Computational aspects of modular forms and Galois representations how one can compute in polynomial time the value of Ramanujan's tau at a prime.

Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest k...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavní autori: Couveignes, Jean-Marc, Edixhoven, Bas
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: Princeton, N.J Princeton University Press 2011
Vydanie:1
Edícia:Annals of Mathematics Studies
Predmet:
GRH
GRH
ISBN:9780691142029, 0691142025, 9780691142012, 0691142017, 9781400839001, 1400839009
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Obsah:
  • Computational aspects of modular forms and Galois representations: how one can compute in polynomial time the value of Ramanujan's tau at a prime -- Contents -- Preface -- Chapter One: Introduction, main results, context -- Chapter Two: Modular curves, modular forms, lattices, Galois representations -- Chapter Three: First description of the algorithms -- Chapter Four: Short introduction to heights and Arakelov theory -- Chapter Five: Computing complex zeros of polynomials and power series -- Chapter Six: Computations with modular forms and Galois representations -- Chapter Seven: Polynomials for projective representations of level one forms -- Chapter Eight: Description of X1(5l) -- Chapter Nine: Applying Arakelov theory -- Chapter Ten: An upper bound for Green functions on Riemann surfaces -- Chapter Eleven: Bounds for Arakelov invariants of modular curves -- Chapter Twelve: Approximating Vf over the complex numbers -- Chapter Thirteen: Computing Vf modulo p -- Chapter Fourteen: Computing the residual Galois representations -- Chapter Fifteen: Computing coefficients of modular forms -- Epilogue -- Bibliography -- Index
  • Front Matter Table of Contents Preface ACKNOWLEDGMENTS AUTHOR INFORMATION DEPENDENCIES BETWEEN THE CHAPTERS Chapter One: Introduction, main results, context Chapter Two: Modular curves, modular forms, lattices, Galois representations Chapter Three: First description of the algorithms Chapter Four: Short introduction to heights and Arakelov theory Chapter Five: Computing complex zeros of polynomials and power series Chapter Six: Computations with modular forms and Galois representations Chapter Seven: Polynomials for projective representations of level one forms Chapter Eight: Description of X₁(5l) Chapter Nine: Applying Arakelov theory Chapter Ten: An upper bound for Green functions on Riemann surfaces Chapter Eleven: Bounds for Arakelov invariants of modular curves Chapter Twelve: Approximating Vf over the complex numbers Chapter Thirteen: Computing Vf modulo p Chapter Fourteen: Computing the residual Galois representations Chapter Fifteen: Computing coefficients of modular forms Epilogue Bibliography Index
  • 8.1 Construction of a suitable cuspidal divisor on x[sub(1)].5l -- 8.2 The exact setup for the level one case -- Chapter 9. Applying Arakelov theory -- 9.1 Relating heights to intersection numbers -- 9.2 Controlling D[sub(x)]-D[sub(0)] -- Chapter 10. An upper bound for Green functions on Riemann surfaces -- Chapter 11. Bounds for Arakelov invariants of modular curves -- 11.1 Bounding the height of X[sub(1)](pl) -- 11.2 Bounding the theta function on Pic[sup(g-1)](X[sub(1)](pl)) -- 11.3 Upper bounds for Arakelov Green functions on the curves X[sub(1)](pl) -- 11.4 Bounds for intersection numbers on X[sub(1)](pl) -- 11.5 A bound for h(x[sup(&amp -- #8242 -- )][sub(l)](Q)) in terms of h(b([sub(l)](Q)) -- 11.6 An integral over X[sub(1)](5l) -- 11.7 Final estimates of the Arakelov contribution -- Chapter 12. Approximating V[sub(f)] over the complex numbers -- 12.1 Points, divisors, and coordinates on X -- 12.2 The lattice of periods -- 12.3 Modular functions -- 12.4 Power series -- 12.5 Jacobian and Wronskian determinants of series -- 12.6 A simple quantitative study of the Jacobi map -- 12.7 Equivalence of various norms -- 12.8 An elementary operation in the Jacobian variety -- 12.9 Arithmetic operations in the Jacobian variety -- 12.10 The inverse Jacobi problem -- 12.11 The algebraic conditioning -- 12.12 Heights -- 12.13 Bounding the error in X[sub(g)] -- 12.14 Final result of this chapter -- Chapter 13. Computing V[sub(f)] modulo p -- 13.1 Basic algorithms for plane curves -- 13.2 A first approach to picking random divisors -- 13.3 Pairings -- 13.4 Divisible groups -- 13.5 The Kummer map -- 13.6 Linearization of torsion classes -- 13.7 Computing V[sub(f)] modulo p -- Chapter 14. Computing the residual Galois representations -- 14.1 Main result -- 14.2 Reduction to irreducible representations -- 14.3 Reduction to torsion in Jacobians
  • Cover -- Title -- Copyright -- Contents -- Preface -- Acknowledgments -- Author information -- Dependencies between the chapters -- Chapter 1. Introduction, main results, context -- 1.1 Statement of the main results -- 1.2 Historical context: Schoof's algorithm -- 1.3 Schoof's algorithm described in terms of étale cohomology -- 1.4 Some natural new directions -- 1.5 More historical context: congruences for Ramanujan's &amp -- #964 -- -function -- 1.6 Comparison with p-adic methods -- Chapter 2. Modular curves, modular forms, lattices, Galois representations -- 2.1 Modular curves -- 2.2 Modular forms -- 2.3 Lattices and modular forms -- 2.4 Galois representations attached to eigenforms -- 2.5 Galois representations over finite fields, and reduction to torsion in Jacobians -- Chapter 3. First description of the algorithms -- Chapter 4. Short introduction to heights and Arakelov theory -- 4.1 Heights on Q and Q -- 4.2 Heights on projective spaces and on varieties -- 4.3 The Arakelov perspective on height functions -- 4.4 Arithmetic surfaces, intersection theory, and arithmetic Riemann-Roch -- Chapter 5. Computing complex zeros of polynomials and power series -- 5.1 Polynomial time complexity classes -- 5.2 Computing the square root of a positive real number -- 5.3 Computing the complex roots of a polynomial -- 5.4 Computing the zeros of a power series -- Chapter 6. Computations with modular forms and Galois representations -- 6.1 Modular symbols -- 6.2 Intermezzo: Atkin-Lehner operators -- 6.3 Basic numerical evaluations -- 6.4 Numerical calculations and Galois representations -- Chapter 7. Polynomials for projective representations of level one forms -- 7.1 Introduction -- 7.2 Galois representations -- 7.3 Proof of the theorem -- 7.4 Proof of the corollary -- 7.5 The table of polynomials -- Chapter 8. Description of X[sub(1)](5l)
  • 14.4 Computing the Q(&amp -- #950l -- l)-algebra corresponding to V -- 14.5 Computing the vector space structure -- 14.6 Descent to Q -- 14.7 Extracting the Galois representation -- 14.8 A probabilistic variant -- Chapter 15. Computing coefficients of modular forms -- 15.1 Computing &amp -- #964 -- (p) in time polynomial in log p -- 15.2 Computing Tn for large n and large weight -- 15.3 An application to quadratic forms -- Epilogue -- Bibliography -- Index -- Non-alphabetic symbols -- Greek symbols -- Roman symbols -- Words -- A -- C -- D -- E -- F -- G -- H -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- W
  • Author information
  • Chapter 4. Short introduction to heights and Arakelov theory
  • Jean-Marc Couveignes, Bas Edixhoven --
  • Chapter 11. Bounds for Arakelov invariants of modular curves
  • Chapter 14. Computing the residual Galois representations
  • Chapter 12. Approximating Vf over the complex numbers
  • Index
  • Franz Merkl --
  • Chapter 13. Computing Vf modulo p
  • Dependencies between the chapters
  • Chapter 6. Computations with modular forms and Galois representations
  • Acknowledgments
  • Preface
  • Bas Edixhoven, Robin de Jong --
  • Chapter 1. Introduction, main results, context
  • Chapter 10. An upper bound for Green functions on Riemann surfaces
  • B. Edixhoven, R. de Jong --
  • Chapter 2. Modular curves, modular forms, lattices, Galois representations
  • Chapter 3. First description of the algorithms
  • Chapter 9. Applying Arakelov theory
  • Epilogue
  • -
  • Johan Bosman --
  • /
  • Contents
  • Bas Edixhoven --
  • Chapter 5. Computing complex zeros of polynomials and power series
  • Chapter 8. Description of X1(5l)
  • Frontmatter --
  • Chapter 7. Polynomials for projective representations of level one forms
  • Jean-Marc Couveignes --
  • Chapter 15. Computing coefficients of modular forms
  • Bibliography