Domain Adaptation Theory: Available Theoretical Results

Advances in Domain Adaptation Theory gives current, state-of-the-art results on transfer learning, with a particular focus placed on domain adaptation from a theoretical point-of-view. The book begins with a brief overview of the most popular concepts used to provide generalization guarantees, inclu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Redko, Ievgen, Morvant, Emilie, Habrard, Amaury, Sebban, Marc, Bennani, Younes
Format: E-Book
Sprache:Englisch
Veröffentlicht: Elsevier 23.08.2019
Schlagworte:
ISBN:178548236X, 9781785482366
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Advances in Domain Adaptation Theory gives current, state-of-the-art results on transfer learning, with a particular focus placed on domain adaptation from a theoretical point-of-view. The book begins with a brief overview of the most popular concepts used to provide generalization guarantees, including sections on Vapnik-Chervonenkis (VC), Rademacher, PAC-Bayesian, Robustness and Stability based bounds. In addition, the book explains domain adaptation problem and describes the four major families of theoretical results that exist in the literature, including the Divergence based bounds. Next, PAC-Bayesian bounds are discussed, including the original PAC-Bayesian bounds for domain adaptation and their updated version. Additional sections present generalization guarantees based on the robustness and stability properties of the learning algorithm.
AbstractList Advances in Domain Adaptation Theory gives current, state-of-the-art results on transfer learning, with a particular focus placed on domain adaptation from a theoretical point-of-view. The book begins with a brief overview of the most popular concepts used to provide generalization guarantees, including sections on Vapnik-Chervonenkis (VC), Rademacher, PAC-Bayesian, Robustness and Stability based bounds. In addition, the book explains domain adaptation problem and describes the four major families of theoretical results that exist in the literature, including the Divergence based bounds. Next, PAC-Bayesian bounds are discussed, including the original PAC-Bayesian bounds for domain adaptation and their updated version. Additional sections present generalization guarantees based on the robustness and stability properties of the learning algorithm.
Author Redko, Ievgen
Bennani, Younes
Habrard, Amaury
Morvant, Emilie
Sebban, Marc
Author_xml – sequence: 1
  fullname: Redko, Ievgen
– sequence: 2
  fullname: Morvant, Emilie
– sequence: 3
  fullname: Habrard, Amaury
– sequence: 4
  fullname: Sebban, Marc
– sequence: 5
  fullname: Bennani, Younes
BookMark eNpVj0tLw0AURkesoK35D9m6CNx5ZW7dhfqoUBAki-7KncwNjR0z4sSK_16hblx9cBbn8M3FbEwjn4li6RAAJShtnDwXc-nQGlS63l6KIudXAFDW1NbClXB36Y2GsWwCvU80DWks2z2nj-_bsjnSEMlHPhGeho5i-cL5M075Wlz0FDMXf7sQ7cN9u1pXm-fHp1WzqQglVlKCN8Fg7ci43jnP1hMGDgFq2S21sspZgg5l5zy42lvysmeDQaPqUeqFuDlpKR_4K-_Tb3p3jOxTOuTdv6P6B6AtR50
ContentType eBook
DEWEY 006.31
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780081023471
0081023472
ExternalDocumentID 9780081023471
GroupedDBID 20A
AAAAS
AABBV
AAJFB
AAJIE
AAKZG
AALRI
AAWMN
AAXUO
AAZNM
ABGWT
ABLXK
ABQQC
ACDGK
ACKCA
ADCEY
AEIUV
AEYWH
ALBLE
ALMA_UNASSIGNED_HOLDINGS
AOVBA
BBABE
BGHEG
CZZ
HGY
SDK
ID FETCH-LOGICAL-a818-110b4d4867a47f77be5ba8dedd061c9325275a0c81c7b076b5ab1fe48d382f813
ISBN 178548236X
9781785482366
IngestDate Fri Nov 08 05:41:09 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a818-110b4d4867a47f77be5ba8dedd061c9325275a0c81c7b076b5ab1fe48d382f813
PageCount 1
ParticipantIDs askewsholts_vlebooks_9780081023471
PublicationCentury 2000
PublicationDate 2019-08-23
PublicationDateYYYYMMDD 2019-08-23
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-23
  day: 23
PublicationDecade 2010
PublicationYear 2019
Publisher Elsevier
Publisher_xml – name: Elsevier
SSID ssj0002546550
Score 2.1207235
Snippet Advances in Domain Adaptation Theory gives current, state-of-the-art results on transfer learning, with a particular focus placed on domain adaptation from a...
SourceID askewsholts
SourceType Aggregation Database
SubjectTerms Computer algorithms
Machine learning
Title Domain Adaptation Theory: Available Theoretical Results
URI https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780081023471
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La4NAEF7apIfm0jd9I6VXQeNj195Kkj4oCaX1kFuY1bWEGg0xCfn5ndWNmpzaQy-LLrLgzDJ-87nfDCH3nFqeC8B1j5pt3XYY6AxH3QErsLlncAcgbzZBBwM2HHrvqupClrcToEnCVitv-q-uxjl0tpTO_sHd5aI4gdfodBzR7ThuIeLytvB4N52AZC9CmKojhIXwPuf-ljCOc5WUX1MufohsEc-r0-4i_M6Z01ex_KokYv10hnA7D9a9yTgeV1sBZKpdENOyPFHJzn8KzgtitY_GrRMLUsvE9EL7W7Bd6tO8kXCalGGK07bcrfLV6bo_AiIMRAG2VPXvUhez4eZjp_v8VtJesvw-JkVSYrdeStVBqpZukRZk3xjjMf7Ps9rn3j8kTSE1IEdkRyTH5GDd-UJTgfCE0MLWWmVrrbD1g1ZaWqtZWlOWPiX-U8_vvOiqBYUOiGR0xEbcDmVRQrBpRCkXDgcWijBEGBQg9HXa1AEjYGZAuUFd3NncjITNQou1I2ZaZ6SRpIk4Jxq41LajyDUihKCWGTBHuCAPn2COGmDWekHuai89Wsb5z_JstGHUy988dEX2K3dek8Z8thA3ZC9YzsfZ7FY55AcYgxuJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Domain+Adaptation+Theory%3A+Available+Theoretical+Results&rft.au=Redko%2C+Ievgen&rft.au=Morvant%2C+Emilie&rft.au=Habrard%2C+Amaury&rft.au=Sebban%2C+Marc&rft.date=2019-08-23&rft.pub=Elsevier&rft.isbn=9781785482366&rft.externalDocID=9780081023471
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97800810%2F9780081023471.jpg