A Logical Approach to Discrete Math
This text attempts to change the way we teach logic to beginning students. Instead of teaching logic as a subject in isolation, we regard it as a basic tool and show how to use it. We strive to give students a skill in the propo sitional and predicate calculi and then to exercise that skill thoroug...
Uložené v:
| Hlavní autori: | , |
|---|---|
| Médium: | E-kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY
Springer New York
1993
|
| Vydanie: | 1 |
| Edícia: | Monographs in Computer Science |
| Predmet: | |
| ISBN: | 9781441928351, 1441928359, 1475738382, 9780387941158, 9781475738384, 0387941150 |
| ISSN: | 0172-603X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Obsah:
- Intro -- Texts and Monographs in Computer Science -- A Logical Approach to Discrete Math -- Copyright -- Preface -- Contents -- Chapter 0 Using Mathematics -- Chapter 1 Textual Substitution, Equality, and Assignment -- Chapter 2 Boolean Expressions -- Chapter 3 Propositional Calculus -- Chapter 4 Relaxing the Proof Style -- Chapter 5 Applications of Propositional Calculus -- Chapter 6 Hilbert-style Proofs -- Chapter 7 Formal Logic -- Chapter 8 Quantification -- Chapter 9 Predicate Calculus -- Chapter 10 Predicates and Programming -- Chapter 11 A Theory of Sets -- Chapter 12 Mathematical Induction -- Chapter 13 A Theory of Sequences -- Chapter 14 Relations and Functions -- Chapter 15 A Theory of Integers -- Chapter 16 Combinatorial Analysis -- Chapter 17 Recurrence Relations -- Chapter 18 Modern Algebra -- Chapter 19 A Theory of Graphs -- Chapter 20 Infinite Sets -- References -- Index -- Theorems of the Propositional Calculus
- 0 Using Mathematics -- 1 Textual Substitution, Equality, and Assignment -- 2 Boolean Expressions -- 3 Propositional Calculus -- 4 Relaxing the Proof Style -- 5 Applications of Propositional Calculus -- 6 Hilbert-style Proofs -- 7 Formal Logic -- 8 Quantification -- 9 Predicate Calculus -- 10 Predicates and Programming -- 11 A Theory of Sets -- 12 Mathematical Induction -- 13 A Theory of Sequences -- 14 Relations and Functions -- 15 A Theory of Integers -- 16 Combinatorial Analysis -- 17 Recurrence Relations -- 18 Modern Algebra -- 19 A Theory of Graphs -- 20 Infinite Sets -- References -- Theorems of the propositional and predicate calculi.

