Kernel Methods for Pattern Analysis
Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | eBook Book |
| Language: | English |
| Published: |
Cambridge
Cambridge University Press
28.06.2004
|
| Edition: | 1 |
| Subjects: | |
| ISBN: | 9780521813976, 0521813972 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so. |
|---|---|
| AbstractList | Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so. The kernel functions methodology described here provides a powerful and unified framework for disciplines ranging from neural networks and pattern recognition to machine learning and data mining. This book provides practitioners with a large toolkit of algorithms, kernels and solutions ready to be implemented, suitable for standard pattern discovery problems. |
| Author | Cristianini, Nello Shawe-Taylor, John |
| Author_xml | – sequence: 1 fullname: Shawe-Taylor, John – sequence: 2 fullname: Cristianini, Nello |
| BackLink | https://cir.nii.ac.jp/crid/1130282273105608832$$DView record in CiNii |
| BookMark | eNqNkUtLAzEQxyNasa29eywogofqTJLN49iW-sBKPYjXJbubtWvXjW5WxW9vaguiIprDDDP85vHPdMhW5SpLyB7CMQLKk_FopqWCCFGBFopukN6XeHMdU1TItBQt0qEADISONGyTNnIuUPGI75Ce9_cQHiqJINpk_9LWlS37V7aZu8z3c1f3r03ThGx_WJnyzRd-l7RyU3rbW_suuT2d3IzPB9PZ2cV4OB0YqbiUwUkJKmVUWc2stCgAjAGbYEhIjYZhEkVGJ1nGs9xwxk2SK5HlmUhpbjnrkqNVY-MX9tXPXdn4-KW0iXMLHweJGOQJJjSH_7Agg_BI6L_Zz68M7OGKfazd07P1TfyBpbZqalPGk9GYChFxDODBCqyKIk6LpQ3rAVWUSoYQCVCKLfuxFZaah6Qusjsbp65ej0aIlweOvx84VA1-VCXud_4dIoyZpg |
| ContentType | eBook Book |
| Copyright | Cambridge University Press 2004 |
| Copyright_xml | – notice: Cambridge University Press 2004 |
| DBID | RYH |
| DEWEY | 006.4 |
| DOI | 10.1017/CBO9780511809682 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISBN | 9780511809682 0511809689 9780511210600 0511210604 1107144566 9781107144569 1139636944 9781139636940 |
| Edition | 1 |
| ExternalDocumentID | 9781139636940 9781107144569 9780511809682 EBC266541 BA6740613X 10_1017_CBO9780511809682 |
| GroupedDBID | -G2 089 20A 38. A4I A4J AAAAZ AABBV AAFQY AAHFW ABARN ABESS ABIAV ABMRC ABZUC ACLGV ACNOG ADCGF ADHWY ADQZK ADVEM ADWOK AEDFS AERYV AEWAL AEWQY AFTHB AFXKH AGSJN AHAWV AHJNT AHQWO AJFER AJPFC AJXXZ AKHYG ALMA_UNASSIGNED_HOLDINGS AMJDZ AMYDA ANGWU ASYWF AZZ BBABE BFIBU BJUTA BPBUR COBLI COXPH CYGLA CZZ DOUIK EBSCA FH2 GEOUK HF4 ICERG IVR JJU MYL NK1 NK2 OLDIN OTBUH OZASK OZBHS PP- PQQKQ S2A SACVX SN- ZXKUE AHWGJ RYH EBACC |
| ID | FETCH-LOGICAL-a78477-a77708c328e93e7e1600aa0eb18e9791a31b55a9bdd4dfa434abf86dfd6c2fe43 |
| ISBN | 9780521813976 0521813972 |
| IngestDate | Fri Nov 08 05:06:15 EST 2024 Fri Jan 17 05:26:15 EST 2025 Wed Jul 30 03:52:34 EDT 2025 Wed Dec 10 09:49:17 EST 2025 Thu Jun 26 23:53:41 EDT 2025 Fri Feb 21 01:52:03 EST 2025 Wed Mar 12 03:55:03 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2003069590 |
| LCCallNum_Ident | Q325.5 .S475 2004 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a78477-a77708c328e93e7e1600aa0eb18e9791a31b55a9bdd4dfa434abf86dfd6c2fe43 |
| Notes | Includes bibliographical references (p. 450-459) and index |
| OCLC | 144618454 |
| PQID | EBC266541 |
| PageCount | 478 |
| ParticipantIDs | askewsholts_vlebooks_9781139636940 askewsholts_vlebooks_9781107144569 askewsholts_vlebooks_9780511809682 proquest_ebookcentral_EBC266541 nii_cinii_1130282273105608832 cambridge_corebooks_10_1017_CBO9780511809682 cambridge_cbo_10_1017_CBO9780511809682 |
| PublicationCentury | 2000 |
| PublicationDate | 20040628 2004 2011-03-29 2004-06-28 |
| PublicationDateYYYYMMDD | 2004-06-28 2004-01-01 2011-03-29 |
| PublicationDate_xml | – month: 06 year: 2004 text: 20040628 day: 28 |
| PublicationDecade | 2000 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationYear | 2004 2011 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| SSID | ssj0000187106 |
| Score | 1.8021771 |
| Snippet | Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings,... The kernel functions methodology described here provides a powerful and unified framework for disciplines ranging from neural networks and pattern recognition... |
| SourceID | askewsholts proquest nii cambridge |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Algorithms Data processing Kernel functions Machine learning Pattern perception Pattern perception -- Data processing |
| TableOfContents | 9.8.1 Kernels from successive embeddings -- 9.8.2 Kernels over general structures -- 9.8.3 Kernels from generative information -- 9.9 Summary -- 9.10 Further reading and advanced topics -- 10 Kernels for text -- 10.1 From bag of words to semantic space -- 10.1.1 Representing text -- 10.1.2 Semantic issues -- 10.2 Vector space kernels -- 10.2.1 Designing semantic kernels -- 10.2.2 Designing the proximity matrix -- 10.3 Summary -- 10.4 Further reading and advanced topics -- 11 Kernels for structured data: strings, trees, etc. -- 11.1 Comparing strings and sequences -- 11.2 Spectrum kernels -- 11.3 All-subsequences kernels -- 11.4 Fixed length subsequences kernels -- 11.5 Gap-weighted subsequences kernels -- 11.5.1 Naive implementation -- 11.5.2 Efficient implementation -- 11.5.3 Variations on the theme -- 11.6 Beyond dynamic programming: trie-based kernels -- 11.6.1 Trie computation of the p-spectrum kernels -- 11.6.2 Trie-based mismatch kernels -- 11.6.3 Trie-based restricted gap-weighted kernels -- 11.7 Kernels for structured data -- 11.7.1 Comparing trees -- 11.7.2 Structured data: a framework -- 11.8 Summary -- 11.9 Further reading and advanced topics -- 12 Kernels from generative models -- 12.1 P-kernels -- 12.1.1 Conditional-independence (CI) and marginalisation -- 12.1.2 Representing multivariate distributions -- 12.1.3 Fixed length strings generated by a hidden binomial model -- 12.1.4 Fixed length strings generated by a hidden markov model -- 12.1.5 Pair hidden Markov model kernels -- 12.1.6 Hidden tree model kernels -- 12.2 Fisher kernels -- 12.2.1 From probability to geometry -- 12.2.2 Fisher kernels for hidden Markov models -- 12.3 Summary -- 12.4 Further reading and advanced topics -- Appendix A Proofs omitted from the main text -- A.1 Proof of McDiarmid's theorem -- A.2 Stability of principal components analysis 5.6 Further reading and advanced topics -- 6 Pattern analysis using eigen-decompositions -- 6.1 Singular value decomposition -- 6.2 Principal components analysis -- 6.2.1 Kernel principal components analysis -- 6.2.2 Stability of principal components analysis -- 6.3 Directions of maximum covariance -- 6.4 The generalised eigenvector problem -- 6.5 Canonical correlation analysis -- 6.6 Fisher discriminant analysis II -- 6.7 Methods for linear regression -- 6.7.1 Partial least squares -- 6.7.2 Kernel partial least squares -- 6.8 Summary -- 6.9 Further reading and advanced topics -- 7 Pattern analysis using convex optimisation -- 7.1 The smallest enclosing hypersphere -- 7.1.1 The smallest hypersphere containing a set of points -- 7.1.2 Stability of novelty-detection -- 7.1.3 Hyperspheres containing most of the points -- 7.2 Support vector machines for classification -- 7.2.1 The maximal margin classifier -- 7.2.2 Soft margin classifiers -- 7.3 Support vector machines for regression -- 7.3.1 Stability of regression -- 7.3.2 Ridge regression -- 7.3.3 ε-insensitive regression -- 7.4 On-line classification and regression -- 7.5 Summary -- 7.6 Further reading and advanced topics -- 8 Ranking, clustering and data visualisation -- 8.1 Discovering rank relations -- 8.1.1 Batch ranking -- 8.1.2 On-line ranking -- 8.2 Discovering cluster structure in a feature space -- 8.2.1 Measuring cluster quality -- 8.2.2 Greedy solution: k-means -- 8.2.3 Relaxed solution: spectral methods -- 8.3 Data visualisation -- 8.4 Summary -- 8.5 Further reading and advanced topics -- Part III Constructing kernels -- 9 Basic kernels and kernel types -- 9.1 Kernels in closed form -- 9.2 ANOVA kernels -- 9.3 Kernels from graphs -- 9.4 Diffusion kernels on graph nodes -- 9.5 Kernels on sets -- 9.6 Kernels on real numbers -- 9.7 Randomised kernels -- 9.8 Other kernel types A.3 Proofs of diffusion kernels -- Appendix B Notational conventions -- B.1 List of symbols -- B.2 Notation for Tables -- Appendix C List of pattern analysis methods -- C.1 Pattern analysis computations -- C.2 Pattern analysis algorithms -- Appendix D List of kernels -- D.1 Kernel definitions and computations -- D.2 Kernel algorithms -- References -- Index Cover -- Half-title -- Title -- Copyright -- Contents -- Code fragments -- Preface -- Part I Basic concepts -- 1 Pattern analysis -- 1.1 Patterns in data -- 1.1.1 Data -- 1.1.2 Patterns -- 1.2 Pattern analysis algorithms -- 1.2.1 Statistical stability of patterns -- 1.2.2 Detecting patterns by recoding -- 1.3 Exploiting patterns -- 1.3.1 The overall strategy -- 1.3.2 Common pattern analysis tasks -- 1.4 Summary -- 1.5 Further reading and advanced topics -- 2 Kernel methods: an overview -- 2.1 The overall picture -- 2.2 Linear regression in a feature space -- 2.2.1 Primal linear regression -- 2.2.2 Ridge regression: primal and dual -- 2.2.3 Kernel-defined nonlinear feature mappings -- 2.3 Other examples -- 2.3.1 Algorithms -- 2.3.2 Kernels -- 2.4 The modularity of kernel methods -- 2.5 Roadmap of the book -- 2.6 Summary -- 2.7 Further reading and advanced topics -- 3 Properties of kernels -- 3.1 Inner products and positive semi-definite matrices -- 3.1.1 Hilbert spaces -- 3.1.2 Gram matrix -- 3.2 Characterisation of kernels -- 3.3 The kernel matrix -- 3.4 Kernel construction -- 3.4.1 Operations on kernel functions -- 3.4.2 Operations on kernel matrices -- 3.5 Summary -- 3.6 Further reading and advanced topics -- 4 Detecting stable patterns -- 4.1 Concentration inequalities -- 4.2 Capacity and regularisation: Rademacher theory -- 4.3 Pattern stability for kernel-based classes -- 4.4 A pragmatic approach -- 4.5 Summary -- 4.6 Further reading and advanced topics -- Part II Pattern analysis algorithms -- 5 Elementary algorithms in feature space -- 5.1 Means and distances -- 5.1.1 A simple algorithm for novelty-detection -- 5.1.2 A simple algorithm for classification -- 5.2 Computing projections: Gram-Schmidt, QR and Cholesky -- 5.3 Measuring the spread of the data -- 5.4 Fisher discriminant analysis I -- 5.5 Summary |
| Title | Kernel Methods for Pattern Analysis |
| URI | http://dx.doi.org/10.1017/CBO9780511809682 https://doi.org/10.1017/CBO9780511809682?locatt=mode:legacy https://cir.nii.ac.jp/crid/1130282273105608832 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=266541 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780511809682 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781107144569&uid=none https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781139636940&uid=none |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6xwgN9AQaIAoMIEC8QqU4c_3ikVQFpaONhoL5FjmNrEVWKmjL253N23CwLY4gHXtzWsi6Vv5x9d_Z9B_CqpLTMrC3iQqdJTKkSqHNExIqUtpwKja6zr1ryiR8dieVSfg5UF40vJ8DrWpyfy-__FWrsQ7Bd6uw_wN0JxQ78jqBji7BjO7CIu58t4odmU5tVqAntaRYca6oL-L1RgXqki6ecqp8mvvDW-xdy50HtK1_sCVfB1Wp9KTZAB7GBK9O--lc7Wi_S5e8KZwmyK9fUlohpPjv2Qx1lnGRtwaABU_XsHePePljuwR5n6Arf_LA4_nLYxbxcAUB0QUPKsH9kEkiQur8QjpIdrffwkWMYq-Ybrv24L2ybPhkGGgZ1Vf22nXob4eQujFzeyD24Yep9uLOrlhGFxXMfxj3qx_vwskUrCmhFiFYU0Ip2aD2Ar-8XJ_OPcShYESuOuzzHD87xBU8TYWRquCFoTio1xf0QO7gkKiVFlilZlCUtraIpVYUVDNWC6cQamj6EUb2uzSOIrLCkFDzVBdfUmkKi75ihZlGuNDFTOYEXvcnIz1b-cL3JL83YNYOc34_OdMauk0QQEpYySacTeN3Ndq6Ldd7eDuT5EKQJvO0NXG-CsD8PP0Dkcl25lrhTdLRYOfocaIkL3G0m8HyHae5FhTvL-WI2T1zlbPL4LxKewO0L1XgKo-3mhzmAW_psWzWbZ-EV_QVRfGcT |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Kernel+methods+for+pattern+analysis&rft.au=Shawe-Taylor%2C+John&rft.au=Cristianini%2C+Nello&rft.date=2004-01-01&rft.pub=Cambridge+University+Press&rft.isbn=9780521813976&rft_id=info:doi/10.1017%2FCBO9780511809682&rft.externalDocID=BA6740613X |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fassets.cambridge.org%2F97805218%2F13976%2Fcover%2F9780521813976.jpg http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97805118%2F9780511809682.jpg http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811071%2F9781107144569.jpg http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811396%2F9781139636940.jpg |

