Finite Element Method for Fluid Dynamics (6th Edition)
Dealing with general problems in fluid mechanics, convection diffusion, compressible and incompressible laminar and turbulent flow, shallow water flows and waves, this is the leading text and reference for engineers working with fluid dynamics in fields including aerospace engineering, vehicle desig...
Uloženo v:
| Hlavní autoři: | , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam ; Oxford ; Tokyo
Elsevier
2005
Elsevier Butterworth-Heinemann Elsevier Science & Technology |
| Vydání: | 6 |
| Témata: | |
| ISBN: | 9780750663229, 0750663227, 1493302906, 9781493302901 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Front Matter Preface Table of Contents 1. Introduction to the Equations of Fluid Dynamics and the Finite Element Approximation 2. Convection Dominated Problems - Finite Element Approximations to the Convection - Diffusion-Reaction Equation 3. The Characteristic-Based Split (CBS) Algorithm. A General Procedure for Compressible and Incompressible Flow 4. Incompressible Newtonian Laminar Flows 5. Incompressible Non-Newtonian Flows 6. Free Surface and Buoyancy Driven Flows 7. Compressible High-Speed Gas Flow 8. Turbulent Flows 9. Generalized Flow through Porous Media 10. Shallow Water Problems 11. Long and Medium Waves 12. Short Waves 13. Computer Implementation of the CBS Algorithm Appendices Author Index Subject Index Color Plate
- 9.6 Natural convection -- 9.7 Concluding remarks -- References -- Chapter 10. Shallow water problems -- 10.1 Introduction -- 10.2 The basis of the shallow water equations -- 10.3 Numerical approximation -- 10.4 Examples of application -- 10.5 Drying areas -- 10.6 Shallow water transport -- 10.7 Concluding remarks -- References -- Chapter 11. Long and medium waves -- 11.1 Introduction and equations -- 11.2 Waves in closed domains - finite element models -- 11.3 Difficulties in modelling surface waves -- 11.4 Bed friction and other effects -- 11.5 The short-wave problem -- 11.6 Waves in unbounded domains (exterior surface wave problems) -- 11.7 Unbounded problems -- 11.8 Local Non-Reflecting Boundary Conditions (NRBCs) -- 11.9 Infinite elements -- 11.10 Mapped periodic (unconjugated) infinite elements -- 11.11 Ellipsoidal type infinite elements of Burnett and Holford -- 11.12 Wave envelope (or conjugated) infinite elements -- 11.13 Accuracy of infinite elements -- 11.14 Trefftz type infinite elements -- 11.15 Convection and wave refraction -- 11.16 Transient problems -- 11.17 Linking to exterior solutions (or DtN mapping) -- 11.18 Three-dimensional effects in surface waves -- 11.19 Concluding remarks -- References -- Chapter 12. Shortwaves -- 12.1 Introduction -- 12.2 Background -- 12.3 Errors in wave modelling -- 12.4 Recent developments in short wave modelling -- 12.5 Transient solution of electromagnetic scattering problems -- 12.6 Finite elements incorporating wave shapes -- 12.7 Refraction -- 12.8 Spectral finite elements for waves -- 12.9 Discontinuous Galerkin finite elements (DGFE) -- 12.10 Concluding remarks -- References -- Chapter 13. Computer implementation of the CBS algorithm -- 13.1 Introduction -- 13.2 The data input module -- 13.3 Solution module -- 13.4 Output module -- References
- Front Cover -- The Finite Element Method for Fluid Dynamics -- Copyright Page -- Contents -- Preface -- Acknowledgements -- Chapter 1. Introduction to the equations of fluid dynamics and the finite element approximation -- 1.1 General remarks and classification of fluid dynamics problems discussed in this book -- 1.2 The governing equations of fluid dynamics -- 1.3 Inviscid, incompressible flow -- 1.4 Incompressible (or nearly incompressible) flows -- 1.5 Numerical solutions: weak forms, weighted residual and finite element approximation -- 1.6 Concluding remarks -- References -- Chapter 2. Convection dominated problems- finite element approximations to the convection-diffusion-reaction equation -- 2.1 Introduction -- 2.2 The steady-state problem in one dimension -- 2.3 The steady-state problem in two (or three) dimensions -- 2.4 Steady state - concluding remarks -- 2.5 Transients - introductory remarks -- 2.6 Characteristic-based methods -- 2.7 Taylor-Galerkin procedures for scalar variables -- 2.8 Steady-state condition -- 2.9 Non-linear waves and shocks -- 2.10 Treatment of pure convection -- 2.11 Boundary conditions for convection-diffusion -- 2.12 Summary and concluding remarks -- References -- Chapter 3. The characteristic-based split (CBS) algorithm. A general procedure for compressible and incompressible flow -- 3.1 Introduction -- 3.2 Non-dimensional form of the governing equations -- 3.3 Characteristic-based split (CBS) algorithm -- 3.4 Explicit, semi-implicit and nearly implicit forms -- 3.5 Artificial compressibility and dual time stepping -- 3.6 'Circumvention' of the Babuška-Brezzi (BB)restrictions -- 3.7 A single-step version -- 3.8 Boundary conditions -- 3.9 The performance of two-step and one-step algorithms on an inviscid problem -- 3.10 Concluding remarks -- References -- Chapter 4. Incompressible Newtonian laminar flows
- 4.1 Introduction and the basic equations -- 4.2 Use of the CBS algorithm for incompressible flows -- 4.3 Adaptive mesh refinement -- 4.4 Adaptive mesh generation for transient problems -- 4.5 Slow flows - mixed and penalty formulations -- 4.6 Concluding remarks -- References -- Chapter 5. Incompressible non-Newtonian flows -- 5.1 Introduction -- 5.2 Non-Newtonian flows - metal and polymer forming -- 5.3 Viscoelastic flows -- 5.4 Direct displacement approach to transient metal forming -- 5.5 Concluding remarks -- References -- Chapter 6. Free surface and buoyancy driven flows -- 6.1 Introduction -- 6.2 Free surface flows -- 6.3 Buoyancy driven flows -- 6.4 Concluding remarks -- References -- Chapter 7. Compressible high-speed gas flow -- 7.1 Introduction -- 7.2 The governing equations -- 7.3 Boundary conditions - subsonic and supersonic flow -- 7.4 Numerical approximations and the CBS algorithm -- 7.5 Shock capture -- 7.6 Variable smoothing -- 7.7 Some preliminary examples for the Euler equation -- 7.8 Adaptive refinement and shock capture in Euler problems -- 7.9 Three-dimensional inviscid examples in steady state -- 7.10 Transient two- and three-dimensional problems -- 7.11 Viscous problems in two dimensions -- 7.12 Three-dimensional viscous problems -- 7.13 Boundary layer-inviscid Euler solution coupling -- 7.14 Concluding remarks -- References -- Chapter 8. Turbulent flows -- 8.1 Introduction -- 8.2 Treatment of incompressible turbulent flows -- 8.3 Treatment of compressible flows -- 8.4 Large eddy simulation -- 8.5 Detached Eddy Simulation (DES) -- 8.6 Direct Numerical Simulation (DNS) -- 8.7 Concluding remarks -- References -- Chapter 9. Generalized flow through porous media -- 9.1 Introduction -- 9.2 A generalized porous medium flow approach -- 9.3 Discretization procedure -- 9.4 Non-isothermal flows -- 9.5 Forced convection
- Appendix A. Non-conservative form of Navier-Stokes equations -- Appendix B. Self-adjoint differential equations -- Appendix C. Postprocessing -- Appendix D. Integration formulae -- Appendix E. Convection-diffusion equations: vector-valued variables -- Appendix F. Edge-based finite element formulation -- Appendix G. Multigrid method -- Appendix H. Boundary layer-inviscid flow coupling -- Appendix I. Mass-weighted averaged turbulence transport equations -- Author index -- Subject index -- Color Plate Section

