Elliptic partial differential equations and quasiconformal mappings in the plane (princeton mathematical series)

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compellin...

Full description

Saved in:
Bibliographic Details
Main Authors: Astala, Kari, Iwaniec, Tadeusz, Martin, Gaven
Format: eBook Book
Language:English
Published: Princeton Princeton University Press 2009
Edition:1
Series:Princeton Mathematical Series
Subjects:
ISBN:1400830117, 0691137773, 9780691137773, 9781400830114
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Elliptic partial differential equations and quasiconformal mappings in the plane (princeton mathematical series) -- Contents -- Preface -- Chapter 1: Introduction -- Chapter 2: A Background in Conformal Geometry -- Chapter 3: The Foundations of Quasiconformal Mappings -- Chapter 4: Complex Potentials -- Chapter 5: The Measurable Riemann Mapping Theorem: The Existence Theory of Quasiconformal Mappings -- Chapter 6: Parameterizing General Linear Elliptic Systems -- Chapter 7: The Concept of Ellipticity -- Chapter 8: Solving General Nonlinear First-Order Elliptic Systems -- Chapter 9: Nonlinear Riemann Mapping Theorems -- Chapter 10: Conformal Deformations and Beltrami Systems -- Chapter 11: A Quasilinear Cauchy Problem -- Chapter 12: Holomorphic Motions -- Chapter 13: Higher Integrability -- Chapter 14: Lp-Theory of Beltrami Operators -- Chapter 15: Schauder Estimates for Beltrami Operators -- Chapter 16: Applications to Partial Diffierential Equations -- Chapter 17: PDEs Not of Divergence Type: Pucci's Conjecture -- Chapter 18: Quasiconformal Methods in Impedance Tomography: Calderon's Problem -- Chapter 19: Integral Estimates for the Jacobian -- Chapter 20: Solving the Beltrami Equation: Degenerate Elliptic Case -- Chapter 21: Aspects of the Calculus of Variations -- Appendix: Elements of Sobolev Theory and Function Spaces -- Basic Notation -- Bibliography -- Index
  • Front Matter Table of Contents Preface Chapter 1: Introduction Chapter 2: A Background in Conformal Geometry Chapter 3: The Foundations of Quasiconformal Mappings Chapter 4: Complex Potentials Chapter 5: The Measurable Riemann Mapping Theorem: Chapter 6: Parameterizing General Linear Elliptic Systems Chapter 7: The Concept of Ellipticity Chapter 8: Solving General Nonlinear First-Order Elliptic Systems Chapter 9: Nonlinear Riemann Mapping Theorems Chapter 10: Conformal Deformations and Beltrami Systems Chapter 11: A Quasilinear Cauchy Problem Chapter 12: Holomorphic Motions Chapter 13: Higher Integrability Chapter 14: ${L^p}$-Theory of Beltrami Operators Chapter 15: Schauder Estimates for Beltrami Operators Chapter 16: Applications to Partial Differential Equations Chapter 17: PDEs Not of Divergence Type: Chapter 18: Quasiconformal Methods in Impedance Tomography: Chapter 19: Integral Estimates for the Jacobian Chapter 20: Solving the Beltrami Equation: Chapter 21: Aspects of the Calculus of Variations Appendix: Basic Notation Bibliography Index
  • Intro -- Contents -- Preface -- 1 Introduction -- 1.1 Calculus of Variations, PDEs and Quasiconformal Mappings -- 1.2 Degeneracy -- 1.3 Holomorphic Dynamical Systems -- 1.4 Elliptic Operators and the Beurling Transform -- 2 A Background in Conformal Geometry -- 2.1 Matrix Fields and Conformal Structures -- 2.2 The Hyperbolic Metric -- 2.3 The Space S(2) -- 2.4 The Linear Distortion -- 2.5 Quasiconformal Mappings -- 2.6 Radial Stretchings -- 2.7 Hausdorff Dimension -- 2.8 Degree and Jacobian -- 2.9 A Background in Complex Analysis -- 2.9.1 Analysis with Complex Notation -- 2.9.2 Riemann Mapping Theorem and Uniformization -- 2.9.3 Schwarz-Pick Lemma of Ahlfors -- 2.9.4 Normal Families and Montel's Theorem -- 2.9.5 Hurwitz's Theorem -- 2.9.6 Bloch's Theorem -- 2.9.7 The Argument Principle -- 2.10 Distortion by Conformal Mapping -- 2.10.1 The Area Formula -- 2.10.2 Koebe 1/4-Theorem and Distortion Theorem -- 3 The Foundations of Quasiconformal Mappings -- 3.1 Basic Properties -- 3.2 Quasisymmetry -- 3.3 The Gehring-Lehto Theorem -- 3.3.1 The Differentiability of Open Mappings -- 3.4 Quasisymmetric Maps Are Quasiconformal -- 3.5 Global Quasiconformal Maps Are Quasisymmetric -- 3.6 Quasiconformality and Quasisymmetry: Local Equivalence -- 3.7 Lusin's Condition N and Positivity of the Jacobian -- 3.8 Change of Variables -- 3.9 Quasisymmetry and Equicontinuity -- 3.10 Hölder Regularity -- 3.11 Quasisymmetry and &amp -- #948 -- -Monotone Mappings -- 4 Complex Potentials -- 4.1 The Fourier Transform -- 4.1.1 The Fourier Transform in L[sup(1)] and L[sup(2)] -- 4.1.2 Fourier Transform on Measures -- 4.1.3 Multipliers -- 4.1.4 The Hecke Identities -- 4.2 The Complex Riesz Transforms R[sup(k)] -- 4.2.1 Potentials Associated with R[sup(k)] -- 4.3 Quantitative Analysis of Complex Potentials -- 4.3.1 The Logarithmic Potential -- 4.3.2 The Cauchy Transform
  • 7 The Concept of Ellipticity -- 7.1 The Algebraic Concept of Ellipticity -- 7.2 Some Examples of First-Order Equations -- 7.3 General Elliptic First-Order Operators in Two Variables -- 7.3.1 Complexification -- 7.3.2 Homotopy Classification -- 7.3.3 Classification -- n = 1 -- 7.4 Partial Differential Operators with Measurable Coefficients -- 7.5 Quasilinear Operators -- 7.6 Lusin Measurability -- 7.7 Fully Nonlinear Equations -- 7.8 Second-Order Elliptic Systems -- 7.8.1 Measurable Coefficients -- 8 Solving General Nonlinear First-Order Elliptic Systems -- 8.1 Equations Without Principal Solutions -- 8.2 Existence of Solutions -- 8.3 Proof of Theorem 8.2.1 -- 8.3.1 Step 1: H Continuous, Supported on an Annulus -- 8.3.2 Step 2: Good Smoothing of H -- 8.3.3 Step 3: Lusin-Egoroff Convergence -- 8.3.4 Step 4: Passing to the Limit -- 8.4 Equations with Infinitely Many Principal Solutions -- 8.5 Liouville Theorems -- 8.6 Uniqueness -- 8.6.1 Uniqueness for Normalized Solutions -- 8.7 Lipschitz H(z, w, &amp -- #950 -- ) -- 9 Nonlinear Riemann Mapping Theorems -- 9.1 Ellipticity and Change of Variables -- 9.2 The Nonlinear Mapping Theorem: Simply Connected Domains -- 9.2.1 Existence -- 9.2.2 Uniqueness -- 9.3 Mappings onto Multiply Connected Schottky Domains -- 9.3.1 Some Preliminaries -- 9.3.2 Proof of the Mapping Theorem 9.3.4 -- 10 Conformal Deformations and Beltrami Systems -- 10.1 Quasilinearity of the Beltrami System -- 10.1.1 The Complex Equation -- 10.2 Conformal Equivalence of Riemannian Structures -- 10.3 Group Properties of Solutions -- 10.3.1 Semigroups -- 10.3.2 Sullivan-Tukia Theorem -- 10.3.3 Ellipticity Constants -- 11 A Quasilinear Cauchy Problem -- 11.1 The Nonlinear [Omitted]-Equation -- 11.2 A Fixed-Point Theorem -- 11.3 Existence and Uniqueness -- 12 Holomorphic Motions -- 12.1 The &amp -- #955 -- -Lemma -- 12.2 Two Compelling Examples
  • 16 Applications to Partial Diffierential Equations -- 16.1 The Hodge * Method -- 16.1.1 Equations of Divergence Type: The A-Harmonic Operator -- 16.1.2 The Natural Domain of Definition -- 16.1.3 The A-Harmonic Conjugate Function -- 16.1.4 Regularity of Solutions -- 16.1.5 General Linear Divergence Equations -- 16.1.6 A-Harmonic Fields -- 16.2 Topological Properties of Solutions -- 16.3 The Hodographic Method -- 16.3.1 The Continuity Equation -- 16.3.2 The p-Harmonic Operator div|[Omitted]|[sup(p-2)][Omitted] -- 16.3.3 Second-Order Derivatives -- 16.3.4 The Complex Gradient -- 16.3.5 Hodograph Transform for the p-Laplacian -- 16.3.6 Sharp Hölder Regularity for p-Harmonic Functions -- 16.3.7 Removing the Rough Regularity in the Gradient -- 16.4 The Nonlinear A-Harmonic Equation -- 16.4.1 &amp -- #648 -- -Monotonicity of the Structural Field -- 16.4.2 The Dirichlet Problem -- 16.4.3 Quasiregular Gradient Fields and C[sup(1,&amp -- #945 -- )]-Regularity -- 16.5 Boundary Value Problems -- 16.5.1 A Nonlinear Riemann-Hilbert Problem -- 16.6 G-Compactness of Beltrami Diffierential Operators -- 16.6.1 G-Convergence of the Operators [Omitted] - &amp -- #956 -- [sub(j)][Omitted][sub(z)] -- 16.6.2 G-Limits and the Weak*-Topology -- 16.6.3 The Jump from [Omitted][sub(2)] -V[Omitted][sub(z)] to [Omitted][sub(z)] - &amp -- #956 -- [Omitted][sub(z)] -- 16.6.4 The Adjacent Operator's Two Primary Solutions -- 16.6.5 The Independence of [Omitted][sub(z)](z) and [Omitted][sub(z)](z) -- 16.6.6 Linear Families of Quasiregular Mappings -- 16.6.7 G-Compactness for Beltrami Operators -- 17 PDEs Not of Divergence Type: Pucci's Conjecture -- 17.1 Reduction to a First-Order System -- 17.2 Second-Order Caccioppoli Estimates -- 17.3 The Maximum Principle and Pucci's Conjecture -- 17.4 Interior Regularity -- 17.5 Equations with Lower-Order Terms -- 17.5.1 The Dirichlet Problem
  • 12.2.1 Limit Sets of Kleinian Groups -- 12.2.2 Julia Sets of Rational Maps -- 12.3 The Extended &amp -- #955 -- -Lemma -- 12.3.1 Holomorphic Motions and the Cauchy Problem -- 12.3.2 Holomorphic Axiom of Choice -- 12.4 Distortion of Dimension in Holomorphic Motions -- 12.5 Embedding Quasiconformal Mappings in Holomorphic Flows -- 12.6 Distortion Theorems -- 12.7 Deformations of Quasiconformal Mappings -- 13 Higher Integrability -- 13.1 Distortion of Area -- 13.1.1 Initial Bounds for Distortion of Area -- 13.1.2 Weighted Area Distortion -- 13.1.3 An Example -- 13.1.4 General Area Estimates -- 13.2 Higher Integrability -- 13.2.1 Integrability at the Borderline -- 13.2.2 Distortion of Hausdorff Dimension -- 13.3 The Dimension of Quasicircles -- 13.3.1 Symmetrization of Beltrami Coefficients -- 13.3.2 Distortion of Dimension -- 13.4 Quasiconformal Mappings and BMO -- 13.4.1 Quasiconformal Jacobians and A[sub(p)]-Weights -- 13.5 Painlevé's Theorem: Removable Singularities -- 13.5.1 Distortion of Hausdorff Measure -- 13.6 Examples of Nonremovable Sets -- 14 L[sup(p)]-Theory of Beltrami Operators -- 14.1 Spectral Bounds and Linear Beltrami Operators -- 14.2 Invertibility of the Beltrami Operators -- 14.2.1 Proof of Invertibility -- Theorem 14.0.4 -- 14.3 Determining the Critical Interval -- 14.4 Injectivity in the Borderline Cases -- 14.4.1 Failure of Factorization in W[sup(1,q)] -- 14.4.2 Injectivity and Liouville-Type Theorems -- 14.5 Beltrami Operators -- Coefficients in VMO -- 14.6 Bounds for the Beurling Transform -- 15 Schauder Estimates for Beltrami Operators -- 15.1 Examples -- 15.2 The Beltrami Equation with Constant Coefficients -- 15.3 A Partition of Unity -- 15.4 An Interpolation -- 15.5 Hölder Regularity for Variable Coefficients -- 15.6 Hölder-Caccioppoli Estimates -- 15.7 Quasilinear Equations
  • 4.4 Maximal Functions and Interpolation -- 4.4.1 Interpolation -- 4.4.2 Maximal Functions -- 4.5 Weak-Type Estimates and L[sup(p)]-Bounds -- 4.5.1 Weak-Type Estimates for Complex Riesz Transforms -- 4.5.2 Estimates for the Beurling Transform S -- 4.5.3 Weighted L[sup(p)]-Theory for S -- 4.6 BMO and the Beurling Transform -- 4.6.1 Global John-Nirenberg Inequalities -- 4.6.2 Norm Bounds in BMO -- 4.6.3 Orthogonality Properties of S -- 4.6.4 Proof of the Pointwise Estimates -- 4.6.5 Commutators -- 4.6.6 The Beurling Transform of Characteristic Functions -- 4.7 Hölder Estimates -- 4.7.1 Hölder Bounds for the Beurling Transform -- 4.7.2 The Inhomogeneous Cauchy-Riemann Equation -- 4.8 Beurling Transforms for Boundary Value Problems -- 4.8.1 The Beurling Transform on Domains -- 4.8.2 L[sup(p)]-Theory -- 4.8.3 Complex Potentials for the Dirichlet Problem -- 4.9 Complex Potentials in Multiply Connected Domains -- 5 The Measurable Riemann Mapping Theorem: The Existence Theory of Quasiconformal Mappings -- 5.1 The Basic Beltrami Equation -- 5.2 Quasiconformal Mappings with Smooth Beltrami Coefficient -- 5.3 The Measurable Riemann Mapping Theorem -- 5.4 L[sup(p)]-Estimates and the Critical Interval -- 5.4.1 The Caccioppoli Inequalities -- 5.4.2 Weakly Quasiregular Mappings -- 5.5 Stoilow Factorization -- 5.6 Factoring with Small Distortion -- 5.7 Analytic Dependence on Parameters -- 5.8 Extension of Quasisymmetric Mappings of the Real Line -- 5.8.1 The Douady-Earle Extension -- 5.8.2 The Beurling-Ahlfors Extension -- 5.9 Reflection -- 5.10 Conformal Welding -- 6 Parameterizing General Linear Elliptic Systems -- 6.1 Stoilow Factorization for General Elliptic Systems -- 6.2 Linear Families of Quasiconformal Mappings -- 6.3 The Reduced Beltrami Equation -- 6.4 Homeomorphic Solutions to Reduced Equations -- 6.4.1 Fabes-Stroock Theorem
  • 17.6 Pucci's Example
  • Appendix: Elements Of Sobolev Theory And Function Spaces
  • Chapter 14. Lp-Theory Of Beltrami Operators
  • Chapter 16. Applications To Partial Differential Equations
  • Index
  • Chapter 4. Complex Potentials
  • Chapter 11. A Quasilinear Cauchy Problem
  • Chapter 2. A Background In Conformal Geometry
  • Chapter 19. Integral Estimates For The Jacobian
  • Chapter 13. Higher Integrability
  • Chapter 1. Introduction
  • Preface
  • Chapter 21. Aspects Of The Calculus Of Variations
  • Chapter 18. Quasiconformal Methods In Impedance Tomography: Calderón’s Problem
  • Chapter 20. Solving The Beltrami Equation: Degenerate Elliptic Case
  • Chapter 7. The Concept Of Ellipticity
  • Chapter 3. The Foundations Of Quasiconformal Mappings
  • Chapter 12. Holomorphic Motions
  • Basic Notation
  • Chapter 6. Parameterizing General Linear Elliptic Systems
  • Chapter 17. PDEs Not Of Divergence Type: Pucci’S Conjecture
  • Chapter 15. Schauder Estimates For Beltrami Operators
  • -
  • /
  • Contents
  • Chapter 10. Conformal Deformations And Beltrami Systems
  • Frontmatter --
  • Chapter 8. Solving General Nonlinear First-Order Elliptic Systems
  • Chapter 5. The Measurable Riemann Mapping Theorem: The Existence Theory Of Quasiconformal Mappings
  • Chapter 9. Nonlinear Riemann Mapping Theorems
  • Bibliography