Kernel Methods for Pattern Analysis

Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from...

Full description

Saved in:
Bibliographic Details
Main Authors: Shawe-Taylor, John, Cristianini, Nello
Format: eBook Book
Language:English
Published: Cambridge Cambridge University Press 28.06.2004
Edition:1
Subjects:
ISBN:9780521813976, 0521813972
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.
AbstractList Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings, vectors or text) and look for general types of relations (e.g. rankings, classifications, regressions, clusters). The application areas range from neural networks and pattern recognition to machine learning and data mining. This book, developed from lectures and tutorials, fulfils two major roles: firstly it provides practitioners with a large toolkit of algorithms, kernels and solutions ready to use for standard pattern discovery problems in fields such as bioinformatics, text analysis, image analysis. Secondly it provides an easy introduction for students and researchers to the growing field of kernel-based pattern analysis, demonstrating with examples how to handcraft an algorithm or a kernel for a new specific application, and covering all the necessary conceptual and mathematical tools to do so.
The kernel functions methodology described here provides a powerful and unified framework for disciplines ranging from neural networks and pattern recognition to machine learning and data mining. This book provides practitioners with a large toolkit of algorithms, kernels and solutions ready to be implemented, suitable for standard pattern discovery problems.
Author Cristianini, Nello
Shawe-Taylor, John
Author_xml – sequence: 1
  fullname: Shawe-Taylor, John
– sequence: 2
  fullname: Cristianini, Nello
BackLink https://cir.nii.ac.jp/crid/1130282273105608832$$DView record in CiNii
BookMark eNqNkUtLAzEQxyNasa29eywogofqTJLN49iW-sBKPYjXJbubtWvXjW5WxW9vaguiIprDDDP85vHPdMhW5SpLyB7CMQLKk_FopqWCCFGBFopukN6XeHMdU1TItBQt0qEADISONGyTNnIuUPGI75Ce9_cQHiqJINpk_9LWlS37V7aZu8z3c1f3r03ThGx_WJnyzRd-l7RyU3rbW_suuT2d3IzPB9PZ2cV4OB0YqbiUwUkJKmVUWc2stCgAjAGbYEhIjYZhEkVGJ1nGs9xwxk2SK5HlmUhpbjnrkqNVY-MX9tXPXdn4-KW0iXMLHweJGOQJJjSH_7Agg_BI6L_Zz68M7OGKfazd07P1TfyBpbZqalPGk9GYChFxDODBCqyKIk6LpQ3rAVWUSoYQCVCKLfuxFZaah6Qusjsbp65ej0aIlweOvx84VA1-VCXud_4dIoyZpg
ContentType eBook
Book
Copyright Cambridge University Press 2004
Copyright_xml – notice: Cambridge University Press 2004
DBID RYH
DEWEY 006.4
DOI 10.1017/CBO9780511809682
DatabaseName CiNii Complete
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9780511809682
0511809689
9780511210600
0511210604
1107144566
9781107144569
1139636944
9781139636940
Edition 1
ExternalDocumentID 9781139636940
9781107144569
9780511809682
EBC266541
BA6740613X
10_1017_CBO9780511809682
GroupedDBID -G2
089
20A
38.
A4I
A4J
AAAAZ
AABBV
AAFQY
AAHFW
ABARN
ABESS
ABIAV
ABMRC
ABZUC
ACLGV
ACNOG
ADCGF
ADHWY
ADQZK
ADVEM
ADWOK
AEDFS
AERYV
AEWAL
AEWQY
AFTHB
AFXKH
AGSJN
AHAWV
AHJNT
AHQWO
AJFER
AJPFC
AJXXZ
AKHYG
ALMA_UNASSIGNED_HOLDINGS
AMJDZ
AMYDA
ANGWU
ASYWF
AZZ
BBABE
BFIBU
BJUTA
BPBUR
COBLI
COXPH
CYGLA
CZZ
DOUIK
EBSCA
FH2
GEOUK
HF4
ICERG
IVR
JJU
MYL
NK1
NK2
OLDIN
OTBUH
OZASK
OZBHS
PP-
PQQKQ
S2A
SACVX
SN-
ZXKUE
AHWGJ
RYH
EBACC
ID FETCH-LOGICAL-a78477-a77708c328e93e7e1600aa0eb18e9791a31b55a9bdd4dfa434abf86dfd6c2fe43
ISBN 9780521813976
0521813972
IngestDate Fri Nov 08 05:06:15 EST 2024
Fri Jan 17 05:26:15 EST 2025
Wed Jul 30 03:52:34 EDT 2025
Wed Dec 10 09:49:17 EST 2025
Thu Jun 26 23:53:41 EDT 2025
Fri Feb 21 01:52:03 EST 2025
Wed Mar 12 03:55:03 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2003069590
LCCallNum_Ident Q325.5 .S475 2004
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a78477-a77708c328e93e7e1600aa0eb18e9791a31b55a9bdd4dfa434abf86dfd6c2fe43
Notes Includes bibliographical references (p. 450-459) and index
OCLC 144618454
PQID EBC266541
PageCount 478
ParticipantIDs askewsholts_vlebooks_9781139636940
askewsholts_vlebooks_9781107144569
askewsholts_vlebooks_9780511809682
proquest_ebookcentral_EBC266541
nii_cinii_1130282273105608832
cambridge_corebooks_10_1017_CBO9780511809682
cambridge_cbo_10_1017_CBO9780511809682
PublicationCentury 2000
PublicationDate 20040628
2004
2011-03-29
2004-06-28
PublicationDateYYYYMMDD 2004-06-28
2004-01-01
2011-03-29
PublicationDate_xml – month: 06
  year: 2004
  text: 20040628
  day: 28
PublicationDecade 2000
2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationYear 2004
2011
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0000187106
Score 1.8021771
Snippet Kernel methods provide a powerful and unified framework for pattern discovery, motivating algorithms that can act on general types of data (e.g. strings,...
The kernel functions methodology described here provides a powerful and unified framework for disciplines ranging from neural networks and pattern recognition...
SourceID askewsholts
proquest
nii
cambridge
SourceType Aggregation Database
Publisher
SubjectTerms Algorithms
Data processing
Kernel functions
Machine learning
Pattern perception
Pattern perception -- Data processing
TableOfContents 9.8.1 Kernels from successive embeddings -- 9.8.2 Kernels over general structures -- 9.8.3 Kernels from generative information -- 9.9 Summary -- 9.10 Further reading and advanced topics -- 10 Kernels for text -- 10.1 From bag of words to semantic space -- 10.1.1 Representing text -- 10.1.2 Semantic issues -- 10.2 Vector space kernels -- 10.2.1 Designing semantic kernels -- 10.2.2 Designing the proximity matrix -- 10.3 Summary -- 10.4 Further reading and advanced topics -- 11 Kernels for structured data: strings, trees, etc. -- 11.1 Comparing strings and sequences -- 11.2 Spectrum kernels -- 11.3 All-subsequences kernels -- 11.4 Fixed length subsequences kernels -- 11.5 Gap-weighted subsequences kernels -- 11.5.1 Naive implementation -- 11.5.2 Efficient implementation -- 11.5.3 Variations on the theme -- 11.6 Beyond dynamic programming: trie-based kernels -- 11.6.1 Trie computation of the p-spectrum kernels -- 11.6.2 Trie-based mismatch kernels -- 11.6.3 Trie-based restricted gap-weighted kernels -- 11.7 Kernels for structured data -- 11.7.1 Comparing trees -- 11.7.2 Structured data: a framework -- 11.8 Summary -- 11.9 Further reading and advanced topics -- 12 Kernels from generative models -- 12.1 P-kernels -- 12.1.1 Conditional-independence (CI) and marginalisation -- 12.1.2 Representing multivariate distributions -- 12.1.3 Fixed length strings generated by a hidden binomial model -- 12.1.4 Fixed length strings generated by a hidden markov model -- 12.1.5 Pair hidden Markov model kernels -- 12.1.6 Hidden tree model kernels -- 12.2 Fisher kernels -- 12.2.1 From probability to geometry -- 12.2.2 Fisher kernels for hidden Markov models -- 12.3 Summary -- 12.4 Further reading and advanced topics -- Appendix A Proofs omitted from the main text -- A.1 Proof of McDiarmid's theorem -- A.2 Stability of principal components analysis
5.6 Further reading and advanced topics -- 6 Pattern analysis using eigen-decompositions -- 6.1 Singular value decomposition -- 6.2 Principal components analysis -- 6.2.1 Kernel principal components analysis -- 6.2.2 Stability of principal components analysis -- 6.3 Directions of maximum covariance -- 6.4 The generalised eigenvector problem -- 6.5 Canonical correlation analysis -- 6.6 Fisher discriminant analysis II -- 6.7 Methods for linear regression -- 6.7.1 Partial least squares -- 6.7.2 Kernel partial least squares -- 6.8 Summary -- 6.9 Further reading and advanced topics -- 7 Pattern analysis using convex optimisation -- 7.1 The smallest enclosing hypersphere -- 7.1.1 The smallest hypersphere containing a set of points -- 7.1.2 Stability of novelty-detection -- 7.1.3 Hyperspheres containing most of the points -- 7.2 Support vector machines for classification -- 7.2.1 The maximal margin classifier -- 7.2.2 Soft margin classifiers -- 7.3 Support vector machines for regression -- 7.3.1 Stability of regression -- 7.3.2 Ridge regression -- 7.3.3 ε-insensitive regression -- 7.4 On-line classification and regression -- 7.5 Summary -- 7.6 Further reading and advanced topics -- 8 Ranking, clustering and data visualisation -- 8.1 Discovering rank relations -- 8.1.1 Batch ranking -- 8.1.2 On-line ranking -- 8.2 Discovering cluster structure in a feature space -- 8.2.1 Measuring cluster quality -- 8.2.2 Greedy solution: k-means -- 8.2.3 Relaxed solution: spectral methods -- 8.3 Data visualisation -- 8.4 Summary -- 8.5 Further reading and advanced topics -- Part III Constructing kernels -- 9 Basic kernels and kernel types -- 9.1 Kernels in closed form -- 9.2 ANOVA kernels -- 9.3 Kernels from graphs -- 9.4 Diffusion kernels on graph nodes -- 9.5 Kernels on sets -- 9.6 Kernels on real numbers -- 9.7 Randomised kernels -- 9.8 Other kernel types
A.3 Proofs of diffusion kernels -- Appendix B Notational conventions -- B.1 List of symbols -- B.2 Notation for Tables -- Appendix C List of pattern analysis methods -- C.1 Pattern analysis computations -- C.2 Pattern analysis algorithms -- Appendix D List of kernels -- D.1 Kernel definitions and computations -- D.2 Kernel algorithms -- References -- Index
Cover -- Half-title -- Title -- Copyright -- Contents -- Code fragments -- Preface -- Part I Basic concepts -- 1 Pattern analysis -- 1.1 Patterns in data -- 1.1.1 Data -- 1.1.2 Patterns -- 1.2 Pattern analysis algorithms -- 1.2.1 Statistical stability of patterns -- 1.2.2 Detecting patterns by recoding -- 1.3 Exploiting patterns -- 1.3.1 The overall strategy -- 1.3.2 Common pattern analysis tasks -- 1.4 Summary -- 1.5 Further reading and advanced topics -- 2 Kernel methods: an overview -- 2.1 The overall picture -- 2.2 Linear regression in a feature space -- 2.2.1 Primal linear regression -- 2.2.2 Ridge regression: primal and dual -- 2.2.3 Kernel-defined nonlinear feature mappings -- 2.3 Other examples -- 2.3.1 Algorithms -- 2.3.2 Kernels -- 2.4 The modularity of kernel methods -- 2.5 Roadmap of the book -- 2.6 Summary -- 2.7 Further reading and advanced topics -- 3 Properties of kernels -- 3.1 Inner products and positive semi-definite matrices -- 3.1.1 Hilbert spaces -- 3.1.2 Gram matrix -- 3.2 Characterisation of kernels -- 3.3 The kernel matrix -- 3.4 Kernel construction -- 3.4.1 Operations on kernel functions -- 3.4.2 Operations on kernel matrices -- 3.5 Summary -- 3.6 Further reading and advanced topics -- 4 Detecting stable patterns -- 4.1 Concentration inequalities -- 4.2 Capacity and regularisation: Rademacher theory -- 4.3 Pattern stability for kernel-based classes -- 4.4 A pragmatic approach -- 4.5 Summary -- 4.6 Further reading and advanced topics -- Part II Pattern analysis algorithms -- 5 Elementary algorithms in feature space -- 5.1 Means and distances -- 5.1.1 A simple algorithm for novelty-detection -- 5.1.2 A simple algorithm for classification -- 5.2 Computing projections: Gram-Schmidt, QR and Cholesky -- 5.3 Measuring the spread of the data -- 5.4 Fisher discriminant analysis I -- 5.5 Summary
Title Kernel Methods for Pattern Analysis
URI http://dx.doi.org/10.1017/CBO9780511809682
https://doi.org/10.1017/CBO9780511809682?locatt=mode:legacy
https://cir.nii.ac.jp/crid/1130282273105608832
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=266541
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780511809682
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781107144569&uid=none
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781139636940&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6xwgN9AQaIAoMIEC8QqU4c_3ikVQFpaONhoL5FjmNrEVWKmjL253N23CwLY4gHXtzWsi6Vv5x9d_Z9B_CqpLTMrC3iQqdJTKkSqHNExIqUtpwKja6zr1ryiR8dieVSfg5UF40vJ8DrWpyfy-__FWrsQ7Bd6uw_wN0JxQ78jqBji7BjO7CIu58t4odmU5tVqAntaRYca6oL-L1RgXqki6ecqp8mvvDW-xdy50HtK1_sCVfB1Wp9KTZAB7GBK9O--lc7Wi_S5e8KZwmyK9fUlohpPjv2Qx1lnGRtwaABU_XsHePePljuwR5n6Arf_LA4_nLYxbxcAUB0QUPKsH9kEkiQur8QjpIdrffwkWMYq-Ybrv24L2ybPhkGGgZ1Vf22nXob4eQujFzeyD24Yep9uLOrlhGFxXMfxj3qx_vwskUrCmhFiFYU0Ip2aD2Ar-8XJ_OPcShYESuOuzzHD87xBU8TYWRquCFoTio1xf0QO7gkKiVFlilZlCUtraIpVYUVDNWC6cQamj6EUb2uzSOIrLCkFDzVBdfUmkKi75ihZlGuNDFTOYEXvcnIz1b-cL3JL83YNYOc34_OdMauk0QQEpYySacTeN3Ndq6Ldd7eDuT5EKQJvO0NXG-CsD8PP0Dkcl25lrhTdLRYOfocaIkL3G0m8HyHae5FhTvL-WI2T1zlbPL4LxKewO0L1XgKo-3mhzmAW_psWzWbZ-EV_QVRfGcT
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Kernel+methods+for+pattern+analysis&rft.au=Shawe-Taylor%2C+John&rft.au=Cristianini%2C+Nello&rft.date=2004-01-01&rft.pub=Cambridge+University+Press&rft.isbn=9780521813976&rft_id=info:doi/10.1017%2FCBO9780511809682&rft.externalDocID=BA6740613X
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fassets.cambridge.org%2F97805218%2F13976%2Fcover%2F9780521813976.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97805118%2F9780511809682.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811071%2F9781107144569.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811396%2F9781139636940.jpg