Pattern recognition
A classic that offers comprehensive coverage with a balance between theory and practice.
Uloženo v:
| Hlavní autoři: | , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA ; London ; Tokyo
Academic Press, an imprint of Elsevier
2006
Elsevier Science & Technology |
| Vydání: | 3 |
| Témata: | |
| ISBN: | 0123695317, 9780123695314 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A classic that offers comprehensive coverage with a balance between theory and practice. |
|---|---|
| AbstractList | A classic that offers comprehensive coverage with a balance between theory and practice. |
| Author | Theodoridis, Sergios Koutroumbas, Konstantinos |
| Author_xml | – sequence: 1 fullname: Theodoridis, Sergios – sequence: 2 fullname: Koutroumbas, Konstantinos |
| BackLink | https://cir.nii.ac.jp/crid/1130000798275928576$$DView record in CiNii |
| BookMark | eNotj0tLw0AUhUe0YlO78g-IiLup987rzl3aUh9Q0IWIuzKZTCRaJprE_29K3ZyzOB8fnEKc5DYnIa4QFgjobpdMXoJEJbVjq1GaxbsFAOmPxHzcADxY1A7NsSgA1YGiiSgUgEIkYjoVU6XZoWIHZ2Le95-jYBy91zwVFy9hGFKXL7sU24_cDE2bz8WkDrs-zf97Jt7u16-rR7l5fnha3W1kIAbSknwMVeVdWceSbamCBY_Msa5YKVvV1pgSraM6cgimjBQjqxQqq2yoUnR6Jm4O4u-u_flN_bBNZdt-xZSHLuy26-VKG-MIRvD6AOam2cZmn4h6_4PYK7KsvCWn_wArWlCy |
| ContentType | eBook Book |
| DBID | RYH |
| DEWEY | 006.4 |
| DOI | 10.1016/B978-0-12-369531-4.X5000-8 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISBN | 9780080513614 0080513611 |
| Edition | 3 |
| ExternalDocumentID | EBC344670 BA76631421 |
| GroupedDBID | -KG -VQ -VX 089 20A 38. A4I A4J AAAAS AABBV AALRI AAORS AAXUO AAYWO AAZNM ABARN ABGWT ABIAV ABLXK ABMAC ABMRC ABQPQ ABQQC ACHHS ACITS ACLGV ACXMD ADCEY ADVEM AERYV AFOJC AGAMA AHUBN AHWGJ AIXPE AJFER AJLEP AKHYG ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZZ BBABE BBQZY BGHEG CZZ DUGUG EBSCA ECOWB FEDTE GEOUK GJXVT HF4 HGY HVGLF INJ IPG IVR JJU KNBBP MYL PQQKQ RYH SDK SRW XI1 ALTAS AMYDA |
| ID | FETCH-LOGICAL-a79073-78cadd86bfcb95b2a508199cfd9225df544b1567fc9aa4bc7cc92ead525adec63 |
| ISBN | 0123695317 9780123695314 |
| IngestDate | Wed Dec 10 11:47:33 EST 2025 Thu Jun 26 22:37:29 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2002117797 |
| LCCallNum_Ident | TK7882.P3T46 2006 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a79073-78cadd86bfcb95b2a508199cfd9225df544b1567fc9aa4bc7cc92ead525adec63 |
| Notes | Includes bibliographical references and index |
| OCLC | 239612960 |
| PQID | EBC344670 |
| PageCount | 854 |
| ParticipantIDs | proquest_ebookcentral_EBC344670 nii_cinii_1130000798275928576 |
| PublicationCentury | 2000 |
| PublicationDate | c2006 2006 |
| PublicationDateYYYYMMDD | 2006-01-01 |
| PublicationDate_xml | – year: 2006 text: c2006 |
| PublicationDecade | 2000 |
| PublicationPlace | San Diego, CA ; London ; Tokyo |
| PublicationPlace_xml | – name: San Diego, CA ; London ; Tokyo – name: San Diego |
| PublicationYear | 2006 |
| Publisher | Academic Press, an imprint of Elsevier Elsevier Science & Technology |
| Publisher_xml | – name: Academic Press, an imprint of Elsevier – name: Elsevier Science & Technology |
| SSID | ssj0000218839 ssj0002048744 |
| Score | 2.482988 |
| Snippet | A classic that offers comprehensive coverage with a balance between theory and practice. |
| SourceID | proquest nii |
| SourceType | Publisher |
| SubjectTerms | Pattern recognition systems |
| TableOfContents | A.10 THE CRAMER-RAO LOWER BOUND -- A.11 CENTRAL LIMIT THEOREM -- A.12 CHI-SQUARE DISTRIBUTION -- A.13 t-DISTRIBUTION -- A.14 BETA DISTRIBUTION -- A.15 POISSON DISTRIBUTION -- Appendix B LINEAR ALGEBRA BASICS -- B.1 POSITIVE DEFINITE AND SYMMETRIC MATRICES -- B.2 CORRELATION MATRIX DIAGONALIZATION -- Appendix C COST FUNCTION OPTIMIZATION -- C.1 GRADIENT DESCENT ALGORITHM -- C.2 NEWTON'S ALGORITHM -- C.3 CONJUGATE-GRADIENT METHOD -- C.4 OPTIMIZATION FOR CONSTRAINED PROBLEMS -- Appendix D BASIC DEFINITIONS FROM LINEAR SYSTEMS THEORY -- D.1 LINEAR TIME INVARIANT (LTI) SYSTEMS -- D.2 TRANSFER FUNCTION -- D.3 SERIAL AND PARALLEL CONNECTION -- D.4 TWO-DIMENSIONAL GENERALIZATIONS -- INDEX 5.5 CLASS SEPARABILITY MEASURES -- 5.6 FEATURE SUBSET SELECTION -- 5.7 OPTIMAL FEATURE GENERATION -- 5.8 NEURAL NETWORKS AND FEATURE GENERATION/ SELECTION -- 5.9 A HINT ON GENERALIZATION THEORY -- 5.10 THE BAYESIAN INFORMATION CRITERION -- 6 FEATURE GENERATION I: LINEAR TRANSFORMS -- 6.1 INTRODUCTION -- 6.2 BASIS VECTORS AND IMAGES -- 6.3 THE KARHUNEN-LOÈVE TRANSFORM -- 6.4 THE SINGULAR VALUE DECOMPOSITION -- 6.5 INDEPENDENT COMPONENT ANALYSIS -- 6.6 THE DISCRETE FOURIER TRANSFORM (DFT) -- 6.7 THE DISCRETE COSINE AND SINE TRANSFORMS -- 6.8 THE HADAMARD TRANSFORM -- 6.9 THE HAAR TRANSFORM -- 6.10 THE HAAR EXPANSION REVISITED -- 6.11 DISCRETE TIMEWAVELET TRANSFORM (DTWT) -- 6.12 THE MULTIRESOLUTION INTERPRETATION -- 6.13 WAVELET PACKETS -- 6.14 A LOOK AT TWO-DIMENSIONAL GENERALIZATIONS -- 6.15 APPLICATIONS -- 7 FEATURE GENERATION II -- 7.1 INTRODUCTION -- 7.2 REGIONAL FEATURES -- 7.3 FEATURES FOR SHAPE AND SIZE CHARACTERIZATION -- 7.4 A GLIMPSE AT FRACTALS -- 7.5 TYPICAL FEATURES FOR SPEECH AND AUDIO CLASSIFICATION -- 8 TEMPLATE MATCHING -- 8.1 INTRODUCTION -- 8.2 MEASURES BASED ON OPTIMAL PATH SEARCHING TECHNIQUES -- 8.3 MEASURES BASED ON CORRELATIONS -- 8.4 DEFORMABLE TEMPLATE MODELS -- 9 CONTEXT-DEPENDENT CLASSIFICATION -- 9.1 INTRODUCTION -- 9.2 THE BAYES CLASSIFIER -- 9.3 MARKOV CHAIN MODELS -- 9.4 THE VITERBI ALGORITHM -- 9.5 CHANNEL EQUALIZATION -- 9.6 HIDDEN MARKOV MODELS -- 9.7 HMM WITH STATE DURATION MODELING -- 9.8 TRAINING MARKOV MODELS VIA NEURAL NETWORKS -- 9.9 A DISCUSSION OF MARKOV RANDOM FIELDS -- 10 SYSTEM EVALUATION -- 10.1 INTRODUCTION -- 10.2 ERROR COUNTING APPROACH -- 10.3 EXPLOITING THE FINITE SIZE OF THE DATA SET -- 10.4 A CASE STUDY FROM MEDICAL IMAGING -- 11 CLUSTERING: BASIC CONCEPTS -- 11.1 INTRODUCTION -- 11.2 PROXIMITY MEASURES -- 12 CLUSTERING ALGORITHMS I: SEQUENTIAL ALGORITHMS -- 12.1 INTRODUCTION 12.2 CATEGORIES OF CLUSTERING ALGORITHMS -- 12.3 SEQUENTIAL CLUSTERING ALGORITHMS -- 12.4 A MODIFICATION OF BSAS -- 12.5 A TWO-THRESHOLD SEQUENTIAL SCHEME -- 12.6 REFINEMENT STAGES -- 12.7 NEURAL NETWORK IMPLEMENTATION -- 13 CLUSTERING ALGORITHMS II: HIERARCHICAL ALGORITHMS -- 13.1 INTRODUCTION -- 13.2 AGGLOMERATIVE ALGORITHMS -- 13.3 THE COPHENETIC MATRIX -- 13.4 DIVISIVE ALGORITHMS -- 13.5 HIERARCHICAL ALGORITHMS FOR LARGE DATA SETS -- 13.6 CHOICE OF THE BEST NUMBER OF CLUSTERS -- 14 CLUSTERING ALGORITHMS III: SCHEMES BASED ON FUNCTION OPTIMIZATION -- 14.1 INTRODUCTION -- 14.2 MIXTURE DECOMPOSITION SCHEMES -- 14.3 FUZZY CLUSTERING ALGORITHMS -- 14.4 POSSIBILISTIC CLUSTERING -- 14.5 HARD CLUSTERING ALGORITHMS -- 14.6 VECTOR QUANTIZATION -- APPENDIX -- 15 CLUSTERING ALGORITHMS IV -- 15.1 INTRODUCTION -- 15.2 CLUSTERING ALGORITHMS BASED ON GRAPH THEORY -- 15.3 COMPETITIVE LEARNING ALGORITHMS -- 15.4 BINARY MORPHOLOGY CLUSTERING ALGORITHMS (BMCAs) -- 15.5 BOUNDARY DETECTION ALGORITHMS -- 15.6 VALLEY-SEEKING CLUSTERING ALGORITHMS -- 15.7 CLUSTERING VIA COST OPTIMIZATION (REVISITED) -- 15.8 KERNEL CLUSTERING METHODS -- 15.9 DENSITY-BASED ALGORITHMS FOR LARGE DATA SETS -- 15.10 CLUSTERING ALGORITHMS FOR HIGH-DIMENSIONAL DATA SETS -- 15.11 OTHER CLUSTERING ALGORITHMS -- 16 CLUSTER VALIDITY -- 16.1 INTRODUCTION -- 16.2 HYPOTHESIS TESTING REVISITED -- 16.3 HYPOTHESIS TESTING IN CLUSTER VALIDITY -- 16.4 RELATIVE CRITERIA -- 16.5 VALIDITY OF INDIVIDUAL CLUSTERS -- 16.6 CLUSTERING TENDENCY -- Appendix A HINTS FROM PROBABILITY AND STATISTICS -- A.1 TOTAL PROBABILITY AND THE BAYES RULE -- A.2 MEAN AND VARIANCE -- A.3 STATISTICAL INDEPENDENCE -- A.4 MARGINALIZATION -- A.5 CHARACTERISTIC FUNCTIONS -- A.6 MOMENTS AND CUMULANTS -- A.7 EDGEWORTH EXPANSION OF A PDF -- A.8 KULLBACK-LEIBLER DISTANCE -- A.9 MULTIVARIATE GAUSSIAN OR NORMAL PROBABILITY DENSITY FUNCTION Front cover -- Title page -- Copyright page -- Table of contents -- PREFACE -- 1 INTRODUCTION -- 1.1 IS PATTERN RECOGNITION IMPORTANT? -- 1.2 FEATURES, FEATURE VECTORS, AND CLASSIFIERS -- 1.3 SUPERVISED VERSUS UNSUPERVISED PATTERN RECOGNITION -- 1.4 OUTLINE OF THE BOOK -- 2 CLASSIFIERS BASED ON BAYES DECISION THEORY -- 2.1 INTRODUCTION -- 2.2 BAYES DECISION THEORY -- 2.3 DISCRIMINANT FUNCTIONS AND DECISION SURFACES -- 2.4 BAYESIAN CLASSIFICATION FOR NORMAL DISTRIBUTIONS -- 2.5 ESTIMATION OF UNKNOWN PROBABILITY DENSITY FUNCTIONS -- 2.6 THE NEAREST NEIGHBOR RULE -- 2.7 BAYESIAN NETWORKS -- 3 LINEAR CLASSIFIERS -- 3.1 INTRODUCTION -- 3.2 LINEAR DISCRIMINANT FUNCTIONS AND DECISION HYPERPLANES -- 3.3 THE PERCEPTRON ALGORITHM -- 3.4 LEAST SQUARES METHODS -- 3.5 MEAN SQUARE ESTIMATION REVISITED -- 3.6 LOGISTIC DISCRIMINATION -- 3.7 SUPPORT VECTOR MACHINES -- 4 NONLINEAR CLASSIFIERS -- 4.1 INTRODUCTION -- 4.2 THE XOR PROBLEM -- 4.3 THE TWO-LAYER PERCEPTRON -- 4.4 THREE-LAYER PERCEPTRONS -- 4.5 ALGORITHMS BASED ON EXACT CLASSIFICATION OF THE TRAINING SET -- 4.6 THE BACKPROPAGATION ALGORITHM -- 4.7 VARIATIONS ON THE BACKPROPAGATION THEME -- 4.8 THE COST FUNCTION CHOICE -- 4.9 CHOICE OF THE NETWORK SIZE -- 4.10 A SIMULATION EXAMPLE -- 4.11 NETWORKS WITH WEIGHT SHARING -- 4.12 GENERALIZED LINEAR CLASSIFIERS -- 4.13 CAPACITY OF THE l-DIMENSIONAL SPACE IN LINEAR DICHOTOMIES -- 4.14 POLYNOMIAL CLASSIFIERS -- 4.15 RADIAL BASIS FUNCTION NETWORKS -- 4.16 UNIVERSAL APPROXIMATORS -- 4.17 SUPPORT VECTOR MACHINES: THE NONLINEAR CASE -- 4.18 DECISION TREES -- 4.19 COMBINING CLASSIFIERS -- 4.20 THE BOOSTING APPROACH TO COMBINE CLASSIFIERS -- 4.21 DISCUSSION -- 5 FEATURE SELECTION -- 5.1 INTRODUCTION -- 5.2 PREPROCESSING -- 5.3 FEATURE SELECTION BASED ON STATISTICAL HYPOTHESIS TESTING -- 5.4 THE RECEIVER OPERATING CHARACTERISTICS (ROC) CURVE |
| Title | Pattern recognition |
| URI | https://cir.nii.ac.jp/crid/1130000798275928576 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=344670 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT8IwGG0UPehJUSMqysHr1I52bY9CUBMMckDCjaztZnZwM2MY_ny_bmXD3_HgpbCFrBtva9_b932vCJ0zzT0tOXbgQzgklMoRMO2agCPGgcYhzu2axvdsMOCTiRjaxRpm-XICLI75YiFe_hVq2Adgm9LZP8BdHhR2wHcAHVqAHdoPjLjcLBAf5laZpjzF5gRVEXZTga-TNNKFowAMEE9RUoVxknmWJvNnWRR39QvKmEVx8vNLgSq33mj2Ig_UlF2mUZFfsKxmeScmczc3Ac8k-XJoLVR-p3DkNU6H-W8dcjExayo4vJpQyjS_zjUDQoOJKfRfZx5o443b3sNjv3wJZggGMLTc6sh2zqwrUnkyS6dY7F1-3zkwgziKPs2nOUkY7aCaKRzZRWtBXEfbK0aPe6husWmtYLOPxje9UffOsctROD4TMBI6jMPfCve2DJUUVLo-NXxKqFALGBV1SAmRIIdZqITvE6mYUsKFJ5W6FOBQXvsA1eIkDg5RC4MOpppRj8iQSBr4QgsWBMTnIHYC2W6gJlzPVEWmxSbkCFxOcJdR4XKQiA10trzSaR5Vt6m8016n2waFz66OfjnCMdqqbpwTVMvSedBEm-o1i2bpqQXqDXvGHCc |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Pattern+recognition&rft.au=Theodoridis%2C+Sergios&rft.au=Koutroumbas%2C+Konstantinos&rft.date=2006-01-01&rft.pub=Academic+Press%2C+an+imprint+of+Elsevier&rft.isbn=9780123695314&rft_id=info:doi/10.1016%2FB978-0-12-369531-4.X5000-8&rft.externalDocID=BA76631421 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780123695314/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780123695314/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780123695314/sc.gif&client=summon&freeimage=true |

