A primer on mapping class groups (Princeton mathematical series)

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time givi...

Full description

Saved in:
Bibliographic Details
Main Authors: Farb, Benson, Margalit, Dan
Format: eBook Book
Language:English
Published: Princeton, N.J Princeton University Press 2011
Edition:1
Series:Princeton Mathematical Series
Subjects:
ISBN:0691147949, 9780691147949, 1400839041, 9781400839049
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students.
AbstractList The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students.
No detailed description available for "A Primer on Mapping Class Groups (PMS-49)".
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time keeping the text nearly self-contained.
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groupsbegins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
Author Farb, Benson
Margalit, Dan
Author_xml – sequence: 1
  fullname: Farb, Benson
– sequence: 2
  fullname: Margalit, Dan
BackLink https://cir.nii.ac.jp/crid/1130282270722442112$$DView record in CiNii
BookMark eNplkc1v0zAYh41giHXsyAkh5YA2dii8duw4vrFV40OaRA_A1XIcJ3XrxpntUu2_x10qEMKH17aeR68_fjP0bPCDQegVhveYYfZB8BpTgLoUQMUTNPuzwU_RDCqBMeWCihM0I4BxZlTg5-iUU1ZXVS3wC3Qe4xryYJRWwE_Rx-tiDHZrQuGHYqvG0Q59oZ2KseiD342xeLcMdtAmPfK0MrlYrVwRTbAmXr1EJ51y0Zwf5zP089Pt98WX-d23z18X13dzxauakXnTlAZoSzsidEcF1IS1DQcQqm11J6gBVXZdfiRTTcN5WzLNdJ1NAkBMB-UZupoaq7gx-7jyLkX5y5nG-02U__zMX3evXDKhNX3YPeSF3Kqg_3MvJncM_n5nYpKPLbUZUlBO3t4sOKUYWBZfH0UTnOm9nE7m5eHSmb6d6GCt1PZQMS6B1IRw4IRQSjAmWXszaeuYfDi2WEudEg-b9T7zy4nbftw1zsZVDkQeIlLhQS5_LG9yeDhnV_4GS8SZHQ
ContentType eBook
Book
Copyright 2012 Princeton University Press
Copyright_xml – notice: 2012 Princeton University Press
DBID E06
RYH
YSPEL
DEWEY 512.7/4
DOI 10.1515/9781400839049
DatabaseName Princeton University Press eBooks
CiNii Complete
Perlego
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 1400839041
9781400839049
Edition 1
ExternalDocumentID 9781400839049
EBC744105
735155
BB06891108
j.ctt7rkjw
PUPB0001460
Genre Electronic books
GroupedDBID -VX
05P
089
20A
38.
6XM
92K
A4J
AABBV
AABEK
AAGED
AAMYY
AANYM
AAUSU
AAZEP
ABARN
ABCYV
ABCYY
ABFFQ
ABGJO
ABHWV
ABIWA
ABONK
ABYBY
ACEOT
ACHKM
ACISH
ACLGV
ACQYL
ADDXO
ADVEM
ADVQQ
AEAED
AECLD
AEDVL
AERYV
AEYCP
AFHFQ
AFRFP
AGLEC
AIGZA
AILDO
AIOLA
AIUUY
AJFER
ALMA_UNASSIGNED_HOLDINGS
AMYDA
APVFW
ARPAB
ARSQP
ATDNW
AZZ
BBABE
BFATZ
BFRBX
BJTYN
CDLGT
CZZ
DGSIF
DGVNY
DHNOV
DUGUG
E06
EBSCA
EBZNK
ECOWB
EWWBQ
FURLO
GEOUK
HELXT
I4C
J-X
JKYSO
JLPMJ
JSXJJ
KBOFU
MYL
NRCWT
NY6
O7H
PQQKQ
QD8
SUPCW
TI5
UE6
XI1
YSPEL
~H6
~I6
AAFKH
ABIAV
ABMRC
ABQNV
ABRSK
ACBYE
ACHUA
ACRAN
AFTHB
AHWGJ
AIXPE
AVGCG
L7C
RYH
ID FETCH-LOGICAL-a76852-bb3e04d4f29cf490825db7009addcf94e0a3ff5155abb77d35c5c8f492002ef03
ISBN 0691147949
9780691147949
1400839041
9781400839049
IngestDate Fri Nov 08 05:45:28 EST 2024
Fri Nov 21 21:29:37 EST 2025
Wed Dec 10 09:10:30 EST 2025
Tue Dec 02 18:49:41 EST 2025
Thu Jun 26 23:20:45 EDT 2025
Mon Dec 01 07:46:00 EST 2025
Wed Jul 17 03:29:58 EDT 2024
IsPeerReviewed false
IsScholarly false
Keywords Hyperbolic geometry
Homology (mathematics)
Bijection
Subset
Rectangle
Subgroup
Conjugacy class
Closed geodesic
Vector space
Mathematical induction
Euler characteristic
Eigenvalues and eigenvectors
Pair of pants (mathematics)
Geometric group theory
Fundamental domain
Corollary
Permutation
Simply connected space
Intersection number (graph theory)
Finitely presented
Curve
Disk (mathematics)
Continuous function
Topology
Cohomology
Homomorphism
Riemannian manifold
Riemann surface
Jordan curve theorem
Mapping class group
Existential quantification
Dehn twist
Division by zero
Infimum and supremum
Coset
Dimension (vector space)
Finite group
Big O notation
Homeomorphism
Homotopy
Special case
Quasi-isometry
Foliation
Summation
Train track (mathematics)
Orbifold
Diffeomorphism
Equivalence class
Metric space
Diagram (category theory)
Coordinate system
Fundamental group
Upper and lower bounds
Linear map
Covering space
Pointwise
Moduli space
Theorem
Exact sequence
Free group
Upper half-plane
Elementary matrix
Automorphism
Compact space
Disjoint union
Braid group
Compactification (mathematics)
Intersection (set theory)
Transverse measure
Quadratic differential
LCCN 2011008491
LCCallNum QA360
LCCallNum_Ident QA360
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a76852-bb3e04d4f29cf490825db7009addcf94e0a3ff5155abb77d35c5c8f492002ef03
Notes Includes bibliographical references (p. [447]-463) and index
OCLC 745866891
PQID EBC744105
PageCount 488
ParticipantIDs askewsholts_vlebooks_9781400839049
walterdegruyter_marc_9781400839049
proquest_ebookcentral_EBC744105
perlego_books_735155
nii_cinii_1130282270722442112
jstor_books_j_ctt7rkjw
igpublishing_primary_PUPB0001460
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2012.
20110926
c2012
2011
[2011]
2012-01-01
PublicationDateYYYYMMDD 2012-01-01
2011-09-26
2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationPlace Princeton, N.J
PublicationPlace_xml – name: Princeton, N.J
– name: Princeton
– name: Princeton, NJ
PublicationSeriesTitle Princeton Mathematical Series
PublicationYear 2012
2011
Publisher Princeton University Press
Publisher_xml – name: Princeton University Press
RestrictionsOnAccess restricted access
SSID ssj0000544607
Score 2.7302024
Snippet The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group...
No detailed description available for "A Primer on Mapping Class Groups (PMS-49)".
SourceID askewsholts
walterdegruyter
proquest
perlego
nii
jstor
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Algebraic
Automorphism
Big O notation
Bijection
Braid group
Class groups (Mathematics)
Closed geodesic
Cohomology
Compact space
Compactification (mathematics)
Conjugacy class
Continuous function
Coordinate system
Corollary
Coset
Covering space
Curve
Dehn twist
Diagram (category theory)
Diffeomorphism
Dimension (vector space)
Disjoint union
Disk (mathematics)
Division by zero
Eigenvalues and eigenvectors
Elementary matrix
Equivalence class
Euler characteristic
Exact sequence
Existential quantification
Finite group
Finitely presented
Foliation
Free group
Fundamental domain
Fundamental group
Geometric group theory
Geometry
Homeomorphism
Homology (mathematics)
Homomorphism
Homotopy
Hyperbolic geometry
Infimum and supremum
Intersection (set theory)
Intersection number (graph theory)
Jordan curve theorem
Linear map
Mapping class group
Mappings (Mathematics)
Mathematical induction
MATHEMATICS
MATHEMATICS / Advanced bisacsh
MATHEMATICS / Geometry / Algebraic
MATHEMATICS / Geometry / Algebraic bisacsh
MATHEMATICS / Geometry / General
MATHEMATICS / Topology bisacsh
Metric space
Moduli space
Orbifold
Pair of pants (mathematics)
PBMW
PBPD
Permutation
Pointwise
Quadratic differential
Quasi-isometry
Rectangle
Riemann surface
Riemannian manifold
Simply connected space
Special case
Subgroup
Subset
Summation
Theorem
Topology
Train track (mathematics)
Transverse measure
Upper and lower bounds
Upper half-plane
Vector space
SubjectTermsDisplay Algebraic
Geometry
Mathematics
PBMW
PBPD
Topology
TableOfContents A primer on mapping class groups (Princeton mathematical series) -- Contents -- Preface -- Acknowledgments -- Overview -- Part 1: Mapping Class Groups -- Chapter One: Curves, Surfaces, and Hyperbolic Geometry -- Chapter Two: Mapping Class Group Basics -- Chapter Three: Dehn Twists -- Chapter Four: Generating the Mapping Class Group -- Chapter Five: Presentations and Low-dimensional Homology -- Chapter Six: The Symplectic Representation and the Torelli Group -- Chapter Seven: Torsion -- Chapter Eight: The Dehn-Nielsen-Baer Theorem -- Chapter Nine: Braid Groups -- Part 2: Teichmüller Space and Moduli Space -- Chapter Ten: Teichmüller Space -- Chapter Eleven: Teichmüller Geometry -- Chapter Twelve: Moduli Space -- Part 3: The Classification and Pseudo-Anosov Theory -- Chapter Thirteen: The Nielsen-Thurston Classification -- Chapter Fourteen: Pseudo-Anosov Theory -- Chapter Fifteen: Thurston's Proof -- Bibliography -- Index
Front Matter Table of Contents Preface Acknowledgments Overview Chapter One: Curves, Surfaces, and Hyperbolic Geometry Chapter Two: Mapping Class Group Basics Chapter Three: Dehn Twists Chapter Four: Generating the Mapping Class Group Chapter Five: Presentations and Low-dimensional Homology Chapter Six: The Symplectic Representation and the Torelli Group Chapter Seven: Torsion Chapter Eight: The Dehn—Nielsen—Baer Theorem Chapter Nine: Braid Groups Chapter Ten: Teichmüller Space Chapter Eleven: Teichmüller Geometry Chapter Twelve: Moduli Space Chapter Thirteen: The Nielsen—Thurston Classification Chapter Fourteen: Pseudo-Anosov Theory Chapter Fifteen: Thurston’s Proof Bibliography Index
8. The Dehn-Nielsen-Baer Theorem -- 8.1 Statement of the Theorem -- 8.2 The Quasi-isometry Proof -- 8.3 Two Other Viewpoints -- 9. Braid Groups -- 9.1 The Braid Group: Three Perspectives -- 9.2 Basic Algebraic Structure of the Braid Group -- 9.3 The Pure Braid Group -- 9.4 Braid Groups and Symmetric Mapping Class Groups -- PART 2. TEICHMÜLLER SPACE AND MODULI SPACE -- 10. Teichmüller Space -- 10.1 Definition of Teichmüller Space -- 10.2 Teichmüller Space of the Torus -- 10.3 The Algebraic Topology -- 10.4 Two Dimension Counts -- 10.5 The Teichmüller Space of a Pair of Pants -- 10.6 Fenchel-Nielsen Coordinates -- 10.7 The 9g - 9 Theorem -- 11. Teichmüller Geometry -- 11.1 Quasiconformal Maps and an Extremal Problem -- 11.2 Measured Foliations -- 11.3 Holomorphic Quadratic Differentials -- 11.4 Teichmüller Maps and Teichmüller's Theorems -- 11.5 Grötzsch's Problem -- 11.6 Proof of Teichmüller's Uniqueness Theorem -- 11.7 Proof of Teichmüller's Existence Theorem -- 11.8 The Teichmüller Metric -- 12. Moduli Space -- 12.1 Moduli Space as the Quotient of Teichmüller Space -- 12.2 Moduli Space of the Torus -- 12.3 Proper Discontinuity -- 12.4 Mumford's Compactness Criterion -- 12.5 The Topology at Infinity of Moduli Space -- 12.6 Moduli Space as a Classifying Space -- PART 3. THE CLASSIFICATION AND PSEUDO-ANOSOV THEORY -- 13. The Nielsen-Thurston Classi.cation -- 13.1 The Classi.cation for the Torus -- 13.2 The Three Types of Mapping Classes -- 13.3 Statement of the Nielsen-Thurston Classification -- 13.4 Thurston's Geometric Classification of Mapping Tori -- 13.5 The Collar Lemma -- 13.6 Proof of the Classification Theorem -- 14. Pseudo-Anosov Theory -- 14.1 Five Constructions -- 14.2 Pseudo-Anosov Stretch Factors -- 14.3 Properties of the Stable and Unstable Foliations -- 14.4 The Orbits of a Pseudo-Anosov Homeomorphism
Cover -- Contents -- Preface -- Acknowledgments -- Overview -- PART 1. MAPPING CLASS GROUPS -- 1. Curves, Surfaces, and Hyperbolic Geometry -- 1.1 Surfaces and Hyperbolic Geometry -- 1.2 Simple Closed Curves -- 1.3 The Change of Coordinates Principle -- 1.4 Three Facts about Homeomorphisms -- 2. Mapping Class Group Basics -- 2.1 Definition and First Examples -- 2.2 Computations of the Simplest Mapping Class Groups -- 2.3 The Alexander Method -- 3. Dehn Twists -- 3.1 Definition and Nontriviality -- 3.2 Dehn Twists and Intersection Numbers -- 3.3 Basic Facts about Dehn Twists -- 3.4 The Center of the Mapping Class Group -- 3.5 Relations between Two Dehn Twists -- 3.6 Cutting, Capping, and Including -- 4. Generating the Mapping Class Group -- 4.1 The Complex of Curves -- 4.2 The Birman Exact Sequence -- 4.3 Proof of Finite Generation -- 4.4 Explicit Sets of Generators -- 5. Presentations and Low-dimensional Homology -- 5.1 The Lantern Relation and H[sub(1)] (Mod(S) -- Z) -- 5.2 Presentations for the Mapping Class Group -- 5.3 Proof of Finite Presentability -- 5.4 Hopf's Formula and H[sub(2)] (Mod(S) -- Z) -- 5.5 The Euler Class -- 5.6 Surface Bundles and the Meyer Signature Cocycle -- 6. The Symplectic Representation and the Torelli Group -- 6.1 Algebraic Intersection Number as a Symplectic Form -- 6.2 The Euclidean Algorithm for Simple Closed Curves -- 6.3 Mapping Classes as Symplectic Automorphisms -- 6.4 Congruence Subgroups, Torsion-free Subgroups, and Residual Finiteness -- 6.5 The Torelli Group -- 6.6 The Johnson Homomorphism -- 7. Torsion -- 7.1 Finite-order Mapping Classes versus Finite-order Homeomorphisms -- 7.2 Orbifolds, the 84(g - 1) Theorem, and the 4g + 2 Theorem -- 7.3 Realizing Finite Groups as Isometry Groups -- 7.4 Conjugacy Classes of Finite Subgroups -- 7.5 Generating the Mapping Class Group with Torsion
14.5 Lengths and Intersection Numbers under Iteration -- 15. Thurston's Proof -- 15.1 A Fundamental Example -- 15.2 A Sketch of the General Theory -- 15.3 Markov Partitions -- 15.4 Other Points of View -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z
Part 1. Mapping Class Groups --
Part 3. The Classification and Pseudo-Anosov Theory --
Chapter Nine. Braid Groups
Chapter One. Curves, Surfaces, and Hyperbolic Geometry
Index
Chapter Four. Generating The Mapping Class Group
Acknowledgments
Chapter Eleven. Teichmüller Geometry
Chapter Five. Presentations And Low-Dimensional Homology
Chapter Eight. The Dehn–Nielsen–Baer Theorem
Preface
Part 2. Teichmüller Space and Moduli Space --
Chapter Six. The Symplectic Representation and the Torelli Group
Overview
Chapter Seven. Torsion
Chapter Three. Dehn Twists
Chapter Fifteen. Thurston’S Proof
-
Chapter Thirteen. The Nielsen–Thurston Classification
Chapter Twelve. Moduli Space
Chapter Fourteen. Pseudo-Anosov Theory
/
Contents
Frontmatter --
Chapter Two. Mapping Class Group Basics
Chapter Ten. Teichmüller Space
Bibliography
Title A primer on mapping class groups (Princeton mathematical series)
URI http://portal.igpublish.com/iglibrary/search/PUPB0001460.html
https://www.jstor.org/stable/j.ctt7rkjw
https://cir.nii.ac.jp/crid/1130282270722442112
https://www.perlego.com/book/735155/a-primer-on-mapping-class-groups-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=744105
https://www.degruyterbrill.com/isbn/9781400839049
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781400839049&uid=none
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH-ClgM9IGBMCzCIEDcU4SVOnRzpVEACRg8b2s1KHLvKNqVRkn3w3_PsOEnTXeDAxcrXS933a-33_QDeUyq1s0mgkkMDj8o08aKMhZ4viS_UPFa-MonC39nJSXR-Hq9sE7zatBNgRRHd3cXlf4UaryHYOnX2H-DuX4oX8BhBxxFhx3FHIu5Pbbzxh5Wu1V9p-_-PpDSJUKbnZWtgGhI9kso4YRZSJ34NJmkdqJc3Nu-8XW10FeRat4bXidLmtV2RV11ExNzdNhuY5Llts8FAuZuROFIwUf1CGS0mbVnRbsVsz-4tvqGpU3GfalTkemfz6UMCR2QPYerTMKATmH5Z_jz71lvNUMCkc8JssVT8wI8juhnMkvoSdwfcOZpaV59dl701r4s4RSmiyHPUd0pZXcn1ZqRbPLk1UQqZXFfXv5vOK26EjdOnMJU6A-UZPJDFc5gNPK_3wP3ktiC7m8K1ILsGZLcF-QX8-rw8Pf7q2SYXXoKaXuh7aRpIQjOq_Fgo7Yb1wyxlKPriziNUTCVJAqV0J54kTRnLglCEIsIndXiNVCTYh0mxKeQBuAz1SekHNMtQalMkiSNcvqNMhEQGUXZEHXi3xR5-c2Uc8jUf8dABd5trvGyrnvDV2WphNOo5cWDfcJK35BdcNA2rLi9uHThE1nKR6_FI-8RR_mSEoZxIfZTsHdizTLekLNBfzIG3HQLcTMkGJvPl4phRHYiMM98BhutSL-OZv_ybh17B4-Hv8BomTXUtD-GRuGnyunpjf29_AFF5dTY
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=A+Primer+on+Mapping+Class+Groups&rft.au=Farb%2C+Benson&rft.au=Margalit%2C+Dan&rft.series=Princeton+Mathematical+Series&rft.date=2011-01-01&rft.pub=Princeton+University+Press&rft.isbn=9781400839049&rft.volume=49&rft_id=info:doi/10.1515%2F9781400839049&rft.externalDBID=n%2Fa&rft.externalDocID=9781400839049
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fprinceton_university_press_rydfxi%2F9781400839049.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.degruyterbrill.com%2Fdocument%2Fcover%2Fisbn%2F9781400839049%2Foriginal
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814008%2F9781400839049.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FPUPB0001460_null_0_320.png