Pattern recognition

A classic that offers comprehensive coverage with a balance between theory and practice.

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Theodoridis, Sergios, Koutroumbas, Konstantinos
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: San Diego, CA ; London ; Tokyo Academic Press, an imprint of Elsevier 2006
Elsevier Science & Technology
Vydání:3
Témata:
ISBN:0123695317, 9780123695314
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A classic that offers comprehensive coverage with a balance between theory and practice.
AbstractList A classic that offers comprehensive coverage with a balance between theory and practice.
Author Theodoridis, Sergios
Koutroumbas, Konstantinos
Author_xml – sequence: 1
  fullname: Theodoridis, Sergios
– sequence: 2
  fullname: Koutroumbas, Konstantinos
BackLink https://cir.nii.ac.jp/crid/1130000798275928576$$DView record in CiNii
BookMark eNotj0tLw0AUhUe0YlO78g-IiLup987rzl3aUh9Q0IWIuzKZTCRaJprE_29K3ZyzOB8fnEKc5DYnIa4QFgjobpdMXoJEJbVjq1GaxbsFAOmPxHzcADxY1A7NsSgA1YGiiSgUgEIkYjoVU6XZoWIHZ2Le95-jYBy91zwVFy9hGFKXL7sU24_cDE2bz8WkDrs-zf97Jt7u16-rR7l5fnha3W1kIAbSknwMVeVdWceSbamCBY_Msa5YKVvV1pgSraM6cgimjBQjqxQqq2yoUnR6Jm4O4u-u_flN_bBNZdt-xZSHLuy26-VKG-MIRvD6AOam2cZmn4h6_4PYK7KsvCWn_wArWlCy
ContentType eBook
Book
DBID RYH
DEWEY 006.4
DOI 10.1016/B978-0-12-369531-4.X5000-8
DatabaseName CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9780080513614
0080513611
Edition 3
ExternalDocumentID EBC344670
BA76631421
GroupedDBID -KG
-VQ
-VX
089
20A
38.
A4I
A4J
AAAAS
AABBV
AALRI
AAORS
AAXUO
AAYWO
AAZNM
ABARN
ABGWT
ABIAV
ABLXK
ABMAC
ABMRC
ABQPQ
ABQQC
ACHHS
ACITS
ACLGV
ACXMD
ADCEY
ADVEM
AERYV
AFOJC
AGAMA
AHUBN
AHWGJ
AIXPE
AJFER
AJLEP
AKHYG
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZZ
BBABE
BBQZY
BGHEG
CZZ
DUGUG
EBSCA
ECOWB
FEDTE
GEOUK
GJXVT
HF4
HGY
HVGLF
INJ
IPG
IVR
JJU
KNBBP
MYL
PQQKQ
RYH
SDK
SRW
XI1
ALTAS
AMYDA
ID FETCH-LOGICAL-a79073-78cadd86bfcb95b2a508199cfd9225df544b1567fc9aa4bc7cc92ead525adec63
ISBN 0123695317
9780123695314
IngestDate Wed Dec 10 11:47:33 EST 2025
Thu Jun 26 22:37:29 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2002117797
LCCallNum_Ident TK7882.P3T46 2006
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a79073-78cadd86bfcb95b2a508199cfd9225df544b1567fc9aa4bc7cc92ead525adec63
Notes Includes bibliographical references and index
OCLC 239612960
PQID EBC344670
PageCount 854
ParticipantIDs proquest_ebookcentral_EBC344670
nii_cinii_1130000798275928576
PublicationCentury 2000
PublicationDate c2006
2006
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – year: 2006
  text: c2006
PublicationDecade 2000
PublicationPlace San Diego, CA ; London ; Tokyo
PublicationPlace_xml – name: San Diego, CA ; London ; Tokyo
– name: San Diego
PublicationYear 2006
Publisher Academic Press, an imprint of Elsevier
Elsevier Science & Technology
Publisher_xml – name: Academic Press, an imprint of Elsevier
– name: Elsevier Science & Technology
SSID ssj0000218839
ssj0002048744
Score 2.482988
Snippet A classic that offers comprehensive coverage with a balance between theory and practice.
SourceID proquest
nii
SourceType Publisher
SubjectTerms Pattern recognition systems
TableOfContents A.10 THE CRAMER-RAO LOWER BOUND -- A.11 CENTRAL LIMIT THEOREM -- A.12 CHI-SQUARE DISTRIBUTION -- A.13 t-DISTRIBUTION -- A.14 BETA DISTRIBUTION -- A.15 POISSON DISTRIBUTION -- Appendix B LINEAR ALGEBRA BASICS -- B.1 POSITIVE DEFINITE AND SYMMETRIC MATRICES -- B.2 CORRELATION MATRIX DIAGONALIZATION -- Appendix C COST FUNCTION OPTIMIZATION -- C.1 GRADIENT DESCENT ALGORITHM -- C.2 NEWTON'S ALGORITHM -- C.3 CONJUGATE-GRADIENT METHOD -- C.4 OPTIMIZATION FOR CONSTRAINED PROBLEMS -- Appendix D BASIC DEFINITIONS FROM LINEAR SYSTEMS THEORY -- D.1 LINEAR TIME INVARIANT (LTI) SYSTEMS -- D.2 TRANSFER FUNCTION -- D.3 SERIAL AND PARALLEL CONNECTION -- D.4 TWO-DIMENSIONAL GENERALIZATIONS -- INDEX
5.5 CLASS SEPARABILITY MEASURES -- 5.6 FEATURE SUBSET SELECTION -- 5.7 OPTIMAL FEATURE GENERATION -- 5.8 NEURAL NETWORKS AND FEATURE GENERATION/ SELECTION -- 5.9 A HINT ON GENERALIZATION THEORY -- 5.10 THE BAYESIAN INFORMATION CRITERION -- 6 FEATURE GENERATION I: LINEAR TRANSFORMS -- 6.1 INTRODUCTION -- 6.2 BASIS VECTORS AND IMAGES -- 6.3 THE KARHUNEN-LOÈVE TRANSFORM -- 6.4 THE SINGULAR VALUE DECOMPOSITION -- 6.5 INDEPENDENT COMPONENT ANALYSIS -- 6.6 THE DISCRETE FOURIER TRANSFORM (DFT) -- 6.7 THE DISCRETE COSINE AND SINE TRANSFORMS -- 6.8 THE HADAMARD TRANSFORM -- 6.9 THE HAAR TRANSFORM -- 6.10 THE HAAR EXPANSION REVISITED -- 6.11 DISCRETE TIMEWAVELET TRANSFORM (DTWT) -- 6.12 THE MULTIRESOLUTION INTERPRETATION -- 6.13 WAVELET PACKETS -- 6.14 A LOOK AT TWO-DIMENSIONAL GENERALIZATIONS -- 6.15 APPLICATIONS -- 7 FEATURE GENERATION II -- 7.1 INTRODUCTION -- 7.2 REGIONAL FEATURES -- 7.3 FEATURES FOR SHAPE AND SIZE CHARACTERIZATION -- 7.4 A GLIMPSE AT FRACTALS -- 7.5 TYPICAL FEATURES FOR SPEECH AND AUDIO CLASSIFICATION -- 8 TEMPLATE MATCHING -- 8.1 INTRODUCTION -- 8.2 MEASURES BASED ON OPTIMAL PATH SEARCHING TECHNIQUES -- 8.3 MEASURES BASED ON CORRELATIONS -- 8.4 DEFORMABLE TEMPLATE MODELS -- 9 CONTEXT-DEPENDENT CLASSIFICATION -- 9.1 INTRODUCTION -- 9.2 THE BAYES CLASSIFIER -- 9.3 MARKOV CHAIN MODELS -- 9.4 THE VITERBI ALGORITHM -- 9.5 CHANNEL EQUALIZATION -- 9.6 HIDDEN MARKOV MODELS -- 9.7 HMM WITH STATE DURATION MODELING -- 9.8 TRAINING MARKOV MODELS VIA NEURAL NETWORKS -- 9.9 A DISCUSSION OF MARKOV RANDOM FIELDS -- 10 SYSTEM EVALUATION -- 10.1 INTRODUCTION -- 10.2 ERROR COUNTING APPROACH -- 10.3 EXPLOITING THE FINITE SIZE OF THE DATA SET -- 10.4 A CASE STUDY FROM MEDICAL IMAGING -- 11 CLUSTERING: BASIC CONCEPTS -- 11.1 INTRODUCTION -- 11.2 PROXIMITY MEASURES -- 12 CLUSTERING ALGORITHMS I: SEQUENTIAL ALGORITHMS -- 12.1 INTRODUCTION
12.2 CATEGORIES OF CLUSTERING ALGORITHMS -- 12.3 SEQUENTIAL CLUSTERING ALGORITHMS -- 12.4 A MODIFICATION OF BSAS -- 12.5 A TWO-THRESHOLD SEQUENTIAL SCHEME -- 12.6 REFINEMENT STAGES -- 12.7 NEURAL NETWORK IMPLEMENTATION -- 13 CLUSTERING ALGORITHMS II: HIERARCHICAL ALGORITHMS -- 13.1 INTRODUCTION -- 13.2 AGGLOMERATIVE ALGORITHMS -- 13.3 THE COPHENETIC MATRIX -- 13.4 DIVISIVE ALGORITHMS -- 13.5 HIERARCHICAL ALGORITHMS FOR LARGE DATA SETS -- 13.6 CHOICE OF THE BEST NUMBER OF CLUSTERS -- 14 CLUSTERING ALGORITHMS III: SCHEMES BASED ON FUNCTION OPTIMIZATION -- 14.1 INTRODUCTION -- 14.2 MIXTURE DECOMPOSITION SCHEMES -- 14.3 FUZZY CLUSTERING ALGORITHMS -- 14.4 POSSIBILISTIC CLUSTERING -- 14.5 HARD CLUSTERING ALGORITHMS -- 14.6 VECTOR QUANTIZATION -- APPENDIX -- 15 CLUSTERING ALGORITHMS IV -- 15.1 INTRODUCTION -- 15.2 CLUSTERING ALGORITHMS BASED ON GRAPH THEORY -- 15.3 COMPETITIVE LEARNING ALGORITHMS -- 15.4 BINARY MORPHOLOGY CLUSTERING ALGORITHMS (BMCAs) -- 15.5 BOUNDARY DETECTION ALGORITHMS -- 15.6 VALLEY-SEEKING CLUSTERING ALGORITHMS -- 15.7 CLUSTERING VIA COST OPTIMIZATION (REVISITED) -- 15.8 KERNEL CLUSTERING METHODS -- 15.9 DENSITY-BASED ALGORITHMS FOR LARGE DATA SETS -- 15.10 CLUSTERING ALGORITHMS FOR HIGH-DIMENSIONAL DATA SETS -- 15.11 OTHER CLUSTERING ALGORITHMS -- 16 CLUSTER VALIDITY -- 16.1 INTRODUCTION -- 16.2 HYPOTHESIS TESTING REVISITED -- 16.3 HYPOTHESIS TESTING IN CLUSTER VALIDITY -- 16.4 RELATIVE CRITERIA -- 16.5 VALIDITY OF INDIVIDUAL CLUSTERS -- 16.6 CLUSTERING TENDENCY -- Appendix A HINTS FROM PROBABILITY AND STATISTICS -- A.1 TOTAL PROBABILITY AND THE BAYES RULE -- A.2 MEAN AND VARIANCE -- A.3 STATISTICAL INDEPENDENCE -- A.4 MARGINALIZATION -- A.5 CHARACTERISTIC FUNCTIONS -- A.6 MOMENTS AND CUMULANTS -- A.7 EDGEWORTH EXPANSION OF A PDF -- A.8 KULLBACK-LEIBLER DISTANCE -- A.9 MULTIVARIATE GAUSSIAN OR NORMAL PROBABILITY DENSITY FUNCTION
Front cover -- Title page -- Copyright page -- Table of contents -- PREFACE -- 1 INTRODUCTION -- 1.1 IS PATTERN RECOGNITION IMPORTANT? -- 1.2 FEATURES, FEATURE VECTORS, AND CLASSIFIERS -- 1.3 SUPERVISED VERSUS UNSUPERVISED PATTERN RECOGNITION -- 1.4 OUTLINE OF THE BOOK -- 2 CLASSIFIERS BASED ON BAYES DECISION THEORY -- 2.1 INTRODUCTION -- 2.2 BAYES DECISION THEORY -- 2.3 DISCRIMINANT FUNCTIONS AND DECISION SURFACES -- 2.4 BAYESIAN CLASSIFICATION FOR NORMAL DISTRIBUTIONS -- 2.5 ESTIMATION OF UNKNOWN PROBABILITY DENSITY FUNCTIONS -- 2.6 THE NEAREST NEIGHBOR RULE -- 2.7 BAYESIAN NETWORKS -- 3 LINEAR CLASSIFIERS -- 3.1 INTRODUCTION -- 3.2 LINEAR DISCRIMINANT FUNCTIONS AND DECISION HYPERPLANES -- 3.3 THE PERCEPTRON ALGORITHM -- 3.4 LEAST SQUARES METHODS -- 3.5 MEAN SQUARE ESTIMATION REVISITED -- 3.6 LOGISTIC DISCRIMINATION -- 3.7 SUPPORT VECTOR MACHINES -- 4 NONLINEAR CLASSIFIERS -- 4.1 INTRODUCTION -- 4.2 THE XOR PROBLEM -- 4.3 THE TWO-LAYER PERCEPTRON -- 4.4 THREE-LAYER PERCEPTRONS -- 4.5 ALGORITHMS BASED ON EXACT CLASSIFICATION OF THE TRAINING SET -- 4.6 THE BACKPROPAGATION ALGORITHM -- 4.7 VARIATIONS ON THE BACKPROPAGATION THEME -- 4.8 THE COST FUNCTION CHOICE -- 4.9 CHOICE OF THE NETWORK SIZE -- 4.10 A SIMULATION EXAMPLE -- 4.11 NETWORKS WITH WEIGHT SHARING -- 4.12 GENERALIZED LINEAR CLASSIFIERS -- 4.13 CAPACITY OF THE l-DIMENSIONAL SPACE IN LINEAR DICHOTOMIES -- 4.14 POLYNOMIAL CLASSIFIERS -- 4.15 RADIAL BASIS FUNCTION NETWORKS -- 4.16 UNIVERSAL APPROXIMATORS -- 4.17 SUPPORT VECTOR MACHINES: THE NONLINEAR CASE -- 4.18 DECISION TREES -- 4.19 COMBINING CLASSIFIERS -- 4.20 THE BOOSTING APPROACH TO COMBINE CLASSIFIERS -- 4.21 DISCUSSION -- 5 FEATURE SELECTION -- 5.1 INTRODUCTION -- 5.2 PREPROCESSING -- 5.3 FEATURE SELECTION BASED ON STATISTICAL HYPOTHESIS TESTING -- 5.4 THE RECEIVER OPERATING CHARACTERISTICS (ROC) CURVE
Title Pattern recognition
URI https://cir.nii.ac.jp/crid/1130000798275928576
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=344670
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT8IwGG0UPehJUSMqysHr1I52bY9CUBMMckDCjaztZnZwM2MY_ny_bmXD3_HgpbCFrBtva9_b932vCJ0zzT0tOXbgQzgklMoRMO2agCPGgcYhzu2axvdsMOCTiRjaxRpm-XICLI75YiFe_hVq2Adgm9LZP8BdHhR2wHcAHVqAHdoPjLjcLBAf5laZpjzF5gRVEXZTga-TNNKFowAMEE9RUoVxknmWJvNnWRR39QvKmEVx8vNLgSq33mj2Ig_UlF2mUZFfsKxmeScmczc3Ac8k-XJoLVR-p3DkNU6H-W8dcjExayo4vJpQyjS_zjUDQoOJKfRfZx5o443b3sNjv3wJZggGMLTc6sh2zqwrUnkyS6dY7F1-3zkwgziKPs2nOUkY7aCaKRzZRWtBXEfbK0aPe6husWmtYLOPxje9UffOsctROD4TMBI6jMPfCve2DJUUVLo-NXxKqFALGBV1SAmRIIdZqITvE6mYUsKFJ5W6FOBQXvsA1eIkDg5RC4MOpppRj8iQSBr4QgsWBMTnIHYC2W6gJlzPVEWmxSbkCFxOcJdR4XKQiA10trzSaR5Vt6m8016n2waFz66OfjnCMdqqbpwTVMvSedBEm-o1i2bpqQXqDXvGHCc
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Pattern+recognition&rft.au=Theodoridis%2C+Sergios&rft.au=Koutroumbas%2C+Konstantinos&rft.date=2006-01-01&rft.pub=Academic+Press%2C+an+imprint+of+Elsevier&rft.isbn=9780123695314&rft_id=info:doi/10.1016%2FB978-0-12-369531-4.X5000-8&rft.externalDocID=BA76631421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780123695314/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780123695314/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780123695314/sc.gif&client=summon&freeimage=true