Numerical algorithms for personalized search in self-organizing information networks

This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks. Representing much of the foundational research in this field, the book develops scalable algorithms that exploit the graphlike properties underlyi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kamvar, Sep
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Princeton, N.J Princeton University Press 2010
Ausgabe:1
Schlagworte:
ISBN:9780691145037, 0691145032, 1400837065, 9781400837069
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks. Representing much of the foundational research in this field, the book develops scalable algorithms that exploit the graphlike properties underlying personalized search and reputation management, and delves into realistic scenarios regarding Web-scale data. Sep Kamvar focuses on eigenvector-based techniques in Web search, introducing a personalized variant of Google's PageRank algorithm, and he outlines algorithms--such as the now-famous quadratic extrapolation technique--that speed up computation, making personalized PageRank feasible. Kamvar suggests that Power Method-related techniques ultimately should be the basis for improving the PageRank algorithm, and he presents algorithms that exploit the convergence behavior of individual components of the PageRank vector. Kamvar then extends the ideas of reputation management and personalized search to distributed networks like peer-to-peer and social networks. He highlights locality and computational considerations related to the structure of the network, and considers such unique issues as malicious peers. He describes the EigenTrust algorithm and applies various PageRank concepts to P2P settings. Discussion chapters summarizing results conclude the book's two main sections. Clear and thorough, this book provides an authoritative look at central innovations in search for all of those interested in the subject.
AbstractList This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks. Representing much of the foundational research in this field, the book develops scalable algorithms that exploit the graphlike properties underlying personalized search and reputation management, and delves into realistic scenarios regarding Web-scale data.Sep Kamvar focuses on eigenvector-based techniques in Web search, introducing a personalized variant of Google's PageRank algorithm, and he outlines algorithms--such as the now-famous quadratic extrapolation technique--that speed up computation, making personalized PageRank feasible. Kamvar suggests that Power Method-related techniques ultimately should be the basis for improving the PageRank algorithm, and he presents algorithms that exploit the convergence behavior of individual components of the PageRank vector. Kamvar then extends the ideas of reputation management and personalized search to distributed networks like peer-to-peer and social networks. He highlights locality and computational considerations related to the structure of the network, and considers such unique issues as malicious peers. He describes the EigenTrust algorithm and applies various PageRank concepts to P2P settings. Discussion chapters summarizing results conclude the book's two main sections.Clear and thorough, this book provides an authoritative look at central innovations in search for all of those interested in the subject.
This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks. Representing much of the foundational research in this field, the book develops scalable algorithms that exploit the graphlike properties underlying personalized search and reputation management, and delves into realistic scenarios regarding Web-scale data.
This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks. Representing much of the foundational research in this field, the book develops scalable algorithms that exploit the graphlike properties underlying personalized search and reputation management, and delves into realistic scenarios regarding Web-scale data. Sep Kamvar focuses on eigenvector-based techniques in Web search, introducing a personalized variant of Google's PageRank algorithm, and he outlines algorithms--such as the now-famous quadratic extrapolation technique--that speed up computation, making personalized PageRank feasible. Kamvar suggests that Power Method-related techniques ultimately should be the basis for improving the PageRank algorithm, and he presents algorithms that exploit the convergence behavior of individual components of the PageRank vector. Kamvar then extends the ideas of reputation management and personalized search to distributed networks like peer-to-peer and social networks. He highlights locality and computational considerations related to the structure of the network, and considers such unique issues as malicious peers. He describes the EigenTrust algorithm and applies various PageRank concepts to P2P settings. Discussion chapters summarizing results conclude the book's two main sections. Clear and thorough, this book provides an authoritative look at central innovations in search for all of those interested in the subject.
No detailed description available for "Numerical Algorithms for Personalized Search in Self-organizing Information Networks".
Author Kamvar, Sep
Author_xml – sequence: 1
  fullname: Kamvar, Sep
– sequence: 2
  fullname: Kamvar, Sep
BackLink https://cir.nii.ac.jp/crid/1130000797824154496$$DView record in CiNii
BookMark eNplkM-PEyEUxzG6xm3t0ZMxmYNZ46EKBYbh6Dbrj2Sje1i9Eph5M6WlUIHa7P71S51GY-QAD76ffN_jO0FPfPCA0AuC3xFO-HspGsIwbqjAtXyEJn8u_DGaFbG8EsI4puIMTRaYYEyYJPwpOq85rhmhlD1Ds5TWuCy2YBSzc3T7db-FaFvtKu2GEG1ebVPVh1jtIKbgtbP30FUJdGxXlfWlcv08xEF7e2_9UJ4KvNXZBl95yIcQN-k5Ouu1SzA7nVP04-PV7fLz_Prbpy_LD9dzLTjnZN4TLbmADtemEaTtNa1BdAaoNgZa05SJe2M0bSSWrOZAoG6NJqbrGDC9kHSK3o7GOm3gkFbB5aR-OTAhbJL6J7C_7EG7DLGDIe7vSqG25Wv_sRcju4vh5x5SVr8tW_A5aqeuLpecC1KinqKXJxCigyGosbOgTDJa1Nej6q1VrT3uhNBj_KL0WzDCGZN1wV6N2DrlEE8Wa9XmLNKubYr-ZtTtsNsbZ9OqBK920ZbJ79TN95vLo6Wkgj4Ai6SjaA
ContentType eBook
Book
Copyright 2010 Princeton University Press
Copyright_xml – notice: 2010 Princeton University Press
DBID E06
RYH
YSPEL
DEWEY 025.5/24
DOI 10.1515/9781400837069
DatabaseName Princeton University Press eBooks
CiNii Complete
Perlego
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Mathematics
EISBN 1400837065
9781400837069
Edition 1
ExternalDocumentID 9781400837069
EBC557150
734943
BB03517954
j.ctt7spc8
PUPB0000937
Genre Electronic books
GroupedDBID -VQ
-VX
05P
089
20A
38.
5O.
A4J
AABBV
AAFKH
AAGED
AAKGN
AAMYY
AANYM
AAUSU
AAZEP
ABARN
ABCYV
ABCYY
ABGJO
ABHWV
ABIAV
ABIWA
ABMRC
ABONK
ABQNV
ABRSK
ABWNX
ABYBY
ACBYE
ACFYN
ACHKM
ACHUA
ACISH
ACLGV
ACQYL
ACRAN
ADBND
ADDXO
ADVEM
ADVQQ
AEAED
AECLD
AEDVL
AEEBL
AEHEP
AEQJM
AERYV
AEYCP
AFHFQ
AFQEX
AFRFP
AGLEC
AHWGJ
AILDO
AIUUY
AIXPE
AJFER
AKHYG
ALMA_UNASSIGNED_HOLDINGS
AMYDA
APVFW
ARPAB
ARSQP
ATDNW
AZZ
BBABE
BFATZ
BFRBX
BHFIF
BSWCA
CDLGT
CZZ
DHNOV
DUGUG
E06
EBSCA
EBZNK
ECOWB
EKLKH
GEOUK
HELXT
HF4
I4C
J-X
JJU
JLPMJ
KBOFU
L7C
MYL
O7H
PQQKQ
QD8
SUPCW
UE6
XI1
YSPEL
~I6
AFTHB
AVGCG
RYH
6XM
BJTYN
IVK
ID FETCH-LOGICAL-a75551-f1a957ed06b871cfa36e7dbe3abbecb8334fbba38909465e1e6cba1bdd4e4a293
ISBN 9780691145037
0691145032
1400837065
9781400837069
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287401800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Fri Nov 08 05:49:26 EST 2024
Fri Nov 21 19:51:09 EST 2025
Wed Dec 10 09:22:52 EST 2025
Tue Dec 02 18:49:21 EST 2025
Thu Jun 26 21:17:43 EDT 2025
Wed Dec 03 03:28:46 EST 2025
Wed Jul 30 03:08:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Cluster analysis
Ranking (information retrieval)
Personalization
Reputation system
Reputation management
Robustness (computer science)
Randomized algorithm
Data corruption
Naming convention (programming)
Load balancing (computing)
Sampling (statistics)
Hash function
Computer network
Collaborative filtering
Eigenvalue algorithm
Eigenvalues and eigenvectors
Variable (computer science)
Peer-to-peer
Algorithm design
Deterministic algorithm
CPU cache
Parameter (computer programming)
QR algorithm
Data portability
Power iteration
Numerical linear algebra
QR decomposition
Online auction
Matrix decomposition
Algorithm
Network simulation
Extrapolation
Proportionality (mathematics)
Numerical analysis
Computation
Regularization (mathematics)
Repository (version control)
Selection algorithm
Memory access pattern
Patch (computing)
Replication (computing)
Sign (mathematics)
Polynomial long division
Characteristic polynomial
Upload
Iteration
Computing
Computer data storage
Web search engine
Personalized search
Dynamic programming
Rate of convergence
Tree (data structure)
PageRank
Cryptographic hash function
Data set
Federated search
Search algorithm
Instance (computer science)
Topic-Sensitive PageRank
Variable (mathematics)
Parallel computing
File system
Google matrix
Machine learning
Greedy algorithm
EigenTrust
Server (computing)
Scientific notation
Human–computer interaction (security)
LCCN 2010014915
LCCallNum ZA4460
LCCallNum_Ident ZA4460
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a75551-f1a957ed06b871cfa36e7dbe3abbecb8334fbba38909465e1e6cba1bdd4e4a293
Notes Bibliography: p. [135]-139
OCLC 650641334
PQID EBC557150
PageCount 156
ParticipantIDs askewsholts_vlebooks_9781400837069
walterdegruyter_marc_9781400837069
proquest_ebookcentral_EBC557150
perlego_books_734943
nii_cinii_1130000797824154496
jstor_books_j_ctt7spc8
igpublishing_primary_PUPB0000937
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate ©2010.
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – year: 2010
  text: ©2010.
PublicationDecade 2010
PublicationPlace Princeton, N.J
PublicationPlace_xml – name: Princeton, N.J
– name: Princeton
– name: Princeton, NJ
PublicationYear 2010
Publisher Princeton University Press
Publisher_xml – name: Princeton University Press
RestrictionsOnAccess restricted access
SSID ssj0000424304
Score 1.901302
Snippet This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks....
No detailed description available for "Numerical Algorithms for Personalized Search in Self-organizing Information Networks".
SourceID askewsholts
walterdegruyter
proquest
perlego
nii
jstor
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Algorithm
Algorithm design
Algorithms
Characteristic polynomial
Cluster analysis
Collaborative filtering
Computation
Computer data storage
Computer network
COMPUTERS
COMPUTERS / Computer Science
COMPUTERS / Programming / Algorithms
Computing
Content analysis (Communication)
Content analysis (Communication) -- Mathematics
CPU cache
Cryptographic hash function
Data corruption
Data portability
Data processing
Database searching
Database searching -- Mathematics
Deterministic algorithm
Dynamic programming
EigenTrust
Eigenvalue algorithm
Eigenvalues and eigenvectors
Extrapolation
Federated search
File system
Google matrix
Greedy algorithm
Hash function
Human–computer interaction (security)
Information networks
Information networks -- Mathematics
Instance (computer science)
Internet searching
Internet searching -- Mathematics
Iteration
Load balancing (computing)
Machine learning
Mathematics
MATHEMATICS / General
Matrix decomposition
Memory access pattern
Naming convention (programming)
Network simulation
Numerical analysis
Numerical linear algebra
Online auction
PageRank
Parallel computing
Parameter (computer programming)
Patch (computing)
Peer-to-peer
Personalization
Personalized search
Polynomial long division
Power iteration
Proportionality (mathematics)
QR algorithm
QR decomposition
Randomized algorithm
Ranking (information retrieval)
Rate of convergence
Regularization (mathematics)
Replication (computing)
Repository (version control)
Reputation management
Reputation system
Robustness (computer science)
Sampling (statistics)
Scientific notation
Search algorithm
Selection algorithm
Self-organizing systems
Self-organizing systems -- Data processing
Server (computing)
Sign (mathematics)
Technology
Topic-Sensitive PageRank
Tree (data structure)
Upload
Variable (computer science)
Variable (mathematics)
Web search engine
SubjectTermsDisplay Database searching
TableOfContents Numerical algorithms for personalized search in self-organizing information networks -- Contents -- Tables -- Figures -- Acknowledgments -- Chapter One: Introduction -- Part I: World Wide Web -- Chapter Two: PageRank -- Chapter Three: The Second Eigenvalue of the Google Matrix -- Chapter Four: The Condition Number of the PageRank Problem -- Chapter Five: Extrapolation Algorithms -- Chapter Six: Adaptive PageRank -- Chapter Seven: BlockRank -- Part II: P2P Networks -- Chapter Eight: Query-Cycle Simulator -- Chapter Nine: EigenTrust -- Chapter Ten: Adaptive P2P Topologies -- Chapter Eleven: Conclusion -- Bibliography
Front Matter Table of Contents Tables Figures Acknowledgments Chapter One: Introduction Chapter Two: PageRank Chapter Three: The Second Eigenvalue of the Google Matrix Chapter Four: The Condition Number of the PageRank Problem Chapter Five: Extrapolation Algorithms Chapter Six: Adaptive PageRank Chapter Seven: BlockRank Chapter Eight: Query-Cycle Simulator Chapter Nine: EigenTrust Chapter Ten: Adaptive P2P Topologies Chapter Eleven: Conclusion Bibliography
10.4.1 Malicious Peers Move to Fringe -- 10.4.2 Freeriders Move to Fringe -- 10.4.3 Active Peers Are Rewarded -- 10.4.4 Efficient Topology -- 10.5 Threat Scenarios -- 10.5.1 Threat Model A -- 10.5.2 Threat Model B -- 10.5.3 Threat Model C -- 10.6 Related Work -- 10.7 Discussion -- Chapter 11 Conclusion -- Bibliography
Intro -- Numerical Algorithms for Personalized Search in Self-organizing Information Networks -- Contents -- Tables -- Figures -- Acknowledgments -- Chapter 1 Introduction -- 1.1 World Wide Web -- 1.2 P2P Networks -- 1.3 Contributions -- PART I WORLD WIDE WEB -- Chapter 2 PageRank -- 2.1 PageRank Basics -- 2.2 Notation and Mathematical Preliminaries -- 2.3 Power Method -- 2.3.1 Formulation -- 2.3.2 Operation Count -- 2.3.3 Convergence -- 2.4 Experimental Setup -- 2.5 Related Work -- 2.5.1 Fast Eigenvector Computation -- 2.5.2 PageRank -- Chapter 3 The Second Eigenvalue of the Google Matrix -- 3.1 Introduction -- 3.2 Theorems -- 3.3 Proof of Theorem 1 -- 3.4 Proof of Theorem 2 -- 3.5 Implications -- 3.6 Theorems Used -- Chapter 4 The Condition Number of the PageRank Problem -- 4.1 Theorem 6 -- 4.2 Proof of Theorem 6 -- 4.3 Implications -- Chapter 5 Extrapolation Algorithms -- 5.1 Introduction -- 5.2 Aitken Extrapolation -- 5.2.1 Formulation -- 5.2.2 Operation Count -- 5.2.3 Experimental Results -- 5.2.4 Discussion -- 5.3 Quadratic Extrapolation -- 5.3.1 Formulation -- 5.3.2 Operation Count -- 5.3.3 Experimental Results -- 5.3.4 Discussion -- 5.4 Power Extrapolation -- 5.4.1 Simple Power Extrapolation -- 5.4.2 A2 Extrapolation -- 5.4.3 Ad Extrapolation -- 5.5 Measures of Convergence -- Chapter 6 Adaptive PageRank -- 6.1 Introduction -- 6.2 Distribution of Convergence Rates -- 6.3 Adaptive PageRank Algorithm -- 6.3.1 Algorithm Intuition -- 6.3.2 Filter-based Adaptive PageRank -- 6.4 Experimental Results -- 6.5 Extensions -- 6.5.1 Further Reducing Redundant Computation -- 6.5.2 Using the Matrix Ordering from the Previous Computation -- 6.6 Discussion -- Chapter 7 BlockRank -- 7.1 Block Structure of the Web -- 7.1.1 Block Sizes -- 7.1.2 The GeoCities Effect -- 7.2 BlockRank Algorithm -- 7.2.1 Overview of BlockRank Algorithm
7.2.2 Computing Local PageRanks -- 7.2.3 Estimating the Relative Importance of Each Block -- 7.2.4 Approximating Global PageRank Using Local PageRank and BlockRank -- 7.2.5 Using This Estimate as a Start Vector -- 7.3 Advantages of BlockRank -- 7.4 Experimental Results -- 7.5 Discussion -- 7.6 Personalized PageRank -- 7.6.1 Inducing Random Jump Probabilities over Pages -- 7.6.2 Using "Better" Local PageRanks -- 7.6.3 Experiments -- 7.6.4 Topic-Sensitive PageRank -- 7.6.5 Pure BlockRank -- PART II P2P NETWORKS -- Chapter 8 Query-Cycle Simulator -- 8.1 Challenges in Empirical Evaluation of P2P Algorithms -- 8.2 The Query-Cycle Model -- 8.3 Basic Properties -- 8.3.1 Network Topology -- 8.3.2 Joining the Network -- 8.3.3 Query Propagation -- 8.4 Peer-Level Properties -- 8.5 Content Distribution Model -- 8.5.1 Data Volume -- 8.5.2 Content Type -- 8.6 Peer Behavior Model -- 8.6.1 Uptime and Session Duration -- 8.6.2 Query Activity -- 8.6.3 Queries -- 8.6.4 Query Responses -- 8.6.5 Downloads -- 8.7 Network Parameters -- 8.7.1 Topology -- 8.7.2 Bandwidth -- 8.8 Discussion -- Chapter 9 EigenTrust -- 9.1 Design Considerations -- 9.2 Reputation Systems -- 9.3 EigenTrust -- 9.3.1 Normalizing Local Trust Values -- 9.3.2 Aggregating Local Trust Values -- 9.3.3 Probabilistic Interpretation -- 9.3.4 Basic EigenTrust -- 9.3.5 Practical Issues -- 9.3.6 Distributed EigenTrust -- 9.3.7 Algorithm Complexity -- 9.4 Secure EigenTrust -- 9.4.1 Algorithm Description -- 9.4.2 Discussion -- 9.5 Using Global Trust Values -- 9.6 Experiments -- 9.6.1 Load Distribution in a Trust-based Network -- 9.6.2 Threat Models -- 9.7 Related Work -- 9.8 Discussion -- Chapter 10 Adaptive P2P Topologies -- 10.1 Introduction -- 10.2 Interaction Topologies -- 10.3 Adaptive P2P Topologies -- 10.3.1 Local Trust Scores -- 10.3.2 Protocol -- 10.3.3 Practical Issues -- 10.4 Empirical Results
Chapter Four. The Condition Number of the PageRank Problem
Chapter Eight. Query-Cycle Simulator
Chapter Ten. Adaptive P2P Topologies
Chapter Two. PageRank
Figures
-
/
PART II. P2P Networks --
Chapter Six. Adaptive PageRank
Chapter Eleven. Conclusion
Chapter Three. The Second Eigenvalue of the Google Matrix
Contents
Chapter One. Introduction
Acknowledgments
Chapter Seven. BlockRank
Frontmatter --
Chapter Nine. Eigen Trust
Tables
PART I. World Wide Web --
Chapter Five. Extrapolation Algorithms
Bibliography
Title Numerical algorithms for personalized search in self-organizing information networks
URI http://portal.igpublish.com/iglibrary/search/PUPB0000937.html
https://www.jstor.org/stable/j.ctt7spc8
https://cir.nii.ac.jp/crid/1130000797824154496
https://www.perlego.com/book/734943/numerical-algorithms-for-personalized-search-in-selforganizing-information-networks-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=557150
https://www.degruyterbrill.com/isbn/9781400837069
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781400837069&uid=none
WOSCitedRecordID wos000287401800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5BwoEeEFAqTAlYCHGziLP2rn1tFUBCKpGaot6sXXsSDMGxYje0_fXMrh-xUw5w4LKKvY-s9rM97xmAtyzhPJ4k3OF-yByPKeZIyQMnIGLNwmTCBI5NsQlxdhZcXoazurZeYcoJiCwLrq_D_L9CTfcIbB06-w9wt4vSDfpNoFNLsFO7xxG3l00IbWV9oTNfLdck9H-rki0YL3fDcN9q7rJVc5zjauFUVZ1uK7-BNpJRxwFrj62dpUf-3Fau2OdEv7Ty4Y89XR2CcUXr6hBmWq-POo3HfnhiT9okWWysc-VUtVXufHt9k6bizrh-jus92tN6BPam3YfhxPOZN4Dhx-mXi8-t0kzbadnYq3Ol0h--7807gANZ_CDiQISjLHTy2WXeKvMah1NiIrI0JXEnx80Kl-ueaPHol3FSSHC5ubopG6O44TXmj2GIOgDlCdzD7CmM6sAS-53dwceuP8mHMG9Rt3eo2zTQ7qJuV6jbKc3so95btUH9GXz9MJ2ffnLqShmOFD7xvM7ClaEvMBlzRRJwvJCMo0gUMqnoJVUBY95CKUncKYnz3EcXeaykq5LEQ08Sy3cEg2yd4XOwlfKE7tHxIdTlhui6mKBicYAT5GjBm84hR9uVseoXUQ8JC-zu2Ud5lTolml3MToxYwoQFRwaPqJr-PYrLUhR5HFgwIoCiONWtq82txMfS6prX9LyQW3BYQ1dPFTrFErPgdYNjZLZUezdH05NT3xck-NDO9-CNdL6Y_s5f_M2gY3i4e41ewqDcXOEIHsTbMi02r-qn9jfxS5Jc
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Numerical+Algorithms+for+Personalized+Search+in+Self-organizing+Information+Networks&rft.au=Kamvar%2C+Sepandar&rft.au=Kamvar%2C+Sep&rft.date=2010-01-01&rft.pub=Princeton+University+Press&rft.isbn=9781400837069&rft_id=info:doi/10.1515%2F9781400837069&rft.externalDBID=n%2Fa&rft.externalDocID=9781400837069
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fprinceton_university_press_rydfxi%2F9781400837069.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.degruyterbrill.com%2Fdocument%2Fcover%2Fisbn%2F9781400837069%2Foriginal
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814008%2F9781400837069.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FPUPB0000937_null_0_320.png