Subsea Engineering Handbook

Designing and building structures that will withstand the unique challenges that exist in subsea operations is no easy task. As deepwater wells are drilled to greater depths, engineers are confronted with a new set of problems such as water depth, weather conditions, ocean currents, equipment reliab...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Bai, Yong, Bai, Qiang
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Chantilly Elsevier 2012
Elsevier : Gulf Professional Pub
Elsevier Science & Technology
Gulf Professional Publishing
Gulf Professional Pub
Vydání:2
Témata:
ISBN:0123978041, 9780123978042, 9780128126226, 0128126221, 9780123978059, 012397805X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • Title Page List of Abbreviations Preface Table of Contents 1. Overview of Subsea Engineering 2. Subsea Field Development 3. Subsea Distribution System 4. Subsea Surveying, Positioning, and Foundation 5. Installation and Vessels 6. Subsea Cost Estimation 7. Subsea Control 8. Subsea Power Supply 9. Project Execution and Interfaces 10. Subsea Risk and Reliability 11. Subsea Equipment RBI 12. Subsea System Engineering 13. Hydraulics 14. Heat Transfer and Thermal Insulation 15. Hydrates 16. Wax and Asphaltenes 17. Subsea Corrosion and Scale 18. Erosion and Sand Management 19. Subsea Manifolds 20. Pipeline Ends and In-Line Structures 21. Subsea Connections and Jumpers 22. Subsea Wellheads and Trees 23. ROV Intervention and Interface 24. Subsea Umbilical Systems 25. Drilling Risers 26. Subsea Production Risers 27. Subsea Pipelines Index
  • Front Cover -- Subsea Engineering Handbook -- Subsea Engineering Handbook -- Copyright -- Contents -- About the Authors -- Preface -- List of Abbreviations -- 1 - Subsea Production Systems -- 1 - Overview of Subsea Engineering -- 1.1 Introduction -- 1.2 Subsea Production Systems -- 1.2.1 Field Architecture -- 1.2.2 Distribution Systems -- 1.2.3 Subsea Surveys -- 1.2.4 Installation and Vessels -- 1.2.5 Cost Estimation -- 1.2.6 Subsea Control -- 1.2.7 Subsea Power Supply -- 1.2.8 Project Execution and Interfaces -- 1.3 Flow Assurance and System Engineering -- 1.3.1 Subsea Operations -- 1.3.2 Commissioning and Start-Up -- 1.3.3 Production Processing -- 1.3.4 Chemicals Injection -- 1.3.4.1 Hydrate Inhibition -- 1.3.4.2 Paraffin Inhibitors -- 1.3.4.3 Asphaltene Inhibitors -- 1.3.5 Well Testing -- 1.3.6 Inspection and Maintenance -- 1.4 Subsea Structures and Equipment -- 1.4.1 Subsea Manifolds -- 1.4.2 Pipeline Ends and In-Line Structures -- 1.4.3 Jumpers -- 1.4.4 Subsea Wellheads -- 1.4.5 Subsea Trees -- 1.4.6 Umbilical Systems -- 1.4.7 Production Risers -- 1.5 Subsea Pipelines -- References -- 2 - Subsea Field Development -- 2.1 Subsea Field Development Overview -- 2.2 Deepwater or Shallow-Water Development -- 2.3 Wet Tree and Dry Tree Systems -- 2.3.1 Wet Tree Systems -- 2.3.2 Dry Tree Systems -- 2.3.3 Systems Selection -- 2.4 Subsea Tie-Back Development -- 2.4.1 Tie-Back Field Design -- 2.4.2 Tie-Back Selection and Challenges -- 2.5 Stand-Alone Development -- 2.5.1 Comparison between the Stand-Alone and Tie-Back Developments -- 2.5.2 Classification of Stand-Alone Facilities -- 2.6 Artificial Lift Methods and Constraints -- 2.6.1 General -- 2.6.2 Gas Lift -- 2.6.3 Subsea Pressure Boosting -- 2.6.4 Electric Submersible Pump (ESP) -- 2.7 Subsea Processing -- 2.8 Template, Clustered Well System, and Daisy Chain -- 2.8.1 Satellite Well System
  • 4.2.2 Subsea Survey Equipment Requirements -- 4.2.2.1 Multibeam Echo Sounder (MBES) -- 4.2.2.2 Side-Scan Sonar -- 4.2.3 Sub-Bottom Profilers -- 4.2.3.1 High-Resolution Sub-Bottom Profiler -- 4.2.3.2 Low-Resolution Sub-Bottom Profiler -- 4.2.4 Magnetometer -- 4.2.5 Core and Bottom Sampler -- 4.2.6 Positioning Systems -- 4.2.6.1 Offshore Surface Positioning -- 4.2.6.2 Underwater Positioning -- 4.3 Subsea Metrology and Positioning -- 4.3.1 Transducers -- 4.3.2 Calibration -- 4.3.3 Water Column Parameter -- 4.3.3.1 Field Procedure -- 4.3.3.2 Calibration -- 4.3.4 Acoustic Long Baseline -- 4.3.4.1 Field Procedure -- 4.3.4.2 MF/UHF LBL Transponder -- 4.3.5 Acoustic Short Baseline and Ultra-Short Baseline -- 4.3.5.1 Acoustic Short Baseline -- 4.3.5.2 Ultra-Short Baseline -- 4.3.5.3 Description -- 4.3.5.4 Field Procedure -- 4.3.5.5 Calibration of the USBL System -- 4.4 Subsea Soil Investigation -- 4.4.1 Offshore Soil Investigation Equipment Requirements -- 4.4.1.1 Seabed Corer Equipment -- 4.4.1.2 Piezocone Penetration Test -- 4.4.1.3 Drilling Rig -- 4.4.1.4 Downhole Equipment -- 4.4.1.5 Laboratory Equipment -- 4.4.2 Subsea Survey Equipment Interfaces -- 4.4.2.1 Sound Velocity Measurement -- 4.4.2.2 Sediment Handling and Storage Requirements -- 4.4.2.3 Onboard Laboratory Test -- 4.4.2.4 Core Preparation -- 4.4.2.5 Onshore Laboratory Tests -- 4.4.2.6 Near-Shore Geotechnical Investigations -- 4.5 Subsea Foundation -- 4.5.1 Pile- or Skirt-Supported Structures -- 4.5.2 Seabed-Supported Structures -- 4.5.3 Pile and Plate Anchor Design and Installation -- 4.5.3.1 Basic Considerations -- 4.5.4 Geotechnical Capacity of Suction Piles -- 4.5.4.1 Basic Considerations -- 4.5.4.2 Analysis Method -- 4.5.5 Geotechnical Capacity of Plate Anchors -- 4.5.5.1 Basic Considerations -- 4.5.5.2 Prediction Method for a Drag Embedded Plate Anchor
  • 4.5.5.3 Prediction Method for Direct Embedded Plate Anchor -- 4.5.6 Structural Design of Suction Piles -- 4.5.6.1 Basic Considerations -- 4.5.6.2 Design Conditions -- Mooring Loads on Global Anchor Structure -- Mooring Loads on Anchor Attachment -- Embedment Loads -- Extraction Loads -- Transportation and Handling of Loads -- 4.5.6.3 Structural Analysis Method -- 4.5.6.4 Space Frame Model -- Finite Element Model -- Manual Calculations -- Stress Concentration Factors -- Stability Analysis -- Dynamic Response -- 4.5.6.5 Structural Design Criteria -- Design Codes -- Safety Categories -- Allowable Stresses -- 4.5.7 Installation of Suction Piles, Suction Caissons, and Plate Anchors -- 4.5.7.1 Suction Piles and Suction Caissons -- Installation Procedure, Analysis, and Monitoring -- Skirt Penetration of Suction Caissons -- 4.5.7.2 Plate Anchors -- Direct Embedded Plate Anchors -- Drag Embedded Plate Anchors -- 4.5.7.3 Test Loading of Anchors -- 4.5.8 Driven Pile Anchor -- 4.5.8.1 Basic Considerations -- 4.5.8.2 Geotechnical and Structural Strength Design -- 4.5.8.3 Fatigue Design -- Basic Considerations -- In-Place Loading -- Installation Loading -- Fatigue Resistance -- Total Fatigue Damage and Factor of Safety -- 4.5.8.4 Test Loading of Driven Pile Anchors -- References -- 5 - Installation and Vessels -- 5.1 Introduction -- 5.2 Typical Installation Vessels -- 5.2.1 Transportation Barges and Tug Boats -- 5.2.2 Drilling Vessels -- 5.2.2.1 Jack-Up Rigs -- 5.2.2.2 Semi-Submersibles -- 5.2.2.3 Drill Ships -- 5.2.3 Pipe-Laying Vessels -- 5.2.3.1 S-Lay Vessels -- 5.2.3.2 J-Lay Vessels -- 5.2.3.3 Reel-Lay Vessels -- 5.2.4 Umbilical-Laying Vessels -- 5.2.5 Heavy Lift Vessels -- 5.2.6 Offshore Support Vessels -- 5.3 Vessel Requirements and Selection -- 5.3.1 Basic Requirements for Vessels and Barges -- 5.3.1.1 Vessel Performance -- 5.3.1.2 Vessel Strength
  • 5.3.2 Functional Requirements -- 5.3.2.1 Vessel for Subsea Hardware Installation -- 5.3.2.2 Vessel for Pipe and Umbilical Laying -- 5.4 Installation Positioning -- 5.4.1 Surface Positioning -- 5.4.2 Subsea Positioning -- 5.5 Installation Analysis -- 5.5.1 Subsea Structure Installation Analysis -- 5.5.2 Pipeline/Riser Installation Analysis -- 5.5.3 Umbilical Installation Analysis -- References -- 6 - Subsea Cost Estimation -- 6.1 Introduction -- 6.2 Subsea Capital Expenditures (CAPEX) -- 6.3 Cost Estimation Methodologies -- 6.3.1 Cost-Capacity Estimation -- 6.3.2 Factored Estimation -- 6.3.2.1 Cost Estimation Model -- 6.3.2.2 Cost-Driving Factors -- 6.3.2.2.1 Inflation Rate -- 6.3.2.2.2 Raw Materials Price -- 6.3.2.2.3 Market Condition -- 6.3.2.2.4 Subsea-Specific Factors -- 6.3.3 Work Breakdown Structure -- 6.3.4 Cost Estimation Process -- 6.4 Subsea Equipment Costs -- 6.4.1 Overview of Subsea Production System -- 6.4.2 Subsea Trees -- 6.4.2.1 Cost-Driving Factors -- 6.4.2.2 Cost Estimation Model -- 6.4.3 Subsea Manifolds -- 6.4.3.1 Cost-Driving Factors -- 6.4.3.2 Cost Estimation Model -- 6.4.4 Flowlines -- 6.4.4.1 Cost-Driving Factors -- 6.4.4.2 Cost Estimation Model -- 6.5 Testing and Installation Costs -- 6.5.1 Testing Costs -- 6.5.2 Installation Costs -- 6.6 Project Management and Engineering Costs -- 6.7 Subsea Operation Expenditures (OPEX) -- 6.8 Life Cycle Cost of Subsea System -- 6.8.1 RISEX -- 6.8.2 RAMEX -- 6.9 Case Study: Subsea System CAPEX Estimation -- Field Description -- Main Equipment -- Calculation Steps -- References -- 7 - Subsea Control -- 7.1 Introduction -- 7.2 Types of Control Systems -- 7.2.1 Direct Hydraulic Control System -- 7.2.2 Piloted Hydraulic Control System -- 7.2.3 Sequenced Hydraulic Control System -- 7.2.4 Multiplexed Electrohydraulic Control System -- 7.2.5 All Electrical Control System -- 7.3 Topside Equipment
  • 7.3.1 Master Control Station (MCS)
  • 2.8.2 Template and Clustered Well System -- 2.8.2.1 Clustered Satellite Wells -- 2.8.2.2 Production Well Templates -- 2.8.3 Daisy Chain -- 2.9 Subsea Field Development Assessment -- 2.9.1 Basic Data -- 2.9.2 Water-Cut Profile -- 2.9.3 Process Simulations -- References -- 3 - Subsea Distribution System -- 3.1 Introduction -- 3.1.1 System Architecture -- 3.2 Design Parameters -- 3.2.1 Hydraulic System -- 3.2.2 Electrical Power System and Communication -- 3.3 SDS Component Design Requirements -- 3.3.1 Topside Umbilical Termination Assembly (TUTA) -- 3.3.2 Subsea Umbilical Termination Assembly (SUTA) -- 3.3.3 Umbilical Termination Head (UTH) -- 3.3.4 Subsea Distribution Assembly (SDA) -- 3.3.4.1 Construction -- 3.3.4.2 Interface with the Umbilical -- 3.3.4.3 Interface with SCM -- 3.3.4.4 Electrical Distribution -- 3.3.4.5 Hydraulic and Chemical Distribution -- 3.3.4.6 ROV Connection -- 3.3.5 Hydraulic Distribution Manifold/Module (HDM) -- 3.3.6 Electrical Distribution Manifold/Module (EDM) -- 3.3.7 Multiple Quick Connects (MQCs) -- 3.3.8 Hydraulic Flying Leads and Couplers -- 3.3.8.1 Construction -- 3.3.8.2 Connection Plates -- 3.3.8.3 Installation -- 3.3.8.4 Hydraulic Couplers -- 3.3.9 Electrical Flying Leads and Connectors -- 3.3.9.1 Manufacturing -- 3.3.9.2 Construction -- 3.3.9.3 Installation -- 3.3.9.4 Electrical Connectors -- 3.3.10 Logic Caps -- 3.3.11 Subsea Accumulator Module (SAM) -- 3.3.11.1 Description -- 3.3.11.2 Components -- References -- 4 - Subsea Surveying, Positioning, and Foundation -- 4.1 Introduction -- 4.2 Subsea Survey -- 4.2.1 Subsea Survey Requirements -- 4.2.1.1 Survey Pattern for Selected Subsea Field and Each Pipeline Route -- 4.2.1.2 Geotechnical Study -- 4.2.1.3 Survey Vessel -- 4.2.1.4 Survey Aids -- 4.2.1.5 Gyrocompass -- 4.2.1.6 Navigation Computer and Software -- 4.2.1.7 Personnel
  • 7.3. TOPSIDE EQUIPMENT -- 7.4. SUBSEA CONTROL MODULE MOUNTING BASE (SCMMB) -- 7.5. SUBSEA CONTROL MODULE (SCM) -- 7.6. SUBSEA TRANSDUCERS/SENSORS -- 7.7. HIGH-INTEGRITY PRESSURE PROTECTION SYSTEM (HIPPS) -- 7.8. SUBSEA PRODUCTION CONTROL SYSTEM (SPCS) -- 7.9. INSTALLATION AND WORKOVER CONTROL SYSTEM (IWOCS) -- REFERENCES -- Chapter 8 - Subsea Power Supply -- 8.1. INTRODUCTION -- 8.2. ELECTRICAL POWER SYSTEM -- 8.3. HYDRAULIC POWER SYSTEM -- REFERENCES -- Chapter 9 - Project Execution and Interfaces -- 9.1. INTRODUCTION -- 9.2. PROJECT EXECUTION -- 9.3. INTERFACES -- REFERENCES -- Chapter 10 - Subsea Risk and Reliability -- 10.1. INTRODUCTION -- 10.2. RISK ASSESSMENT -- 10.3. ENVIRONMENTAL IMPACT ASSESSMENT -- 10.4. PROJECT RISK MANAGEMENT -- 10.5. RELIABILITY -- 10.6. FAULT TREE ANALYSIS (FTA) -- 10.7. QUALIFICATION TO REDUCE SUBSEA FAILURES -- REFERENCES -- Chapter 11 - Subsea Equipment RBI -- 11.1. INTRODUCTION -- 11.2. OBJECTIVE -- 11.3. SUBSEA EQUIPMENT RBI METHODOLOGY -- 11.4. PIPELINE RBI -- 11.5. SUBSEA TREE RBI -- 11.6. SUBSEA MANIFOLD RBI -- 11.7. RBI OUTPUT AND BENEFITS -- REFERENCES -- PART Two - Flow Assurance and System Engineering -- Chapter 12 - Subsea System Engineering -- 12.1. INTRODUCTION -- 12.2. TYPICAL FLOW ASSURANCE PROCESS -- 12.3. SYSTEM DESIGN AND OPERABILITY -- REFERENCES -- Chapter 13 - Hydraulics -- 13.1. INTRODUCTION -- 13.2. COMPOSITION AND PROPERTIES OF HYDROCARBONS -- 13.3. EMULSION -- 13.4. PHASE BEHAVIOR -- 13.5. HYDROCARBON FLOW -- 13.6. SLUGGING AND LIQUID HANDLING -- 13.7. SLUG CATCHER DESIGN -- 13.8. PRESSURE SURGE -- 13.9. LINE SIZING -- REFERENCES -- Chapter 14 - Heat Transfer and Thermal Insulation -- 14.1. INTRODUCTION -- 14.2. HEAT TRANSFER FUNDAMENTALS -- 14.3. U-VALUE -- 14.4. STEADY-STATE HEAT TRANSFER -- 14.5. TRANSIENT HEAT TRANSFER -- 14.6. THERMAL MANAGEMENT STRATEGY AND INSULATION -- REFERENCES
  • 14. APPENDIX: U-VALUE AND COOLDOWN TIME CALCULATION SHEET -- Chapter 15 - Hydrates -- 15.1. INTRODUCTION -- 15.2. PHYSICS AND PHASE BEHAVIOR -- 15.3. HYDRATE PREVENTION -- 15.4. HYDRATE REMEDIATION -- 15.5. HYDRATE CONTROL DESIGN PHILOSOPHIES -- 15.6. RECOVERY OF THERMODYNAMIC HYDRATE INHIBITORS -- REFERENCES -- Chapter 16 - Wax and Asphaltenes -- 16.1. INTRODUCTION -- 16.2. WAX -- 16.3. WAX MANAGEMENT -- 16.4. WAX REMEDIATION -- 16.5. ASPHALTENES -- 16.6. ASPHALTENE CONTROL DESIGN PHILOSOPHIES -- REFERENCES -- Chapter 17 - Subsea Corrosion and Scale -- 17.1. INTRODUCTION -- 17.2. PIPELINE INTERNAL CORROSION -- 17.3. PIPELINE EXTERNAL CORROSION -- 17.4. SCALES -- REFERENCES -- Chapter 18 - Erosion and Sand Management -- 18.1. INTRODUCTION -- 18.2. EROSION MECHANISMS -- 18.3. PREDICTION OF SAND EROSION RATE -- 18.4. THRESHOLD VELOCITY -- 18.5. EROSION MANAGEMENT -- 18.6. SAND MANAGEMENT -- 18.7. CALCULATING THE PENETRATION RATE: EXAMPLE -- REFERENCES -- PART Three - Subsea Structures and Equipment -- Chapter 19 - Subsea Manifolds -- 19.1. INTRODUCTION -- 19.2. MANIFOLD COMPONENTS -- 19.3. MANIFOLD DESIGN AND ANALYSIS -- 19.4. PILE AND FOUNDATION DESIGN -- 19.5. INSTALLATION OF SUBSEA MANIFOLD -- REFERENCES -- Chapter 20 - Pipeline Ends and In-Line Structures -- 20.1. INTRODUCTION -- 20.2. PLEM DESIGN AND ANALYSIS -- 20.3. DESIGN METHODOLOGY -- 20.4. FOUNDATION (MUDMAT) SIZING AND DESIGN -- 20.5. PLEM INSTALLATION ANALYSIS -- REFERENCES -- Chapter 21 - Subsea Connections and Jumpers -- 21.1. INTRODUCTION -- 21.2. JUMPER COMPONENTS AND FUNCTIONS -- 21.3. SUBSEA CONNECTIONS -- 21.4. DESIGN AND ANALYSIS OF RIGID JUMPERS -- 21.5. DESIGN AND ANALYSIS OF A FLEXIBLE JUMPER -- REFERENCES -- Chapter 22 - Subsea Wellheads and Trees -- 22.1. INTRODUCTION -- 22.2. SUBSEA COMPLETIONS OVERVIEW -- 22.3. SUBSEA WELLHEAD SYSTEM -- 22.4. SUBSEA XMAS TREES -- REFERENCES
  • Chapter 23 - ROV Intervention and Interface -- 23.1. INTRODUCTION -- 23.2. ROV INTERVENTION -- 23.3. ROV SYSTEM -- 23.4. ROV INTERFACE REQUIREMENTS -- 23.5. REMOTE-OPERATED TOOL (ROT) -- REFERENCES -- PART Four - Subsea Umbilical, Risers &amp -- Flowlines -- Chapter 24 - Subsea Umbilical Systems -- 24.1. INTRODUCTION -- 24.2. UMBILICAL COMPONENTS -- 24.3. UMBILICAL DESIGN -- 24.4. ANCILLARY EQUIPMENT -- 24.5. SYSTEM INTEGRATION TEST -- 24.6. INSTALLATION -- 24.7. TECHNOLOGICAL CHALLENGES AND ANALYSIS -- 24.8. UMBILICAL INDUSTRY EXPERIENCE AND TRENDS -- REFERENCES -- Chapter 25 - Drilling Risers -- 25.1. INTRODUCTION -- 25.2. FLOATING DRILLING EQUIPMENT -- 25.3. KEY COMPONENTS OF SUBSEA PRODUCTION SYSTEMS -- 25.4. RISER DESIGN CRITERIA -- 25.5. DRILLING RISER ANALYSIS MODEL -- 25.6. DRILLING RISER ANALYSIS METHODOLOGY -- REFERENCES -- Chapter 26 - Subsea Production Risers -- 26.1. INTRODUCTION -- 26.2. STEEL CATENARY RISER SYSTEMS -- 26.3. TOP TENSIONED RISER SYSTEMS -- 26.4. FLEXIBLE RISERS -- 26.5. HYBRID RISERS -- REFERENCES -- Chapter 27 - Subsea Pipelines -- 27.1. INTRODUCTION -- 27.2. DESIGN STAGES AND PROCESS -- 27.3. SUBSEA PIPELINE FEED DESIGN -- 27.4. SUBSEA PIPELINE DETAILED DESIGN -- 27.5. PIPELINE DESIGN ANALYSIS -- 27.6. CHALLENGES OF HP/HT PIPELINES IN DEEP WATER -- REFERENCES -- Index
  • Front Cover -- Subsea Engineering Handbook -- Copyright -- Contents -- Preface -- About the Authors -- List of Abbreviations -- PART One - Subsea Production Systems -- Chapter 1 - Overview of Subsea Engineering -- 1.1. INTRODUCTION -- 1.2. SUBSEA PRODUCTION SYSTEMS -- 1.3. FLOW ASSURANCE AND SYSTEM ENGINEERING -- 1.4. SUBSEA STRUCTURES AND EQUIPMENT -- 1.5. SUBSEA PIPELINES -- Chapter 2 - Subsea Field Development -- 2.1. SUBSEA FIELD DEVELOPMENT OVERVIEW -- 2.2. DEEPWATER OR SHALLOW-WATER DEVELOPMENT -- 2.3. WET TREE AND DRY TREE SYSTEMS -- 2.4. BSEA TIE-BACK DEVELOPMENT -- 2.5. STAND-ALONE DEVELOPMENT -- 2.6. ARTIFICIAL LIFT METHODS AND CONSTRAINTS -- 2.7. SUBSEA PROCESSING -- 2.8. TEMPLATE, CLUSTERED WELL SYSTEM, AND DAISY CHAIN -- 2.9. SUBSEA FIELD DEVELOPMENT ASSESSMENT -- REFERENCES -- Chapter 3 - Subsea Distribution System -- 3.1. INTRODUCTION -- 3.2. DESIGN PARAMETERS -- 3.3. SDS COMPONENT DESIGN REQUIREMENTS -- REFERENCES -- Chapter 4 - Subsea Surveying, Positioning, and Foundation -- 4.1. INTRODUCTION -- 4.2. SUBSEA SURVEY -- 4.3. SUBSEA METROLOGY AND POSITIONING -- 4.4. SUBSEA SOIL INVESTIGATION -- 4.5. SUBSEA FOUNDATION -- REFERENCES -- Chapter 5 - Installation and Vessels -- 5.1. INTRODUCTION -- 5.2. TYPICAL INSTALLATION VESSELS -- 5.3. VESSEL REQUIREMENTS AND SELECTION -- 5.4. INSTALLATION POSITIONING -- 5.5. INSTALLATION ANALYSIS -- REFERENCES -- Chapter 6 - Subsea Cost Estimation -- 6.1. INTRODUCTION -- 6.2. SUBSEA CAPITAL EXPENDITURES (CAPEX) -- 6.3. COST ESTIMATION METHODOLOGIES -- 6.4. SUBSEA EQUIPMENT COSTS -- 6.5. TESTING AND INSTALLATION COSTS -- 6.6. PROJECT MANAGEMENT AND ENGINEERING COSTS -- 6.7. SUBSEA OPERATION EXPENDITURES (OPEX) -- 6.8. LIFE CYCLE COST OF SUBSEA SYSTEM -- 6.9. CASE STUDY: SUBSEA SYSTEM CAPEX ESTIMATION -- REFERENCES -- Chapter 7 - Subsea Control -- 7.1. INTRODUCTION -- 7.2. TYPES OF CONTROL SYSTEMS