Applied spatial statistics for public health data

While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical info...

Full description

Saved in:
Bibliographic Details
Main Authors: Waller, Lance A, Gotway, Carol A
Format: eBook Book
Language:English
Published: Hoboken WILEY 2004
Wiley-Interscience
Wiley
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition:1
Series:Wiley series in probability and statistics
Subjects:
ISBN:0471387711, 9780471662679, 0471662674, 9780471387718, 9780471662686, 0471662682
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts
AbstractList While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of spatially referenced data has experienced a phenomenal growth over the last two decades, thanks in part to the development of geographical information systems (GISs). This is the first thorough overview to integrate spatial statistics with data management and the display capabilities of GIS. It describes methods for assessing the likelihood of observed patterns and quantifying the link between exposures and outcomes in spatially correlated data. This introductory text is designed to serve as both an introduction for the novice and a reference for practitioners in the field Requires only minimal background in public health and only some knowledge of statistics through multiple regression Touches upon some advanced topics, such as random effects, hierarchical models and spatial point processes, but does not require prior exposure Includes lavish use of figures/illustrations throughout the volume as well as analyses of several data sets (in the form of "data breaks") Exercises based on data analyses reinforce concepts
An application-based introduction to the statistical analysis of spatially referenced health data Sparked by the growing interest in statistical methods for the analysis of spatially referenced data in the field of public health, Applied Spatial Statistics for Public Health Data fills the need for an introductory, application-oriented text on this timely subject. Written for practicing public health researchers as well as graduate students in related fields, the text provides a thorough introduction to basic concepts and methods in applied spatial statistics as well as a detailed treatment of some of the more recent methods in spatial statistics useful for public health studies that have not been previously covered elsewhere. Assuming minimal knowledge of spatial statistics, the authors provide important statistical approaches for assessing such questions as: Are newly occurring cases of a disease "clustered" in space? Do the cases cluster around suspected sources of increased risk, such as toxic waste sites or other environmental hazards? How do we take monitored pollution concentrations measured at specific locations and interpolate them to locations where no measurements were taken? How do we quantify associations between local disease rates and local exposures? After reviewing traditional statistical methods used in public health research, the text provides an overview of the basic features of spatial data, illustrates various geographic mapping and visualization tools, and describes the sources of publicly available spatial data that might be useful in public health applications.
Author Waller, Lance A
Gotway, Carol A
Author_xml – sequence: 1
  fullname: Waller, Lance A
– sequence: 2
  fullname: Gotway, Carol A
BackLink https://cir.nii.ac.jp/crid/1130282272925983616$$DView record in CiNii
BookMark eNpVkE1Lw0AQhle0Ylt78ewhBxE8VPf749iWqoWCF1E8hU2yaVbXJGa3iv_epKmIc5hhmId5Z94ROCqr0gBwhuA1ghDfQCoQ55hLfAAmSsjfXqhDMOoaIoVAaABGGEICOYecHYMhIlByohQ7ARPvX2EbCFKJyBCgWV07a7LI1zpY7SIf2uqDTX2UV01UbxNn06gw2oUiynTQp2CQa-fNZF_H4Ol2-bi4n64f7laL2XqqJWKKTdM8gRmjJsGi06KKZ5plGUy0IbR9AYpUCm0M0knOsJEpTLjIUEaVNCLVmIzBVb9Y-zfz5YvKBR9_OpNU1ZuP_33fspc9WzfVx9b4EO-w1JSh0S5ezhcYUcJhC57vQdM4s6nifhsWDCPWaV7049LaOLVdRq17WGIssMJMScIR_zvNbnYG-cKWm7hu7LtuvuPn1Xr5Mm9NphQT8gNKbnxe
ContentType eBook
Book
DBID WIIVT
RYH
YSPEL
DEWEY 614/.07/27
DOI 10.1002/0471662682
DatabaseName Wiley
CiNii Complete
Perlego
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Mathematics
Medicine
EISBN 9780471662679
0471662674
Edition 1
ExternalDocumentID 9780471662679
EBC214360
2752152
BA68391559
WILEYB0004423
Genre Electronic books
GroupedDBID 089
20A
38.
3X9
3XJ
3XM
5VX
98K
A4I
A4J
AABBV
AAEXJ
AARDG
ABARN
ABBFG
ABIMR
ABQPQ
ABQPW
ACBYE
ACGYG
ACIQC
ACLGV
ACNAM
ACNUM
ADVEM
AEONB
AERYV
AHUFE
AHWGJ
AIHSK
AJFER
AKQZE
ALMA_UNASSIGNED_HOLDINGS
AMYDA
AZZ
BBABE
BPBUR
CZZ
DCRDY
DNKAV
HF4
IVUIE
J-X
JFSCD
JNA
KAH
KKBTI
MYL
P-J
PQQKQ
UQ7
W1A
WIIVT
YPLAZ
YSPEL
ZEEST
RYH
ID FETCH-LOGICAL-a81595-cfb0d54eb270481496da5dd0bae3426807c87aee1abf52e8c0b67d1d498e7ca23
ISBN 0471387711
9780471662679
0471662674
9780471387718
9780471662686
0471662682
IngestDate Mon Apr 07 07:47:44 EDT 2025
Wed Nov 26 06:48:55 EST 2025
Tue Dec 02 17:41:12 EST 2025
Thu Jun 26 22:56:59 EDT 2025
Tue Jul 08 08:28:02 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2003066065
LCCallNum_Ident RA440.85.W34 2004
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a81595-cfb0d54eb270481496da5dd0bae3426807c87aee1abf52e8c0b67d1d498e7ca23
Notes Includes bibliographical references (p. 444-472) and indexes
OCLC 130863995
PQID EBC214360
PageCount 523
ParticipantIDs askewsholts_vlebooks_9780471662679
proquest_ebookcentral_EBC214360
perlego_books_2752152
nii_cinii_1130282272925983616
igpublishing_primary_WILEYB0004423
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2004.
PublicationDateYYYYMMDD 2004-01-01
PublicationDate_xml – year: 2004
  text: 2004.
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Newark
PublicationSeriesTitle Wiley series in probability and statistics
PublicationYear 2004
Publisher WILEY
Wiley-Interscience
Wiley
John Wiley & Sons, Incorporated
Wiley-Blackwell
Publisher_xml – name: WILEY
– name: Wiley-Interscience
– name: Wiley
– name: John Wiley & Sons, Incorporated
– name: Wiley-Blackwell
SSID ssj0000104813
ssib020359501
Score 2.4718711
Snippet While mapped data provide a common ground for discussions between the public, the media, regulatory agencies, and public health researchers, the analysis of...
An application-based introduction to the statistical analysis of spatially referenced health data Sparked by the growing interest in statistical methods for...
SourceID askewsholts
proquest
perlego
nii
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Experimental Design
Public health
Public health -- Statistical methods
Spatial analysis (Statistics)
Statistical methods
SubjectTermsDisplay Experimental Design
TableOfContents Applied spatial statistics for public health data -- Contents -- Preface -- Acknowledgments -- Chapter 1: Introduction -- Chapter 2: Analyzing Public Health Data -- Chapter 3: Spatial Data -- Chapter 4: Visualizing Spatial Data -- Chapter 5: Analysis of Spatial Point Patterns -- Chapter 6: Spatial Clusters of Health Events: Point Data for Cases and Controls -- Chapter 7: Spatial Clustering of Health Events: Regional Count Data -- Chapter 8: Spatial Exposure Data -- Chapter 9: Linking Spatial Exposure Data to Health Events -- References -- Author Index -- Subject Index.
5.4.1 Poisson Cluster Processes -- 5.4.2 Contagion/Inhibition Processes -- 5.4.3 Cox Processes -- 5.4.4 Distinguishing Processes -- 5.5 Additional Topics and Further Reading -- 5.6 Exercises -- 6 Spatial Clusters of Health Events: Point Data for Cases and Controls -- 6.1 What Do We Have? Data Types and Related Issues -- 6.2 What Do We Want? Null and Alternative Hypotheses -- 6.3 Categorization of Methods -- 6.4 Comparing Point Process Summaries -- 6.4.1 Goals -- 6.4.2 Assumptions and Typical Output -- 6.4.3 Method: Ratio of Kernel Intensity Estimates -- DATA BREAK: Early Medieval Grave Sites -- 6.4.4 Method: Difference between K Functions -- DATA BREAK: Early Medieval Grave Sites -- 6.5 Scanning Local Rates -- 6.5.1 Goals -- 6.5.2 Assumptions and Typical Output -- 6.5.3 Method: Geographical Analysis Machine -- 6.5.4 Method: Overlapping Local Case Proportions -- DATA BREAK: Early Medieval Grave Sites -- 6.5.5 Method: Spatial Scan Statistics -- DATA BREAK: Early Medieval Grave Sites -- 6.6 Nearest-Neighbor Statistics -- 6.6.1 Goals -- 6.6.2 Assumptions and Typical Output -- 6.6.3 Method: q Nearest Neighbors of Cases -- CASE STUDY: San Diego Asthma -- 6.7 Further Reading -- 6.8 Exercises -- 7 Spatial Clustering of Health Events: Regional Count Data -- 7.1 What Do We Have and What Do We Want? -- 7.1.1 Data Structure -- 7.1.2 Null Hypotheses -- 7.1.3 Alternative Hypotheses -- 7.2 Categorization of Methods -- 7.3 Scanning Local Rates -- 7.3.1 Goals -- 7.3.2 Assumptions -- 7.3.3 Method: Overlapping Local Rates -- DATA BREAK: New York Leukemia Data -- 7.3.4 Method: Turnbull et al.'s CEPP -- 7.3.5 Method: Besag and Newell Approach -- 7.3.6 Method: Spatial Scan Statistics -- 7.4 Global Indexes of Spatial Autocorrelation -- 7.4.1 Goals -- 7.4.2 Assumptions and Typical Output -- 7.4.3 Method: Moran's I -- 7.4.4 Method: Geary's c
9.1.1 Estimation and Inference -- 9.1.2 Interpretation and Use with Spatial Data -- DATA BREAK: Raccoon Rabies in Connecticut -- 9.2 Linear Regression Models for Spatially Autocorrelated Data -- 9.2.1 Estimation and Inference -- 9.2.2 Interpretation and Use with Spatial Data -- 9.2.3 Predicting New Observations: Universal Kriging -- DATA BREAK: New York Leukemia Data -- 9.3 Spatial Autoregressive Models -- 9.3.1 Simultaneous Autoregressive Models -- 9.3.2 Conditional Autoregressive Models -- 9.3.3 Concluding Remarks on Conditional Autoregressions -- 9.3.4 Concluding Remarks on Spatial Autoregressions -- 9.4 Generalized Linear Models -- 9.4.1 Fixed Effects and the Marginal Specification -- 9.4.2 Mixed Models and Conditional Specification -- 9.4.3 Estimation in Spatial GLMs and GLMMs -- DATA BREAK: Modeling Lip Cancer Morbidity in Scotland -- 9.4.4 Additional Considerations in Spatial GLMs -- CASE STUDY: Very Low Birth Weights in Georgia Health Care District 9 -- 9.5 Bayesian Models for Disease Mapping -- 9.5.1 Hierarchical Structure -- 9.5.2 Estimation and Inference -- 9.5.3 Interpretation and Use with Spatial Data -- 9.6 Parting Thoughts -- 9.7 Additional Topics and Further Reading -- 9.7.1 General References -- 9.7.2 Restricted Maximum Likelihood Estimation -- 9.7.3 Residual Analysis with Spatially Correlated Error Terms -- 9.7.4 Two-Parameter Autoregressive Models -- 9.7.5 Non-Gaussian Spatial Autoregressive Models -- 9.7.6 Classical/Bayesian GLMMs -- 9.7.7 Prediction with GLMs -- 9.7.8 Bayesian Hierarchical Models for Spatial Data -- 9.8 Exercises -- References -- Author Index -- Subject Index
Intro -- Applied Spatial Statistics for Public Health Data -- Contents -- Preface -- Acknowledgments -- 1 Introduction -- 1.1 Why Spatial Data in Public Health? -- 1.2 Why Statistical Methods for Spatial Data? -- 1.3 Intersection of Three Fields of Study -- 1.4 Organization of the Book -- 2 Analyzing Public Health Data -- 2.1 Observational vs. Experimental Data -- 2.2 Risk and Rates -- 2.2.1 Incidence and Prevalence -- 2.2.2 Risk -- 2.2.3 Estimating Risk: Rates and Proportions -- 2.2.4 Relative and Attributable Risks -- 2.3 Making Rates Comparable: Standardized Rates -- 2.3.1 Direct Standardization -- 2.3.2 Indirect Standardization -- 2.3.3 Direct or Indirect? -- 2.3.4 Standardizing to What Standard? -- 2.3.5 Cautions with Standardized Rates -- 2.4 Basic Epidemiological Study Designs -- 2.4.1 Prospective Cohort Studies -- 2.4.2 Retrospective Case-Control Studies -- 2.4.3 Other Types of Epidemiological Studies -- 2.5 Basic Analytic Tool: The Odds Ratio -- 2.6 Modeling Counts and Rates -- 2.6.1 Generalized Linear Models -- 2.6.2 Logistic Regression -- 2.6.3 Poisson Regression -- 2.7 Challenges in the Analysis of Observational Data -- 2.7.1 Bias -- 2.7.2 Confounding -- 2.7.3 Effect Modification -- 2.7.4 Ecological Inference and the Ecological Fallacy -- 2.8 Additional Topics and Further Reading -- 2.9 Exercises -- 3 Spatial Data -- 3.1 Components of Spatial Data -- 3.2 An Odyssey into Geodesy -- 3.2.1 Measuring Location: Geographical Coordinates -- 3.2.2 Flattening the Globe: Map Projections and Coordinate Systems -- 3.2.3 Mathematics of Location: Vector and Polygon Geometry -- 3.3 Sources of Spatial Data -- 3.3.1 Health Data -- 3.3.2 Census-Related Data -- 3.3.3 Geocoding -- 3.3.4 Digital Cartographic Data -- 3.3.5 Environmental and Natural Resource Data -- 3.3.6 Remotely Sensed Data -- 3.3.7 Digitizing -- 3.3.8 Collect Your Own!
7.5 Local Indicators of Spatial Association -- 7.5.1 Goals -- 7.5.2 Assumptions and Typical Output -- 7.5.3 Method: Local Moran's I -- 7.6 Goodness-of-Fit Statistics -- 7.6.1 Goals -- 7.6.2 Assumptions and Typical Output -- 7.6.3 Method: Pearson's c(2) -- 7.6.4 Method: Tango's Index -- 7.6.5 Method: Focused Score Tests of Trend -- 7.7 Statistical Power and Related Considerations -- 7.7.1 Power Depends on the Alternative Hypothesis -- 7.7.2 Power Depends on the Data Structure -- 7.7.3 Theoretical Assessment of Power -- 7.7.4 Monte Carlo Assessment of Power -- 7.7.5 Benchmark Data and Conditional Power Assessments -- 7.8 Additional Topics and Further Reading -- 7.8.1 Related Research Regarding Indexes of Spatial Association -- 7.8.2 Additional Approaches for Detecting Clusters and/or Clustering -- 7.8.3 Space-Time Clustering and Disease Surveillance -- 7.9 Exercises -- 8 Spatial Exposure Data -- 8.1 Random Fields and Stationarity -- 8.2 Semivariograms -- 8.2.1 Relationship to Covariance Function and Correlogram -- 8.2.2 Parametric Isotropic Semivariogram Models -- 8.2.3 Estimating the Semivariogram -- DATA BREAK: Smoky Mountain pH Data -- 8.2.4 Fitting Semivariogram Models -- 8.2.5 Anisotropic Semivariogram Modeling -- 8.3 Interpolation and Spatial Prediction -- 8.3.1 Inverse-Distance Interpolation -- 8.3.2 Kriging -- CASE STUDY: Hazardous Waste Site Remediation -- 8.4 Additional Topics and Further Reading -- 8.4.1 Erratic Experimental Semivariograms -- 8.4.2 Sampling Distribution of the Classical Semivariogram Estimator -- 8.4.3 Nonparametric Semivariogram Models -- 8.4.4 Kriging Non-Gaussian Data -- 8.4.5 Geostatistical Simulation -- 8.4.6 Use of Non-Euclidean Distances in Geostatistics -- 8.4.7 Spatial Sampling and Network Design -- 8.5 Exercises -- 9 Linking Spatial Exposure Data to Health Events -- 9.1 Linear Regression Models for Independent Data
3.4 Geographic Information Systems -- 3.4.1 Vector and Raster GISs -- 3.4.2 Basic GIS Operations -- 3.4.3 Spatial Analysis within GIS -- 3.5 Problems with Spatial Data and GIS -- 3.5.1 Inaccurate and Incomplete Databases -- 3.5.2 Confidentiality -- 3.5.3 Use of ZIP Codes -- 3.5.4 Geocoding Issues -- 3.5.5 Location Uncertainty -- 4 Visualizing Spatial Data -- 4.1 Cartography: The Art and Science of Mapmaking -- 4.2 Types of Statistical Maps -- MAP STUDY: Very Low Birth Weights in Georgia Health Care District 9 -- 4.2.1 Maps for Point Features -- 4.2.2 Maps for Areal Features -- 4.3 Symbolization -- 4.3.1 Map Generalization -- 4.3.2 Visual Variables -- 4.3.3 Color -- 4.4 Mapping Smoothed Rates and Probabilities -- 4.4.1 Locally Weighted Averages -- 4.4.2 Nonparametric Regression -- 4.4.3 Empirical Bayes Smoothing -- 4.4.4 Probability Mapping -- 4.4.5 Practical Notes and Recommendations -- CASE STUDY: Smoothing New York Leukemia Data -- 4.5 Modifiable Areal Unit Problem -- 4.6 Additional Topics and Further Reading -- 4.6.1 Visualization -- 4.6.2 Additional Types of Maps -- 4.6.3 Exploratory Spatial Data Analysis -- 4.6.4 Other Smoothing Approaches -- 4.6.5 Edge Effects -- 4.7 Exercises -- 5 Analysis of Spatial Point Patterns -- 5.1 Types of Patterns -- 5.2 Spatial Point Processes -- 5.2.1 Stationarity and Isotropy -- 5.2.2 Spatial Poisson Processes and CSR -- 5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods -- 5.2.4 Heterogeneous Poisson Processes -- 5.2.5 Estimating Intensity Functions -- DATA BREAK: Early Medieval Grave Sites -- 5.3 K Function -- 5.3.1 Estimating the K Function -- 5.3.2 Diagnostic Plots Based on the K Function -- 5.3.3 Monte Carlo Assessments of CSR Based on the K Function -- DATA BREAK: Early Medieval Grave Sites -- 5.3.4 Roles of First- and Second-Order Properties -- 5.4 Other Spatial Point Processes
Title Applied spatial statistics for public health data
URI http://portal.igpublish.com/iglibrary/search/WILEYB0004423.html
https://cir.nii.ac.jp/crid/1130282272925983616
https://www.perlego.com/book/2752152/applied-spatial-statistics-for-public-health-data-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=214360
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780471662679&uid=none
Volume 368
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6xwgMVDzCG6GAQId6mQOwktvPYjiEkoOJhmvYW2bEzKqa0aso2_nvOP-qW7gHxwIvVplZOvS-x78533wG8JaLJSNuStFGlTosGXyn0Q3RKmcLt1WhNWseu_4VPp-LiovoWGqf2rp0A7zpxe1st_ivUeA3BtqWz_wB3vClewM8IOo4IO447FnH8GvKNg0HZ2yRpVwZiKxccDbPNJdwmtP5-HGrSYjDdI-cqoo_H72JWznx1I3_FxJD1L-soQbETJXBLTOqCjGFn_cOPzHCLygXnfim8s6p6llY7iaH_45sF7bBUT8ZMeK75PdhDF2YA9z9MP4_PY7zL-n3CtXmMwsiaAGktPNLH0vcbYUMYyv4Hrvi4G6x6yyh7uYgROrQIutkMfZeFWV6Zy_mdHdWZCWePYWBLR57APdPtw_BrZMTt9-GRj48mvuzrKZCAVhLQSjZoJYhW4tFKPFqJResAzj-enp18SkP7ilQKNBLLtGlVpsvCKMrtfy8qpmWpdaakydEwEhlvBJfGEKnakhp8axTjmuiiEoY3kubPYNDNO_McEseNlfMcJ5lC01YKxlolldQlbfNSjeDNlpLq6yt31N7XQb1Wk7zCSdu6qxeez6R27O0Td7ZP8xEcoUbrZmZHYo-10YREDwzdZJEzwkZwEHRdexGUl7Y38gherzVfO-Ehubg-nZxQNMpZdviXO7-Ah5sn9yUMVsuf5ggeNNeo_eWr8Dz9Bj9HTo8
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Applied+spatial+statistics+for+public+health+data&rft.au=Waller%2C+Lance+A.&rft.au=Gotway%2C+Carol+A.&rft.date=2004-01-01&rft.pub=Wiley-Interscience&rft.isbn=9780471387718&rft_id=info:doi/10.1002%2F0471662682&rft.externalDocID=BA68391559
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fwiley_hlvwyirv%2F9780471662679.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97804716%2F9780471662679.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FWILEYB0004423_null_0_320.png