Feature extraction & image processing for computer vision

Feature Extraction and Image Processing for Computer Vision is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab.Algorithms are presented and fully explained to enable complete understanding of the metho...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Nixon, Mark S., Aguado, Alberto S.
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Oxford Academic Press 2012
Elsevier Science & Technology
Vydání:3
Témata:
ISBN:0123965497, 9780123965493
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Feature Extraction and Image Processing for Computer Vision is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab.Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated.
AbstractList Feature Extraction and Image Processing for Computer Vision is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab.Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated.
This book is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab. Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated. As one reviewer noted, "The main strength of the proposed book is the exemplar code of the algorithms." Fully updated with the latest developments in feature extraction, including expanded tutorials and new techniques, this new edition contains extensive new material on Haar wavelets, Viola-Jones, bilateral filtering, SURF, PCA-SIFT, moving object detection and tracking, development of symmetry operators, LBP texture analysis, Adaboost, and a new appendix on color models. Coverage of distance measures, feature detectors, wavelets, level sets and texture tutorials has been extended. Named a 2012 Notable Computer Book for Computing Methodologies by Computing ReviewsEssential reading for engineers and students working in this cutting-edge fieldIdeal module text and background reference for courses in image processing and computer visionThe only currently available text to concentrate on feature extraction with working implementation and worked through derivation
Author Aguado, Alberto S.
Nixon, Mark S.
Author_xml – sequence: 1
  fullname: Nixon, Mark S.
– sequence: 2
  fullname: Aguado, Alberto S.
BackLink https://cir.nii.ac.jp/crid/1130000794375862656$$DView record in CiNii
BookMark eNo9kElPwzAQhY1YRFt65poDqsQh4CXejjRqAakSF8Q1cuxJCU3jEqeFn4-7iDnMaKRPM--9IbpofQsI3RL8QDARjznFhKQ4xUIznpIzNMSEMi0VzcT5aRE80_IKDRQlSlDB1DUah_CFY0kmmcYDpOdg-m0HCfz2nbF97dtkktRrs4Rk03kLIdTtMql8l1i_3mx76JJdHSJ2gy4r0wQYn-YIfcxn7_lLunh7fs2fFqmRNP5NK2o40xk3imjlrFMOG5eVjhklKqioxBW3QjluGXas1JIYACkqw7XIZKnZCN0fD5uwgp_w6Zs-FLsGSu9XoYiO_43jyE6ObNT-vYXQFwfMQhvdNcVsmmutBJERvDuCbV0Xtt53QtghGZ0xyfd5ccH-AFfcZqY
ContentType eBook
Book
DBID RYH
DEWEY 006.37
DOI 10.1016/C2011-0-06935-1
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Computer Science
EISBN 0123978246
9780123978240
Edition 3
Third edition.
ExternalDocumentID 9780123978240
EBC998617
BB1077609X
GroupedDBID -VX
089
20A
38.
5O.
A4J
AAAAS
AABBV
AAJKE
AALRI
AAORS
AAXUO
AAZHC
AAZNM
ABARN
ABGWT
ABIAV
ABLXK
ABMAC
ABMRC
ABQPQ
ABQQC
ACLGV
ACNAM
ACXMD
ADCEY
ADVEM
AERYV
AFOJC
AGAMA
AHNET
AHWGJ
AIXPE
AJFER
AJLEP
AKHYG
ALMA_UNASSIGNED_HOLDINGS
ALTAS
AMCAZ
AMINO
ASVZH
AXHOF
AZZ
BADUN
BBABE
BBQZY
BGHEG
BPBUR
BYTKM
CZZ
DIGXA
DUGUG
EBSCA
ECOWB
ESHEC
GEOUK
HGY
IHRAH
JJU
LLQQT
MYL
NK1
NK2
PQQKQ
PTRHF
RY2
RYH
SDK
T1P
WZG
XI1
AAGAK
ABQNV
ABWNX
ADBND
AEHEP
AFQEX
EDHSY
AADAM
IVK
IWL
ID FETCH-LOGICAL-a72218-f2a53945a8198dcd8d0ad4bd3a86fef270f5c68d5c30d3b971aee76fa59647b93
ISBN 0123965497
9780123965493
IngestDate Wed Feb 19 08:46:58 EST 2025
Wed Dec 10 09:01:59 EST 2025
Mon Oct 06 01:31:44 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TA1637 .N596 2012
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a72218-f2a53945a8198dcd8d0ad4bd3a86fef270f5c68d5c30d3b971aee76fa59647b93
OCLC 821862638
PQID EBC998617
PageCount 628
ParticipantIDs askewsholts_vlebooks_9780123978240
proquest_ebookcentral_EBC998617
nii_cinii_1130000794375862656
PublicationCentury 2000
PublicationDate 2012
2012-12-12
PublicationDateYYYYMMDD 2012-01-01
2012-12-12
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: Chantilly
PublicationYear 2012
Publisher Academic Press
Elsevier Science & Technology
Publisher_xml – name: Academic Press
– name: Elsevier Science & Technology
SSID ssj0000737390
Score 2.4716177
Snippet Feature Extraction and Image Processing for Computer Vision is an essential guide to the implementation of image processing and computer vision techniques,...
This book is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in...
SourceID askewsholts
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Computer vision
Computer vision -- Mathematics
Digital techniques
Image processing
Image processing -- Digital techniques
Mathematics
Pattern recognition systems
TableOfContents 3.4.5 More on averaging -- 3.5 Other statistical operators -- 3.5.1 Median filter -- 3.5.2 Mode filter -- 3.5.3 Anisotropic diffusion -- 3.5.4 Force field transform -- 3.5.5 Comparison of statistical operators -- 3.6 Mathematical morphology -- 3.6.1 Morphological operators -- 3.6.2 Gray-level morphology -- 3.6.3 Gray-level erosion and dilation -- 3.6.4 Minkowski operators -- 3.7 Further reading -- 3.8 References -- 4 Low-level feature extraction (including edge detection) -- 4.1 Overview -- 4.2 Edge detection -- 4.2.1 First-order edge-detection operators -- 4.2.1.1 Basic operators -- 4.2.1.2 Analysis of the basic operators -- 4.2.1.3 Prewitt edge-detection operator -- 4.2.1.4 Sobel edge-detection operator -- 4.2.1.5 The Canny edge detector -- 4.2.2 Second-order edge-detection operators -- 4.2.2.1 Motivation -- 4.2.2.2 Basic operators: the Laplacian -- 4.2.2.3 The Marr-Hildreth operator -- 4.2.3 Other edge-detection operators -- 4.2.4 Comparison of edge-detection operators -- 4.2.5 Further reading on edge detection -- 4.3 Phase congruency -- 4.4 Localized feature extraction -- 4.4.1 Detecting image curvature (corner extraction) -- 4.4.1.1 Definition of curvature -- 4.4.1.2 Computing differences in edge direction -- 4.4.1.3 Measuring curvature by changes in intensity (differentiation) -- 4.4.1.4 Moravec and Harris detectors -- 4.4.1.5 Further reading on curvature -- 4.4.2 Modern approaches: region/patch analysis -- 4.4.2.1 Scale invariant feature transform -- 4.4.2.2 Speeded up robust features -- 4.4.2.3 Saliency -- 4.4.2.4 Other techniques and performance issues -- 4.5 Describing image motion -- 4.5.1 Area-based approach -- 4.5.2 Differential approach -- 4.5.3 Further reading on optical flow -- 4.6 Further reading -- 4.7 References -- 5 High-level feature extraction: fixed shape matching -- 5.1 Overview -- 5.2 Thresholding and subtraction
7.2.3.5 Cumulative angular function -- 7.2.3.6 Elliptic Fourier descriptors -- 7.2.3.7 Invariance -- 7.3 Region descriptors -- 7.3.1 Basic region descriptors -- 7.3.2 Moments -- 7.3.2.1 Basic properties -- 7.3.2.2 Invariant moments -- 7.3.2.3 Zernike moments -- 7.3.2.4 Other moments -- 7.4 Further reading -- 7.5 References -- 8 Introduction to texture description, segmentation, and classification -- 8.1 Overview -- 8.2 What is texture? -- 8.3 Texture description -- 8.3.1 Performance requirements -- 8.3.2 Structural approaches -- 8.3.3 Statistical approaches -- 8.3.4 Combination approaches -- 8.3.5 Local binary patterns -- 8.3.6 Other approaches -- 8.4 Classification -- 8.4.1 Distance measures -- 8.4.2 The k-nearest neighbor rule -- 8.4.3 Other classification approaches -- 8.5 Segmentation -- 8.6 Further reading -- 8.7 References -- 9 Moving object detection and description -- 9.1 Overview -- 9.2 Moving object detection -- 9.2.1 Basic approaches -- 9.2.1.1 Detection by subtracting the background -- 9.2.1.2 Improving quality by morphology -- 9.2.2 Modeling and adapting to the (static) background -- 9.2.3 Background segmentation by thresholding -- 9.2.4 Problems and advances -- 9.3 Tracking moving features -- 9.3.1 Tracking moving objects -- 9.3.2 Tracking by local search -- 9.3.3 Problems in tracking -- 9.3.4 Approaches to tracking -- 9.3.5 Meanshift and Camshift -- 9.3.5.1 Kernel-based density estimation -- 9.3.5.2 Meanshift tracking -- Similarity function -- Kernel profiles and shadow kernels -- Gradient maximization -- 9.3.5.3 Camshift technique -- 9.3.6 Recent approaches -- 9.4 Moving feature extraction and description -- 9.4.1 Moving (biological) shape analysis -- 9.4.2 Detecting moving shapes by shape matching in image sequences -- 9.4.3 Moving shape description -- 9.5 Further reading -- 9.6 References
13.3.6 Luminance and chrominance color models: YUV, YIQ, and YCbCr
Front Cover -- Feature Extraction &amp -- Image Processing for Computer Vision -- Copyright page -- Contents -- Preface -- What is new in the third edition? -- Why did we write this book? -- The book and its support -- In gratitude -- Final message -- About the authors -- 1 Introduction -- 1.1 Overview -- 1.2 Human and computer vision -- 1.3 The human vision system -- 1.3.1 The eye -- 1.3.2 The neural system -- 1.3.3 Processing -- 1.4 Computer vision systems -- 1.4.1 Cameras -- 1.4.2 Computer interfaces -- 1.4.3 Processing an image -- 1.5 Mathematical systems -- 1.5.1 Mathematical tools -- 1.5.2 Hello Matlab, hello images! -- 1.5.3 Hello Mathcad! -- 1.6 Associated literature -- 1.6.1 Journals, magazines, and conferences -- 1.6.2 Textbooks -- 1.6.3 The Web -- 1.7 Conclusions -- 1.8 References -- 2 Images, sampling, and frequency domain processing -- 2.1 Overview -- 2.2 Image formation -- 2.3 The Fourier transform -- 2.4 The sampling criterion -- 2.5 The discrete Fourier transform -- 2.5.1 1D transform -- 2.5.2 2D transform -- 2.6 Other properties of the Fourier transform -- 2.6.1 Shift invariance -- 2.6.2 Rotation -- 2.6.3 Frequency scaling -- 2.6.4 Superposition (linearity) -- 2.7 Transforms other than Fourier -- 2.7.1 Discrete cosine transform -- 2.7.2 Discrete Hartley transform -- 2.7.3 Introductory wavelets -- 2.7.3.1 Gabor wavelet -- 2.7.3.2 Haar wavelet -- 2.7.4 Other transforms -- 2.8 Applications using frequency domain properties -- 2.9 Further reading -- 2.10 References -- 3 Basic image processing operations -- 3.1 Overview -- 3.2 Histograms -- 3.3 Point operators -- 3.3.1 Basic point operations -- 3.3.2 Histogram normalization -- 3.3.3 Histogram equalization -- 3.3.4 Thresholding -- 3.4 Group operations -- 3.4.1 Template convolution -- 3.4.2 Averaging operator -- 3.4.3 On different template size -- 3.4.4 Gaussian averaging operator
10 Appendix 1: Camera geometry fundamentals -- 10.1 Image geometry -- 10.2 Perspective camera -- 10.3 Perspective camera model -- 10.3.1 Homogeneous coordinates and projective geometry -- 10.3.1.1 Representation of a line and duality -- 10.3.1.2 Ideal points -- 10.3.1.3 Transformations in the projective space -- 10.3.2 Perspective camera model analysis -- 10.3.3 Parameters of the perspective camera model -- 10.4 Affine camera -- 10.4.1 Affine camera model -- 10.4.2 Affine camera model and the perspective projection -- 10.4.3 Parameters of the affine camera model -- 10.5 Weak perspective model -- 10.6 Example of camera models -- 10.7 Discussion -- 10.8 References -- 11 Appendix 2: Least squares analysis -- 11.1 The least squares criterion -- 11.2 Curve fitting by least squares -- 12 Appendix 3: Principal components analysis -- 12.1 Principal components analysis -- 12.2 Data -- 12.3 Covariance -- 12.4 Covariance matrix -- 12.5 Data transformation -- 12.6 Inverse transformation -- 12.7 Eigenproblem -- 12.8 Solving the eigenproblem -- 12.9 PCA method summary -- 12.10 Example -- 12.11 References -- 13 Appendix 4: Color images -- 13.1 Color images -- 13.2 Tristimulus theory -- 13.3 Color models -- 13.3.1 The colorimetric equation -- 13.3.2 Luminosity function -- 13.3.3 Perception based color models: the CIE RGB and CIE XYZ -- 13.3.3.1 CIE RGB color model: Wright-Guild data -- 13.3.3.2 CIE RGB color matching functions -- 13.3.3.3 CIE RGB chromaticity diagram and chromaticity coordinates -- 13.3.3.4 CIE XYZ color model -- 13.3.3.5 CIE XYZ color matching functions -- 13.3.3.6 XYZ chromaticity diagram -- 13.3.4 Uniform color spaces: CIE LUV and CIE LAB -- 13.3.5 Additive and subtractive color models: RGB and CMY -- 13.3.5.1 RGB and CMY -- 13.3.5.2 Transformation between RGB color models -- 13.3.5.3 Transformation between RGB and CMY color models
5.3 Template matching -- 5.3.1 Definition -- 5.3.2 Fourier transform implementation -- 5.3.3 Discussion of template matching -- 5.4 Feature extraction by low-level features -- 5.4.1 Appearance-based approaches -- 5.4.1.1 Object detection by templates -- 5.4.1.2 Object detection by combinations of parts -- 5.4.2 Distribution-based descriptors -- 5.4.2.1 Description by interest points -- 5.4.2.2 Characterizing object appearance and shape -- 5.5 Hough transform -- 5.5.1 Overview -- 5.5.2 Lines -- 5.5.3 HT for circles -- 5.5.4 HT for ellipses -- 5.5.5 Parameter space decomposition -- 5.5.5.1 Parameter space reduction for lines -- 5.5.5.2 Parameter space reduction for circles -- 5.5.5.3 Parameter space reduction for ellipses -- 5.5.6 Generalized HT -- 5.5.6.1 Formal definition of the GHT -- 5.5.6.2 Polar definition -- 5.5.6.3 The GHT technique -- 5.5.6.4 Invariant GHT -- 5.5.7 Other extensions to the HT -- 5.6 Further reading -- 5.7 References -- 6 High-level feature extraction: deformable shape analysis -- 6.1 Overview -- 6.2 Deformable shape analysis -- 6.2.1 Deformable templates -- 6.2.2 Parts-based shape analysis -- 6.3 Active contours (snakes) -- 6.3.1 Basics -- 6.3.2 The Greedy algorithm for snakes -- 6.3.3 Complete (Kass) snake implementation -- 6.3.4 Other snake approaches -- 6.3.5 Further snake developments -- 6.3.6 Geometric active contours (level-set-based approaches) -- 6.4 Shape skeletonization -- 6.4.1 Distance transforms -- 6.4.2 Symmetry -- 6.5 Flexible shape models-active shape and active appearance -- 6.6 Further reading -- 6.7 References -- 7 Object description -- 7.1 Overview -- 7.2 Boundary descriptions -- 7.2.1 Boundary and region -- 7.2.2 Chain codes -- 7.2.3 Fourier descriptors -- 7.2.3.1 Basis of Fourier descriptors -- 7.2.3.2 Fourier expansion -- 7.2.3.3 Shift invariance -- 7.2.3.4 Discrete computation
Title Feature extraction & image processing for computer vision
URI https://cir.nii.ac.jp/crid/1130000794375862656
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=998617
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780123978240&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbowoFeylMsfWAhxGUVcOLEj-uutiAhFSQK2lvkV6qokFabbbU_v2PHSUpBQhy4WHkocTRfZH9jfzOD0JusMpQTLRObM5UA_68SnUo44krn2oEDokQoNsFPTsRqJb_E4qttKCfAm0Zst_Lyv0IN1wBsHzr7D3APL4ULcAygQwuwQ3uHEQ-nsRCRC0k6ZzDcrmMFcI9r_dPLci67gIBeN2liMYdZF1s-7k5so5perc9nX98Nv8PZlbIxIMYrsS_6e3G9IAgvftFeDLL7WxKPzpv09EoycBjpH8fWzs1fdIuqCWGSFkk6TiODuG8-T32OICJXO2iHM_CI739Yfv72aVj6glGFU0lCgqPYI4-5kIYv6LMwpez9nR530a5qz2EGgNlh0wIlaOr6t4k0sIPTR2jiI0Yeo3uueYL2Iq_HcdRsnyIZkcEjMvgtDrjgERcMuOAeF9zh8gx9P16eLj4msWRFongGbCmpMlVQmRcKmJawxgpLlM21pUqwylUZJ1VhmLCFocRSLXmqnOOsUoUPCdaSPkeT5qJxLxCuUpcZRoy1Wvga9Yqm1nGhCcsybQo7Ra9vGaK8_hG219uytyNwv5xM0SHYpzS1b1O_dwnmlzkFNxFc2YJN0avecmV4PmqCy-V8AZ448NuXf3nDPno4_mYHaLJZX7lD9MBcb-p2fRSxvwHqnDaV
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Feature+extraction+%26+image+processing+for+computer+vision&rft.au=Nixon%2C+Mark+S.&rft.au=Aguado%2C+Alberto+S.&rft.date=2012-01-01&rft.pub=Academic+Press&rft.isbn=9780123965493&rft_id=info:doi/10.1016%2FC2011-0-06935-1&rft.externalDocID=BB1077609X
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801239%2F9780123978240.jpg