Biomedical Image Synthesis and Simulation Methods and Applications

Biomedical Image Synthesis and Simulations: Methods and Applications presents the latest on basic concepts and applications in image-based simulation and synthesis used in medical and biomedical imaging. Sections introduce and describe the simulation and synthesis methods that were developed and suc...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavní autori: Burgos, Ninon, Svoboda, David
Médium: E-kniha
Jazyk:English
Vydavateľské údaje: Chantilly Elsevier Science & Technology 2022
Academic Press
Vydanie:1
Edícia:The MICCAI Society Book Series
Predmet:
ISBN:012824349X, 9780128243497
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Biomedical Image Synthesis and Simulations: Methods and Applications presents the latest on basic concepts and applications in image-based simulation and synthesis used in medical and biomedical imaging. Sections introduce and describe the simulation and synthesis methods that were developed and successfully used within the last twenty years and give examples of successful applications of these methods. As the book provides a survey of all the commonly established approaches and more recent deep learning methods, it is highly suitable for graduate students and researchers in medical and biomedical imaging.
AbstractList Biomedical Image Synthesis and Simulations: Methods and Applications presents the latest on basic concepts and applications in image-based simulation and synthesis used in medical and biomedical imaging. Sections introduce and describe the simulation and synthesis methods that were developed and successfully used within the last twenty years and give examples of successful applications of these methods. As the book provides a survey of all the commonly established approaches and more recent deep learning methods, it is highly suitable for graduate students and researchers in medical and biomedical imaging.
Biomedical Image Synthesis and Simulation: Methods and Applications presents the basic concepts and applications in image-based simulation and synthesis used in medical and biomedical imaging.
Author Svoboda, David
Burgos, Ninon
Author_xml – sequence: 1
  fullname: Burgos, Ninon
– sequence: 2
  fullname: Svoboda, David
BookMark eNpVj01LAzEURSN-oK39D7OTLgovk6R5Wdqh1kLBRRXcDcnkxY6dmWgzVfz3FtuNq8uFw-HeAbvoYkdnbGQ0As8xl0KBOGeDU5Hm9YoNuBACkEujr9kopXcAyFFrhXDDxrM6tuTryjbZsrVvlK1_un5DqU6Z7Xy2rtt9Y_s6drfsMtgm0eiUQ_byMH8uHierp8WyuF9NrEacTtBX0qnAA8FUGYnqMCQoTU6hdoqmwrkKvDMBhMAQuDeu8lJ6DFTlYEAM2fjotWlL32kTmz6VXw25GLep_Hf0wN4d2Y9d_NxT6ss_rKKu39mmnM8KDdxIg-IXG0hS2g
ContentType eBook
DEWEY 610.28
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISBN 9780128243503
0128243503
Edition 1
ExternalDocumentID 9780128243503
EBC7019498
GroupedDBID 38.
AAAAS
AABBV
AAKJW
AALRI
AAUXR
AAVWF
AAWMN
AAXUO
ABGWT
ABLXK
ABQQC
ACDGK
AEYWH
AFNOJ
ALMA_UNASSIGNED_HOLDINGS
ALOLN
AOHED
BBABE
CZZ
HGY
SDK
ALBLE
ID FETCH-LOGICAL-a7886-8dc4b5f1fe0659485282f57eb587b5e63bbc0db9f0338ff1d9bcd44d8fec20903
ISBN 012824349X
9780128243497
IngestDate Fri Nov 08 03:18:22 EST 2024
Tue Oct 14 02:13:58 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident R856 .B566 2022
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a7886-8dc4b5f1fe0659485282f57eb587b5e63bbc0db9f0338ff1d9bcd44d8fec20903
OCLC 1333081497
PQID EBC7019498
PageCount 676
ParticipantIDs askewsholts_vlebooks_9780128243503
proquest_ebookcentral_EBC7019498
PublicationCentury 2000
PublicationDate 2022
2022-06-30
PublicationDateYYYYMMDD 2022-01-01
2022-06-30
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Chantilly
PublicationPlace_xml – name: Chantilly
PublicationSeriesTitle The MICCAI Society Book Series
PublicationYear 2022
Publisher Elsevier Science & Technology
Academic Press
Publisher_xml – name: Elsevier Science & Technology
– name: Academic Press
SSID ssj0002877580
ssib061363900
ssib056426168
Score 2.288781
Snippet Biomedical Image Synthesis and Simulation: Methods and Applications presents the basic concepts and applications in image-based simulation and synthesis used...
Biomedical Image Synthesis and Simulations: Methods and Applications presents the latest on basic concepts and applications in image-based simulation and...
SourceID askewsholts
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Biomedical engineering
Diagnostic imaging
Image analysis
Subtitle Methods and Applications
TableOfContents Front Cover -- Biomedical Image Synthesis and Simulation -- Copyright -- Contents -- Contributors -- Preface -- 1 Introduction to medical and biomedical image synthesis -- Part 1 Methods and principles -- 2 Parametric modeling in biomedical image synthesis -- 2.1 Introduction -- 2.2 Parametric modeling paradigm -- 2.2.1 Modeling of the cellular objects -- 2.2.1.1 Generic parameter-controlled shape modeling: random shape model for nucleus and cell body -- 2.2.1.2 Cell-type specific parametric shape models -- 2.2.1.3 Modeling appearance: texture and subcellular organelle models -- 2.2.1.4 Modeling spatial distribution and populations -- 2.2.2 Modeling microscopy and image acquisition: from object models to simulated microscope images -- 2.3 On learning the parameters -- 2.4 Use cases -- 2.4.1 SIMCEP: parametric modeling framework aimed for generating and understanding microscopy images of cells -- 2.4.2 Simulated data for benchmarking -- 2.5 Future directions -- 2.6 Summary -- Acknowledgments -- References -- 3 Monte Carlo simulations for medical and biomedical applications -- 3.1 Introduction -- 3.1.1 A brief history -- 3.1.2 Monte Carlo method and biomedical physics -- 3.2 Underlying theory and principles -- 3.3 Particle transport through matter -- 3.3.1 Photon physics effects -- 3.3.2 Cross-section and mean free path -- 3.3.3 Models -- 3.3.4 Particle transport -- 3.4 Monte Carlo simulation structure -- 3.4.1 Particle source model -- 3.4.1.1 Analytical source -- 3.4.1.2 Voxelized source -- 3.4.1.3 Cumulative density function -- 3.4.1.4 Time management -- 3.4.1.5 Phase space -- 3.4.2 Digitized phantom -- 3.4.2.1 Matter composition -- 3.4.2.2 Analytical geometry -- 3.4.2.3 Voxelized geometry -- 3.4.2.4 Tessellated geometry -- 3.4.2.5 Mixed geometry -- 3.4.2.6 Hierarchical geometry and space partitioning data structure -- 3.4.3 Particle detector
12.3.2.5 Super-resolution for cell quantification and motion tracking
3.5 Running a Monte Carlo simulation -- 3.6 Improving Monte Carlo simulation efficiency -- 3.6.1 Woodcock tracking -- 3.6.2 GPU -- 3.6.3 Fixed force detection -- 3.6.4 Angular response functions -- 3.7 Examples of Monte Carlo simulation applications in medical physics -- 3.8 Monte Carlo simulation for computational biology -- 3.8.1 Generalization of the Monte Carlo method -- 3.8.2 Examples of computational biology applications -- 3.9 Summary -- References -- 4 Medical image synthesis using segmentation and registration -- 4.1 Introduction -- 4.2 Segmentation-based image synthesis -- 4.2.1 Segmentation approaches -- 4.2.1.1 Manual segmentation -- 4.2.1.2 Automatic segmentation -- 4.2.2 Intensity assignment approaches -- 4.2.2.1 Segmentation methods with bulk assignment -- 4.2.2.2 Segmentation methods with subject-specific assignment -- 4.3 Registration-based image synthesis -- 4.3.1 Single-atlas registration approaches -- 4.3.1.1 Direct multimodal registration -- 4.3.1.2 Indirect unimodal registration -- 4.3.2 Multi-atlas registration approaches -- 4.3.3 Combination of registration and regression approaches -- 4.4 Hybrid approaches combining segmentation and registration -- 4.5 Future directions and research challenges -- 4.6 Summary -- Acknowledgments -- References -- 5 Dictionary learning for medical image synthesis -- 5.1 Introduction -- 5.2 Sparse coding -- 5.2.1 Orthogonal matching pursuit -- 5.3 Dictionary learning -- 5.4 Medical image synthesis with dictionary learning -- 5.5 Future directions and research challenges -- 5.6 Summary -- Acknowledgments -- References -- 6 Convolutional neural networks for image synthesis -- 6.1 Convolutional neural networks for image synthesis -- 6.2 Neural network building blocks -- 6.2.1 Neuron -- 6.2.2 Activation function -- 6.2.3 Generator layer details -- 6.3 Training a convolutional neural network
8.2.1.1 Sparse autoencoders -- 8.2.1.2 Contractive autoencoders -- 8.2.1.3 Denoising autoencoders -- 8.2.2 Summary -- 8.3 Variational autoencoders -- 8.3.1 The evidence lower bound (ELBO) -- 8.3.2 Implementation and optimization of variational autoencoders -- 8.3.3 Advantages and challenges of variational autoencoders -- 8.3.3.1 Current challenges of variational autoencoders -- 8.3.4 Disentanglement of the latent space -- 8.3.5 Alternative reconstruction objectives -- 8.3.6 Improving the flexibility of the model -- 8.3.6.1 Alternative priors and auxiliary variables -- 8.3.6.2 Importance weighted autoencoder -- 8.3.6.3 Adversarial autoencoders -- 8.4 Example applications -- 8.4.1 Unsupervised pathology detection -- 8.4.2 Image synthesis for the explanation of black-box classifiers -- 8.4.3 Decoupled shape and appearance modeling for multimodal data -- 8.5 Future directions and research challenges -- 8.6 Summary -- References -- Part 2 Applications -- 9 Optimization of the MR imaging pipeline using simulation -- 9.1 Overview -- 9.2 History of MRI simulation -- 9.2.1 Diffusion MRI -- 9.3 The POSSUM simulation framework -- 9.3.1 POSSUM for MRI and functional MRI -- 9.3.1.1 Modeling artifacts -- 9.3.2 POSSUM for diffusion MRI -- 9.4 Applications -- 9.4.1 Motion correction algorithms for fMRI -- 9.4.1.1 MCFLIRT algorithm -- 9.4.1.2 Simulations -- 9.4.1.3 Results -- 9.4.2 Motion and eddy-current correction algorithms for diffusion MRI -- 9.4.3 Investigating the susceptibility-by-movement artifact -- 9.4.4 Investigating and optimizing image acquisition -- 9.4.5 Simulated data for machine learning -- 9.5 Future directions and research challenges -- References -- 10 Synthesis for image analysis across modalities -- 10.1 General motivation -- 10.2 Registration -- 10.2.1 Background -- 10.2.2 Similarity metrics and their limitations
10.2.3 Synthesis-based similarity metrics -- 10.2.4 Other applications of synthesis-based registration -- 10.3 Segmentation -- 10.3.1 Background -- 10.3.2 Domain gap and synthesis-based solutions -- 10.4 Other directions and perspectives -- References -- 11 Medical image harmonization through synthesis -- 11.1 Introduction -- 11.2 Supervised techniques -- 11.2.1 Architecture and training -- 11.2.2 Using more information -- 11.3 Unsupervised techniques -- 11.3.1 Generative adversarial networks -- 11.3.2 Learning interpretable representations -- 11.3.3 One-/few-shot harmonization -- 11.3.4 Conclusion -- References -- 12 Medical image super-resolution with deep networks -- 12.1 Introduction to super-resolution -- 12.1.1 Basic concepts -- 12.1.2 Brief history of SR methods prior to deep networks -- 12.1.2.1 SR through mathematical modeling -- 12.1.2.2 Example-based SR -- 12.2 SR methods with deep networks -- 12.2.1 Data acquisition -- 12.2.1.1 Fully-supervised, unsupervised, and self-supervised learning -- 12.2.1.2 Multiple network inputs -- 12.2.2 Network architectures -- 12.2.2.1 General frameworks -- 12.2.2.2 Upsampling before or within networks -- 12.2.2.3 Components in networks -- 12.2.2.4 Progressive networks -- 12.2.3 Loss functions -- 12.2.3.1 Paired losses -- 12.2.3.2 Unpaired losses -- 12.3 Applications of super-resolution in medical images -- 12.3.1 Super-resolution in different image modalities -- 12.3.1.1 Super-resolution in CT -- 12.3.1.2 Super-resolution in MRI -- 12.3.1.3 Super-resolution in optical coherence tomography -- 12.3.1.4 Super-resolution in microscopy -- 12.3.2 Super-resolution used for different tasks -- 12.3.2.1 Super-resolution for image quality enhancement -- 12.3.2.2 Super-resolution for diagnostic acceptability -- 12.3.2.3 Super-resolution for segmentation -- 12.3.2.4 Super-resolution for clinical abnormality detection
6.3.1 Loss functions -- 6.3.2 Back propagation -- 6.3.3 Image synthesis accuracy -- 6.4 Practical aspects -- 6.4.1 Pooling layers -- 6.4.2 Convolutional versus fully connected neural networks -- 6.4.3 Vanishing gradient -- 6.5 Commonly known networks -- 6.5.1 AlexNet -- 6.5.2 UNet -- 6.5.3 Inception network -- 6.6 Conclusion -- References -- 7 Generative adversarial networks for medical image synthesis -- 7.1 Introduction -- 7.2 Generative adversarial networks -- 7.2.1 Network architecture -- 7.2.1.1 Deep convolutional GANs -- 7.2.2 Loss function -- 7.2.2.1 Discriminator loss -- 7.2.2.2 Adversarial loss -- 7.2.3 Challenges of training GANs -- 7.3 Conditional GANs -- 7.3.1 Network architecture -- 7.3.2 Loss function -- 7.3.2.1 Image distance loss -- 7.3.2.2 Histogram matching loss -- 7.3.2.3 Perceptual loss -- 7.3.3 Variants of cGANs -- 7.3.3.1 Pix2pix -- 7.3.3.2 InfoGAN -- 7.4 Cycle GAN -- 7.4.1 Network architecture -- 7.4.2 Loss function: cycle consistency loss -- 7.4.3 Variants of Cycle GAN -- 7.4.3.1 Residual Cycle-GAN -- 7.4.3.2 Dense Cycle-GAN -- 7.4.3.3 Unsupervised image-to-image translation networks (UNIT) -- 7.4.3.4 Bicycle-GAN -- 7.4.3.5 StarGAN -- 7.5 Practical aspects -- 7.5.1 Network input dimension and size -- 7.5.2 Pre-processing -- 7.5.3 Data augmentation -- 7.6 CGAN and Cycle-GAN applications -- 7.6.1 Multi-modal MRI synthesis -- 7.6.2 MRI-only radiation therapy treatment planning -- 7.6.3 Image quality improvement/enhancement -- 7.6.4 Cell synthesis -- 7.7 Summary and discussion -- Disclosures -- References -- 8 Autoencoders and variational autoencoders in medical image analysis -- 8.1 Introduction -- 8.1.1 History of the method -- 8.1.2 Autoencoders and variational autoencoders in biomedical image analysis and synthesis -- 8.1.3 Outline of this chapter and notation -- 8.2 Autoencoders -- 8.2.1 Regularized autoencoders
Title Biomedical Image Synthesis and Simulation
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=7019498
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780128243503
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwFH64Ic7JFXeK6MFDodMmbXrUcUUcBBW8Dc0mo07V6Tjov_clk7Y6HsSDl9KmpU3zJXn7ewC7TGYJjzPip1KGPklF5iNXH_hcEh1GPEIKo22xiaTdZnd36ZWrBFrYcgJJnrP39_TlX6HGNgTbhM7-Ae7qpdiA5wg6HhF2PI5xxNWls8naSHo76Oc944pz_ZEje2cyjlj_zG7PleqqRPC3_v3Iy67dzevm6-Ezf5bZd493pxgIwzHFQBWxUm4SZiqN6etLOdJQqZBEZOQqO5aA-viwZXK2k5TtRScvr76p2GUs23vR0Wj0JmEyiXF3mT5oHZ1elKuZxkY6q4UZ5BuQG3LJAB-sWi9BYSWweY7c58uUSFV3GtDIikfc7pEUDIof9NIyATfzMK1MZMgCTKh8ERpfMjkuwuyl81FYgv0aB8_i4FU4eIiDV-OwDLcnxzetM98VpPCzhLHYZ1IQTnVTK2ONJoxiNzVNFKcs4VTFEecikDzVAQr-WjdlyoUkRDKtRGgUYiswhXCqVfACoqWQXFNcDITikiCxokHGmyxjoRByDXa-_Hhn-GRt50WnHh0aRGvglePRsfedQ2-nhmz990c2YK6ePpswNei_qS2YEcNBt-hvO1Q_AVBcKh0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Biomedical+Image+Synthesis+and+Simulation&rft.au=Burgos%2C+Ninon&rft.au=Svoboda%2C+David&rft.date=2022-01-01&rft.pub=Elsevier+Science+%26+Technology&rft.isbn=9780128243497&rft.externalDocID=EBC7019498
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801282%2F9780128243503.jpg