Quantile regression : theory and applications

A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Davino, Cristina, Furno, Marilena, Vistocco, Domenico
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Chichester, West Sussex Wiley 2013
John Wiley & Sons, Incorporated
Wiley-Blackwell
Vydání:1
Edice:Wiley series in probability and statistics
Témata:
ISBN:9781119975281, 111997528X, 1118752716, 9781118752715
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensive description of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and followed by applications using real data. Quantile Regression: * Presents a complete treatment of quantile regression methods, including, estimation, inference issues and application of methods. * Delivers a balance between methodolgy and application * Offers an overview of the recent developments in the quantile regression framework and why to use quantile regression in a variety of areas such as economics, finance and computing. * Features a supporting website (www.wiley.com/go/quantile_regression [http://www.wiley.com/go/statistical_computing])  hosting datasets along with R, Stata and SAS software code. Researchers and PhD students in the field of statistics, economics, econometrics, social and environmental science and chemistry will benefit from this book.
AbstractList A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensive description of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and followed by applications using real data. Quantile Regression: Presents a complete treatment of quantile regression methods, including, estimation, inference issues and application of methods. Delivers a balance between methodolgy and application Offers an overview of the recent developments in the quantile regression framework and why to use quantile regression in a variety of areas such as economics, finance and computing. Features a supporting website ( www.wiley.com/go/quantile_regression ) hosting datasets along with R, Stata and SAS software code. Researchers and PhD students in the field of statistics, economics, econometrics, social and environmental science and chemistry will benefit from this book.
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods.
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensive description of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and followed by applications using real data. Quantile Regression: * Presents a complete treatment of quantile regression methods, including, estimation, inference issues and application of methods. * Delivers a balance between methodolgy and application * Offers an overview of the recent developments in the quantile regression framework and why to use quantile regression in a variety of areas such as economics, finance and computing. * Features a supporting website (www.wiley.com/go/quantile_regression [http://www.wiley.com/go/statistical_computing])  hosting datasets along with R, Stata and SAS software code. Researchers and PhD students in the field of statistics, economics, econometrics, social and environmental science and chemistry will benefit from this book.
Author Davino, Cristina
Furno, Marilena
Vistocco, Domenico
Author_xml – sequence: 1
  fullname: Davino, Cristina
– sequence: 2
  fullname: Furno, Marilena
– sequence: 3
  fullname: Vistocco, Domenico
BackLink https://cir.nii.ac.jp/crid/1130282272718708224$$DView record in CiNii
BookMark eNqNkU1Lw0AQhle0Ylt79OYhB0E8VHdmv71pqR9QEEG8hk2yaWNDtmZTxX9v2lTBm5eZeZmHd5iZATmofOUIOQF6CZTilVEaALQSKLXYI6NfzcDw_R9tTAto6JEBUmAUmTBwSPpaghCGG3lERiG8UUqBcmCo-2T8vLZVU5Quqt28diEUvoquo2bhfP0V2SqL7GpVFqlt2kY4Jr3clsGNdnlIXu-mL5OH8ezp_nFyMxtbKVDxsdTGMlBciFQzh8ZIzIVDsCqzSa6s1MrkObOUKqQ255lBx7TOFSSQMJmxIbnojG1Yus-w8GUT4o_SJd4vQ_xn-f-yqEC07HnHrmr_vnahibdY6qqmtmU8vZ0A18agasnTHenq0s193Nm1zwC5NTrr2lVRxGmxibC5uEZU7SStaFtx9g1DWXsb
ContentType eBook
Book
DBID RYH
YSPEL
DEWEY 519.5/36
DOI 10.1002/9781118752685
DatabaseName CiNii Complete
Perlego
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
Statistics
EISBN 9781118753194
1118753194
1118752716
9781118752715
Edition 1
ExternalDocumentID 9781118753194
9781118752715
EBC1489927
1001615
BB14298014
Genre Electronic books
GroupedDBID -0~
20A
38.
3XM
A4J
AABBV
ABARN
ABBFG
ABBRR
ABIAV
ABQPQ
ABQPW
ACBYE
ACGYG
ACLGV
ACNUM
ADVEM
ADZGD
AERYV
AFLZI
AFOJC
AHWGJ
AJFER
AKQZE
ALMA_UNASSIGNED_HOLDINGS
AMYDA
ASVIU
AZZ
BBABE
CZZ
GEOUK
IVUIE
IWG
JFSCD
JP0
KKBTI
LQKAK
LWYJN
MYL
OHSWP
OTAXI
PQQKQ
RYH
UZ6
W1A
WIIVT
YPLAZ
YSPEL
ZEEST
ACCPI
AHCZW
ID FETCH-LOGICAL-a65274-689a317455c83e29962f5e21a7dabf7a6879ff3a00720af4d92e388f71b1b36d3
ISBN 9781119975281
111997528X
1118752716
9781118752715
ISICitedReferencesCount 196
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=(Sirsi) a539986&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Fri Nov 08 05:35:23 EST 2024
Fri Mar 28 10:36:53 EDT 2025
Wed Dec 10 09:53:58 EST 2025
Tue Dec 02 18:55:21 EST 2025
Thu Jun 26 21:07:00 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2013023591
LCCallNum_Ident QA278.2.D385 2014eb
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a65274-689a317455c83e29962f5e21a7dabf7a6879ff3a00720af4d92e388f71b1b36d3
Notes Includes bibliographical references and index
OCLC 861559496
PQID EBC1489927
PageCount 290
ParticipantIDs askewsholts_vlebooks_9781118753194
askewsholts_vlebooks_9781118752715
proquest_ebookcentral_EBC1489927
perlego_books_1001615
nii_cinii_1130282272718708224
PublicationCentury 2000
PublicationDate 2014
2013
2013-10-24
2013-10-18
PublicationDateYYYYMMDD 2014-01-01
2013-01-01
2013-10-24
2013-10-18
PublicationDate_xml – year: 2013
  text: 2013
PublicationDecade 2010
PublicationPlace Chichester, West Sussex
PublicationPlace_xml – name: Chichester, West Sussex
– name: Newark
PublicationSeriesTitle Wiley series in probability and statistics
PublicationYear 2014
2013
Publisher Wiley
John Wiley & Sons, Incorporated
Wiley-Blackwell
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Incorporated
– name: Wiley-Blackwell
SSID ssj0001041328
Score 2.4258058
Snippet A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression,...
A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression,...
SourceID askewsholts
proquest
perlego
nii
SourceType Aggregation Database
Publisher
SubjectTerms MATHEMATICS
Quantile regression
Regression analysis
TableOfContents 4.1.1 Explanatory variable transformations -- 4.1.2 Dependent variable transformations -- 4.2 Response conditional density estimations -- 4.2.1 The case of different scenario simulations -- 4.2.2 The case of the response variable reconstruction -- 4.3 Validation of the model -- 4.3.1 Goodness of fit -- 4.3.2 Resampling methods -- 4.4 Summary of key points -- References -- 5 Models with dependent and with non-identically distributed data -- Introduction -- 5.1 A closer look at the scale parameter, the independent and identically distributed case -- 5.1.1 Estimating the variance of quantile regressions -- 5.1.2 Confidence intervals and hypothesis testing on the estimated coefficients -- 5.1.3 Example for the i.i.d. case -- 5.2 The non-identically distributed case -- 5.2.1 Example for the non-identically distributed case -- 5.2.2 Quick ways to test equality of coefficients across quantiles in Stata -- 5.2.3 The wage equation revisited -- 5.3 The dependent data model -- 5.3.1 Example with dependent data -- 5.4 Summary of key points -- References -- Appendix 5.A Heteroskedasticity tests and weighted quantile regression, Stata and R codes -- 5.A.1 Koenker and Basset test for heteroskedasticity comparing two quantile regressions -- 5.A.2 Koenker and Basset test for heteroskedasticity comparing all quantile regressions -- 5.A.3 Quick tests for heteroskedasticity comparing quantile regressions -- 5.A.4 Compute the individual role of each explanatory variable to the dependent variable -- 5.A.5 R-codes for the Koenker and Basset test for heteroskedasticity -- Appendix 5.B Dependent data -- 6 Additional models -- Introduction -- 6.1 Nonparametric quantile regression -- 6.1.1 Local polynomial regression -- 6.1.2 Quantile smoothing splines -- 6.2 Nonlinear quantile regression -- 6.3 Censored quantile regression -- 6.4 Quantile regression with longitudinal data
6.5 Group effects through quantile regression -- 6.6 Binary quantile regression -- 6.7 Summary of key points -- References -- Appendix A Quantile regression and surroundings using R -- Introduction -- A.1 Loading data -- A.1.1 Text data -- A.1.2 Spreadsheet data -- A.1.3 Files from other statistical packages -- A.2 Exploring data -- A.2.1 Graphical tools -- A.2.2 Summary statistics -- A.3 Modeling data -- A.3.1 Ordinary least squares regression analysis -- A.3.2 Quantile regression analysis -- A.4 Exporting figures and tables -- A.4.1 Exporting figures -- A.4.2 Exporting tables -- References -- Appendix B Quantile regression and surroundings using SAS -- Introduction -- B.1 Loading data -- B.1.1 Text data -- B.1.2 Spreadsheet data -- B.1.3 Files from other statistical packages -- B.2 Exploring data -- B.2.1 Graphical tools -- B.2.2 Summary statistics -- B.3 Modeling data -- B.3.1 Ordinary least squares regression analysis -- B.3.2 Quantile regression analysis -- B.4 Exporting figures and tables -- References -- Appendix C Quantile regression and surroundings using Stata -- Introduction -- C.1 Loading data -- C.1.1 Text data -- C.1.2 Spreadsheet data -- C.1.3 Files from other statistical packages -- C.2 Exploring data -- C.2.1 Graphical tools -- C.2.2 Summary statistics -- C.3 Modeling data -- C.3.1 Ordinary least squares regression analysis -- C.3.2 Quantile regression analysis -- C.4 Exporting figures and tables -- C.4.1 Exporting figures -- C.4.2 Exporting tables -- References -- Index
Intro -- Quantile Regression: Theory and Applications -- Copyright -- Contents -- Preface -- Acknowledgments -- Introduction -- Nomenclature -- 1 A visual introduction to quantile regression -- Introduction -- 1.1 The essential toolkit -- 1.1.1 Unconditional mean, unconditional quantiles and surroundings -- 1.1.2 Technical insight: Quantiles as solutions of a minimization problem -- 1.1.3 Conditional mean, conditional quantiles and surroundings -- 1.2 The simplest QR model: The case of the dummy regressor -- 1.3 A slightly more complex QR model: The case of a nominal regressor -- 1.4 A typical QR model: The case of a quantitative regressor -- 1.5 Summary of key points -- References -- 2 Quantile regression: Understanding how and why -- Introduction -- 2.1 How and why quantile regression works -- 2.1.1 The general linear programming problem -- 2.1.2 The linear programming formulation for the QR problem -- 2.1.3 Methods for solving the linear programming problem -- 2.2 A set of illustrative artificial data -- 2.2.1 Homogeneous error models -- 2.2.2 Heterogeneous error models -- 2.2.3 Dependent data error models -- 2.3 How and why to work with QR -- 2.3.1 QR for homogeneous and heterogeneous models -- 2.3.2 QR prediction intervals -- 2.3.3 A note on the quantile process -- 2.4 Summary of key points -- References -- 3 Estimated coefficients and inference -- Introduction -- 3.1 Empirical distribution of the quantile regression estimator -- 3.1.1 The case of i.i.d. errors -- 3.1.2 The case of i.ni.d. errors -- 3.1.3 The case of dependent errors -- 3.2 Inference in QR, the i.i.d. case -- 3.3 Wald, Lagrange multiplier, and likelihood ratio tests -- 3.4 Summary of key points -- References -- 4 Additional tools for the interpretation and evaluation of the quantile regression model -- Introduction -- 4.1 Data pre-processing
Title Quantile regression : theory and applications
URI https://cir.nii.ac.jp/crid/1130282272718708224
https://www.perlego.com/book/1001615/quantile-regression-theory-and-applications-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=1489927
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781118752715
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781118753194&uid=none
WOSCitedRecordID wos(Sirsi) a539986&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5By8P6ApShFdhUIfYYUdtJbL8yWiYBg4cx7S1yE3uqGG7XlGk_n7vYS7YxaeKBFyuJnUS6z_bd2b7vAN7lci6NrbJE6GySED9JYpQTCXei1JWylWBNoPAXeXSkTk_195ijqG7SCUjv1dWVXv1XqPEZgk2hs_8Ad_tRfIDXCDqWCDuWdyzi9ralw_AbHOQosrNwurUFnk6u-7Ao2gxq307GM-xKyxi0g-92FSfEOVCWy2Bl_7Ieu8zNJQJK13BrieCeMzhxAopkyW0YVfAqGaUgp7GZ3jvHBs7Wth3PQ86dO7TV0w8H6GlpzeW-mK0uEsrzRfvh--JjkPlj6PM0E2kP-p-m33587lbGJqhYuYqEqPi397f-NYCBqX-iBkDtsKnRJPCLBTovK7s-t2fLv1RqYyccP4O-peCR5_DI-iE8jSb-OE6g9RAGX1uaXLzbIlM_MGW_gOE1fuMOv204mU2PDw6TmLIiMXmGDn6SK23QJEuzrFTCoq7PucssZ0ZWZu6kyZXUzglDjO0T49JKcyuUcpLN2VzklXgJPb_0dgfGJuUTYoerKFCk4uRrSldluaML5soRvL0hiOLyvNler4tOWpJlDzYimEewi0IsygWVjLay0WxEwxbrKSEA1m9H8RbhbRY8hRGMr4VdNN-NB4qLDvxXDzd5DVtdp30Dvc36t92FJ-UlArDei73jD-ftTzM
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Quantile+Regression&rft.au=Davino%2C+Cristina&rft.au=Furno%2C+Marilena&rft.au=Vistocco%2C+Domenico&rft.date=2013-01-01&rft.pub=John+Wiley+%26+Sons%2C+Incorporated&rft.isbn=9781118753194&rft_id=info:doi/10.1002%2F9781118752685&rft.externalDocID=EBC1489927
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fwiley_hlvwyirv%2F9781118752715.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811187%2F9781118752715.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811187%2F9781118753194.jpg