Log-gases and random matrices

Random matrix theory, both as an application and as a theory, has evolved rapidly over the past fifteen years. Log-Gases and Random Matrices gives a comprehensive account of these developments, emphasizing log-gases as a physical picture and heuristic, as well as covering topics such as beta ensembl...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Forrester, P.J
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Princeton Princeton University Press 2010
Vydání:1
Edice:London Mathematical Society Monographs
Témata:
ISBN:9781400835416, 1400835410, 9780691128290, 0691128294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • Log-gases and random matrices -- Preface -- Contents -- Chapter One: Gaussian Matrix Ensembles -- Chapter Two: Circular Ensembles -- Chapter Three: Laguerre and Jacobi Ensembles -- Chapter Four: The Selberg Integral -- Chapter Five: Correlation Functions at β = 2 -- Chapter Six: Correlation Functions at β = 1 and 4 -- Chapter Seven: Scaled Limits at β = 1, 2 and 4 -- Chapter Eight: Eigenvalue Probabilities-Painlevé Systems Approach -- Chapter Nine: Eigenvalue Probabilities-Fredholm Determinant Approach -- Chapter Ten: Lattice Paths and Growth Models -- Chapter Eleven: The Calogero-Sutherland Model -- Chapter Twelve: Jack polynomials -- Chapter Thirteen: Correlations for General β -- Chapter Fourteen: Fluctuation Formulas and Universal Behavior Of Correlations -- Chapter Fifteen: The Two-Dimensional One-Component Plasma -- Bibliography -- Index
  • Front Matter Preface Table of Contents Chapter One: Gaussian matrix ensembles Chapter Two: Circular ensembles Chapter Three: Laguerre and Jacobi ensembles Chapter Four: The Selberg integral Chapter Five: Correlation functions at $\beta = 2$ Chapter Six: Correlation functions at $\beta = 1$ and 4 Chapter Seven: Scaled limits at $\beta = 1,\;2$ and 4 Chapter Eight: Eigenvalue probabilities — Painlevé systems approach Chapter Nine: Eigenvalue probabilities — Fredholm determinant approach Chapter Ten: Lattice paths and growth models Chapter Eleven: The Calogero—Sutherland model Chapter Twelve: Jack polynomials Chapter Thirteen: Correlations for general $\beta $ Chapter Fourteen: Fluctuation formulas and universal behavior of correlations Chapter Fifteen: The two-dimensional one-component plasma Bibliography Index
  • 12.8 Pieri formulas -- Chapter 13. Correlations for general &amp -- #946 -- -- 13.1 Hypergeometric functions and Selberg correlation integrals -- 13.2 Correlations at even &amp -- #946 -- -- 13.3 Generalized classical polynomials -- 13.4 Green functions and zonal polynomials -- 13.5 Inter-relations for spacing distributions -- 13.6 Stochastic differential equations -- 13.7 Dynamical correlations in the circular &amp -- #946 -- ensemble -- Chapter 14. Fluctuation formulas and universal behavior of correlations -- 14.1 Perfect screening -- 14.2 Macroscopic balance and density -- 14.3 Variance of a linear statistic -- 14.4 Gaussian fluctuations of a linear statistic -- 14.5 Charge and potential fluctuations -- 14.6 Asymptotic properties of E[sub(&amp -- #946 -- )](n -- J) and P[sub(&amp -- #946 -- )](n -- J) -- 14.7 Dynamical correlations -- Chapter 15. The two-dimensional one-component plasma -- 15.1 Complex random matrices and polynomials -- 15.2 Quantum particles in a magnetic field -- 15.3 Correlation functions -- 15.4 General properties of the correlations and fluctuation formulas -- 15.5 Spacing distributions -- 15.6 The sphere -- 15.7 The pseudosphere -- 15.8 Metallic boundary conditions -- 15.9 Antimetallic boundary conditions -- 15.10 Eigenvalues of real random matrices -- 15.11 Classification of non-Hermitian random matrices -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z
  • 8.5 Discrete Painlevé equations -- 8.6 Orthogonal polynomial approach -- Chapter 9. Eigenvalue probabilities - Fredholm determinant approach -- 9.1 Fredholm determinants -- 9.2 Numerical computations using Fredholm determinants -- 9.3 The sine kernel -- 9.4 The Airy kernel -- 9.5 Bessel kernels -- 9.6 Eigenvalue expansions for gap probabilities -- 9.7 The probabilities E[sub(&amp -- #946 -- )][sup(soft)] (n -- (s, &amp -- #8734 -- )) for &amp -- #946 -- = 1, 4 -- 9.8 The probabilities E[sub(&amp -- #946 -- )][sup(hard)] ( n -- (0, s) -- a) for &amp -- #946 -- = 1, 4 -- 9.9 Riemann-Hilbert viewpoint -- 9.10 Nonlinear equations from the Virasoro constraints -- Chapter 10. Lattice paths and growth models -- 10.1 Counting formulas for directed nonintersecting paths -- 10.2 Dimers and tilings -- 10.3 Discrete polynuclear growth model -- 10.4 Further interpretations and variants of the RSK correspondence -- 10.5 Symmetrized growth models -- 10.6 The Hammersley process -- 10.7 Symmetrized permutation matrices -- 10.8 Gap probabilities and scaled limits -- 10.9 Hammersley process with sources on the boundary -- Chapter 11. The Calogero-Sutherland model -- 11.1 Shifted mean parameter-dependent Gaussian random matrices -- 11.2 Other parameter-dependent ensembles -- 11.3 The Calogero-Sutherland quantum systems -- 11.4 The Schrödinger operators with exchange terms -- 11.5 The operators H[sup((H, Ex))], H[sup((L, Ex))] and H[sup((J, Ex))] -- 11.6 Dynamical correlations for &amp -- #946 -- = 2 -- 11.7 Scaled limits -- Chapter 12. Jack polynomials -- 12.1 Nonsymmetric Jack polynomials -- 12.2 Recurrence relations -- 12.3 Application of the recurrences -- 12.4 A generalized binomial theorem and an integration formula -- 12.5 Interpolation nonsymmetric Jack polynomials -- 12.6 The symmetric Jack polynomials -- 12.7 Interpolation symmetric Jack polynomials
  • Cover -- Title -- Copyright -- Preface -- Contents -- Chapter 1. Gaussian matrix ensembles -- 1.1 Random real symmetric matrices -- 1.2 The eigenvalue p.d.f. for the GOE -- 1.3 Random complex Hermitian and quaternion real Hermitian matrices -- 1.4 Coulomb gas analogy -- 1.5 High-dimensional random energy landscapes -- 1.6 Matrix integrals and combinatorics -- 1.7 Convergence -- 1.8 The shifted mean Gaussian ensembles -- 1.9 Gaussian &amp -- #946 -- -ensemble -- Chapter 2. Circular ensembles -- 2.1 Scattering matrices and Floquet operators -- 2.2 Definitions and basic properties -- 2.3 The elements of a random unitary matrix -- 2.4 Poisson kernel -- 2.5 Cauchy ensemble -- 2.6 Orthogonal and symplectic unitary random matrices -- 2.7 Log-gas systems with periodic boundary conditions -- 2.8 Circular &amp -- #946 -- -ensemble -- 2.9 Real orthogonal &amp -- #946 -- -ensemble -- Chapter 3. Laguerre and Jacobi ensembles -- 3.1 Chiral random matrices -- 3.2 Wishart matrices -- 3.3 Further examples of the Laguerre ensemble in quantum mechanics -- 3.4 The eigenvalue density -- 3.5 Correlated Wishart matrices -- 3.6 Jacobi ensemble and Wishart matrices -- 3.7 Jacobi ensemble and symmetric spaces -- 3.8 Jacobi ensemble and quantum conductance -- 3.9 A circular Jacobi ensemble -- 3.10 Laguerre &amp -- #946 -- -ensemble -- 3.11 Jacobi &amp -- #946 -- -ensemble -- 3.12 Circular Jacobi &amp -- #946 -- -ensemble -- Chapter 4. The Selberg integral -- 4.1 Selberg's derivation -- 4.2 Anderson's derivation -- 4.3 Consequences for the &amp -- #946 -- -ensembles -- 4.4 Generalization of the Dixon-Anderson integral -- 4.5 Dotsenko and Fateev's derivation -- 4.6 Aomoto's derivation -- 4.7 Normalization of the eigenvalue p.d.f.'s -- 4.8 Free energy -- Chapter 5. Correlation functions at &amp -- #946 -- = 2 -- 5.1 Successive integrations
  • 5.2 Functional differentiation and integral equation approaches -- 5.3 Ratios of characteristic polynomials -- 5.4 The classical weights -- 5.5 Circular ensembles and the classical groups -- 5.6 Log-gas systems with periodic boundary conditions -- 5.7 Partition function in the case of a general potential -- 5.8 Biorthogonal structures -- 5.9 Determinantal k-component systems -- Chapter 6. Correlation functions at &amp -- #946 -- = 1 and 4 -- 6.1 Correlation functions at &amp -- #946 -- = 4 -- 6.2 Construction of the skew orthogonal polynomials at &amp -- #946 -- = 4 -- 6.3 Correlation functions at &amp -- #946 -- = 1 -- 6.4 Construction of the skew orthogonal polynomials and summation formulas -- 6.5 Alternate correlations at &amp -- #946 -- = 1 -- 6.6 Superimposed &amp -- #946 -- = 1 systems -- 6.7 A two-component log-gas with charge ratio 1:2 -- Chapter 7. Scaled limits at &amp -- #946 -- = 1, 2 and 4 -- 7.1 Scaled limits at &amp -- #946 -- = 2 - Gaussian ensembles -- 7.2 Scaled limits at &amp -- #946 -- = 2 - Laguerre and Jacobi ensembles -- 7.3 Log-gas systems with periodic boundary conditions -- 7.4 Asymptotic behavior of the one- and two-point functions at &amp -- #946 -- = 2 -- 7.5 Bulk scaling and the zeros of the Riemann zeta function -- 7.6 Scaled limits at &amp -- #946 -- = 4 - Gaussian ensemble -- 7.7 Scaled limits at &amp -- #946 -- = 4 - Laguerre and Jacobi ensembles -- 7.8 Scaled limits at &amp -- #946 -- = 1 - Gaussian ensemble -- 7.9 Scaled limits at &amp -- #946 -- = 1 - Laguerre and Jacobi ensembles -- 7.10 Two-component log-gas with charge ratio 1:2 -- Chapter 8. Eigenvalue probabilities - Painlevé systems approach -- 8.1 Definitions -- 8.2 Hamiltonian formulation of the Painlevé theory -- 8.3 &amp -- #963 -- -form Painlevé equation characterizations -- 8.4 The cases &amp -- #946 -- = 1 and 4 - circular ensembles and bulk
  • Chapter Twelve. Jack polynomials
  • Chapter Thirteen. Correlations for general β
  • Chapter One. Gaussian Matrix Ensembles
  • Chapter Ten. Lattice paths and growth models
  • Chapter Three. Laguerre And Jacobi Ensembles
  • Index
  • Chapter Seven. Scaled limits at β = 1, 2 and 4
  • Chapter Five. Correlation functions at β = 2
  • -
  • Chapter Eleven. The Calogero–Sutherland model
  • /
  • Chapter Two. Circular Ensembles
  • Chapter Fourteen. Fluctuation formulas and universal behavior of correlations
  • Contents
  • Chapter Eight. Eigenvalue probabilities – Painlevé systems approach
  • Frontmatter --
  • Chapter Six. Correlation Functions At β= 1 And 4
  • Chapter Fifteen. The two-dimensional one-component plasma
  • Preface
  • Chapter Four. The Selberg Integral
  • Chapter Nine. Eigenvalue probabilities— Fredholm determinant approach
  • Bibliography