Limits to parallel computation : P-completeness theory
This book provides a comprehensive analysis of the most important topics in parallel computation.It is written so that it may be used as a self-study guide to the field, and researchers in parallel computing will find it a useful reference for many years to come.
Uloženo v:
| Hlavní autoři: | , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
New York
Oxford University Press
1995
Oxford University Press, Incorporated |
| Vydání: | 1 |
| Témata: | |
| ISBN: | 9780195085914, 0195085914 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- B.9 RNC -- C: Notation -- D: Complexity Classes -- D.1 Definitions -- D.2 Relationships Among Complexity Classes -- Bibliography -- Problem List -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z
- Intro -- Contents -- Preface -- Part I: Background and Theory -- 1 Introduction -- 1.1 Bandersnatch Design -- 1.2 Informal Background -- 1.3 Some History -- 1.4 Related Works -- 1.5 Overview of This Book -- 2 Parallel Models of Computation -- 2.1 Introduction -- 2.2 The PRAM Model -- 2.3 The Boolean Circuit Model -- 2.4 Circuits and PRAMs -- 3 Complexity -- 3.1 Search and Decision Problems -- 3.2 Complexity Classes -- 3.3 Reducibility -- 3.4 Other NC Compatible Reducibilities -- 3.5 Completeness -- 4 Two Basic P-Complete Problems -- 4.1 The Generic P-Complete Problem -- 4.2 The Circuit Value Problem -- 5 Evidence That NC Does Not Equal P -- 5.1 Introduction -- 5.2 General Simulations Are Not Fast -- 5.3 Fast Simulations Are Not General -- 5.4 Natural Approaches Provably Fail -- 5.5 Summary -- 6 The Circuit Value Problem -- 6.1 The Circuit Value Problem Is P-Complete -- 6.2 Restricted Versions of Cimiit Value -- 7 Greedy Algorithms -- 7.1 Lexicographic Greedy Algorithms -- 7.2 Generic Greedy Algorithms -- 8 P-Complete Algorithms -- 8.1 Introduction -- 8.2 Inherently Sequential Algorithms -- 8.3 Applications of the Model -- 9 Two Other Notions of P-Completeness -- 9.1 Strong P-Completeness -- 9.2 Strict P-Completeness -- 10 Approximating P-Complete Problems -- 10.1 Introduction -- 10.2 Approximating LFMIS Is Hard -- 10.3 Approximation Schemes -- 11 Closing Remarks -- Part II: A Compendium of Problems -- A: P-Complete Problems -- A.1 Circuit Complexity -- A.2 Graph Theory -- A.3 Searching Graphs -- A.4 Combinatorial Optimization -- A.5 Local Optimality -- A.6 Logic -- A.7 Formal Languages -- A.8 Algebra -- A.9 Geometry -- A.10 Real Analysis -- A.11 Games -- A.12 Miscellaneous -- B: Open Problems -- B.1 Graph Theory -- B.2 Combinatorial Optimization -- B.3 Logic -- B.4 Formal Languages -- B.5 Algebra -- B.6 Geometry -- B.7 Real Analysis -- B.8 CC

