 The Weak Law of Large Numbers -- 9.4 The Strong Law of Large Numbers -- 9.5 The Law of Iterated Logarithm* -- 9.6 The Central Limit Theorem -- 9.7 Extending the limit theorems* -- 9.8 Functional Central Limit Theorem* -- 9.9 Modes of convergence -- 9.10 Summary and conclusion -- 9.11 Exercises -- 10 From probability theory to statistical inference* -- 10.1 Introduction -- 10.2 Interpretations of probability
Intro -- Contents -- Preface -- Acknowledgments -- Symbols -- Acronyms -- 1 An introduction to empirical modeling -- 1.1 Introduction -- 1.2 Stochastic phenomena, a preliminary view -- 1.3 Chance regularity and statistical models -- 1.4 Statistical adequacy -- 1.5 Statistical versus theory information* -- 1.6 Observed data -- 1.7 Looking ahead -- 1.8 Exercises -- 2 Probability theory: a modeling framework -- 2.1 Introduction -- 2.2 Simple statistical model: a preliminary view -- 2.3 Probability theory: an introduction -- 2.4 Random experiments -- 2.5 Formalizing condition [a]: the outcomes set -- 2.6 Formalizing condition [b]: events and probabilities -- 2.7 Formalizing condition [c]: random trials -- 2.8 Statistical space -- 2.9 A look forward -- 2.10 Exercises -- 3 The notion of a probability model -- 3.1 Introduction -- 3.2 The notion of a simple random variable -- 3.3 The general notion of a random variable -- 3.4 The cumulative distribution and density functions -- 3.5 From a probability space to a probability model -- 3.6 Parameters and moments -- 3.7 Moments -- 3.8 Inequalities -- 3.9 Summary -- 3.10 Exercises -- Appendix A Univariate probability models -- A.1 Discrete univariate distributions -- A.2 Continuous univariate distributions -- 4 The notion of a random sample -- 4.1 Introduction -- 4.2 Joint distributions -- 4.3 Marginal distributions -- 4.4 Conditional distributions -- 4.5 Independence -- 4.6 Identical distributions -- 4.7 A simple statistical model in empirical modeling: a preliminary view -- 4.8 Ordered random samples* -- 4.9 Summary -- 4.10 Exercises -- Appendix B Bivariate distributions -- B.1 Discrete bivariate distributions -- B.2 Continuous bivariate distributions -- 5 Probabilistic concepts and real data -- 5.1 Introduction -- 5.2 Early developments -- 5.3 Graphical displays: a t-plot
Title Probability theory and statistical inference : econometric modeling with observational data
URI https://cir.nii.ac.jp/crid/1130282270957415936
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=202437
http://www.econis.eu/PPNSET?PPN=250730197
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781107111790&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFH5LskJ767aWZP1lxo5ziSxZso5bSSkUSmHZKLsYWVYgrLghSUP63-89yXGSlh166EVYNjzb39OP92R9nwG-miyV1roiLrNMxkLyMi5cStp4PDEGJ3heGP-zCXVzk93d6dvWu2rFhVncq6rKlks9eVNX4zl0NlFnX-HuxiiewGN0OpbodiyfRcRNNXj8dop90-91fQr8xCCtRJQhr8bs5TVqet862Q8CAVvJ_jaP63xrm0bICImLi_NSGtSknklJY7hDHVqrNrSVxFT1_fdf139-NmtSJCeI_bmm9HozTYWk0HStWNTcY6NO12kBycz-4uiMI_d8RtwtTOrHeNCuxuMXs52fwof70CFaxwdoueoj7K742LNP8G0DtyjgFiFu0QZuUYPbAfy-HAwvruL6HxKxybjIeOwwBxwZWZSjzCUjfOgkdf2C-MhaOgpORqZMmdFCSaGsZolUVgitODeaWcf4IXSqh8p1IbJJ3whmyoQ7JlJrDPbCIhVF2efCJYz34MvG2-eLe_-9e5aTrBhm2YzU9_o96AZQ8kmQE8kbr_TgBGHK7ZhKRl-UMXpTGANT1Ke57MHZCsDcm6737-aDHxeJV5b8_H_jR7C3blDH0JlPH90J7NgFQjk9rVvCP3HFGfM
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Probability+theory+and+statistical+inference&rft.date=1999-01-01&rft.pub=Cambridge+Univ.+Press&rft.isbn=9780521413541&rft.externalDocID=250730197
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811071%2F9781107111790.jpg