The maximum rate of mammal evolution

How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 11; p. 4187
Main Authors: Evans, Alistair R, Jones, David, Boyer, Alison G, Brown, James H, Costa, Daniel P, Ernest, S K Morgan, Fitzgerald, Erich M G, Fortelius, Mikael, Gittleman, John L, Hamilton, Marcus J, Harding, Larisa E, Lintulaakso, Kari, Lyons, S Kathleen, Okie, Jordan G, Saarinen, Juha J, Sibly, Richard M, Smith, Felisa A, Stephens, Patrick R, Theodor, Jessica M, Uhen, Mark D
Format: Journal Article
Language:English
Published: United States 13.03.2012
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
AbstractList How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
Author Theodor, Jessica M
Lintulaakso, Kari
Costa, Daniel P
Sibly, Richard M
Gittleman, John L
Harding, Larisa E
Fitzgerald, Erich M G
Okie, Jordan G
Hamilton, Marcus J
Lyons, S Kathleen
Boyer, Alison G
Evans, Alistair R
Uhen, Mark D
Brown, James H
Ernest, S K Morgan
Smith, Felisa A
Saarinen, Juha J
Jones, David
Stephens, Patrick R
Fortelius, Mikael
Author_xml – sequence: 1
  givenname: Alistair R
  surname: Evans
  fullname: Evans, Alistair R
  email: arevans@fastmail.fm
  organization: School of Biological Sciences, Monash University, VIC 3800, Australia. arevans@fastmail.fm
– sequence: 2
  givenname: David
  surname: Jones
  fullname: Jones, David
– sequence: 3
  givenname: Alison G
  surname: Boyer
  fullname: Boyer, Alison G
– sequence: 4
  givenname: James H
  surname: Brown
  fullname: Brown, James H
– sequence: 5
  givenname: Daniel P
  surname: Costa
  fullname: Costa, Daniel P
– sequence: 6
  givenname: S K Morgan
  surname: Ernest
  fullname: Ernest, S K Morgan
– sequence: 7
  givenname: Erich M G
  surname: Fitzgerald
  fullname: Fitzgerald, Erich M G
– sequence: 8
  givenname: Mikael
  surname: Fortelius
  fullname: Fortelius, Mikael
– sequence: 9
  givenname: John L
  surname: Gittleman
  fullname: Gittleman, John L
– sequence: 10
  givenname: Marcus J
  surname: Hamilton
  fullname: Hamilton, Marcus J
– sequence: 11
  givenname: Larisa E
  surname: Harding
  fullname: Harding, Larisa E
– sequence: 12
  givenname: Kari
  surname: Lintulaakso
  fullname: Lintulaakso, Kari
– sequence: 13
  givenname: S Kathleen
  surname: Lyons
  fullname: Lyons, S Kathleen
– sequence: 14
  givenname: Jordan G
  surname: Okie
  fullname: Okie, Jordan G
– sequence: 15
  givenname: Juha J
  surname: Saarinen
  fullname: Saarinen, Juha J
– sequence: 16
  givenname: Richard M
  surname: Sibly
  fullname: Sibly, Richard M
– sequence: 17
  givenname: Felisa A
  surname: Smith
  fullname: Smith, Felisa A
– sequence: 18
  givenname: Patrick R
  surname: Stephens
  fullname: Stephens, Patrick R
– sequence: 19
  givenname: Jessica M
  surname: Theodor
  fullname: Theodor, Jessica M
– sequence: 20
  givenname: Mark D
  surname: Uhen
  fullname: Uhen, Mark D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22308461$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLxDAUhYOMOA9du5MuBFcdb5LmtZTBFwy4GdfltrnFStPWphX99xYcwc15wMeBs2aLtmuJsUsOWw5G3vYtxi3nAozJOLgTtpqVpzpzsPiXl2wd4zsAOGXhjC2FkGAzzVfs-vBGScCvOkwhGXCkpKvmHgI2CX12zTTWXXvOTitsIl0cfcNeH-4Pu6d0__L4vLvbp6i5HlPltPfoRaWUhNIZEgUvK7Ao0ZIrDHmqyAosSi2NFEYprAoHHL3iAsmLDbv53e2H7mOiOOahjiU1DbbUTTF3wkrtlFMzeXUkpyKQz_uhDjh853_HxA_wP1FS
CitedBy_id crossref_primary_10_1093_zoolinnean_zlab089
crossref_primary_10_1007_s40806_021_00289_7
crossref_primary_10_1111_ele_13878
crossref_primary_10_1111_cobi_13486
crossref_primary_10_1126_science_adf6218
crossref_primary_10_1007_s11692_013_9250_7
crossref_primary_10_1002_ajpa_24099
crossref_primary_10_1007_s10914_022_09626_4
crossref_primary_10_1038_s41598_017_08820_2
crossref_primary_10_1016_j_ympev_2017_08_006
crossref_primary_10_1146_annurev_ecolsys_112414_054030
crossref_primary_10_1126_science_ade1833
crossref_primary_10_1093_jmammal_gyy171
crossref_primary_10_7717_peerj_3464
crossref_primary_10_1016_j_jtbi_2014_06_014
crossref_primary_10_1111_jbi_12096
crossref_primary_10_1007_s10162_012_0349_9
crossref_primary_10_1016_j_ijbiomac_2023_123165
crossref_primary_10_1126_science_aao5987
crossref_primary_10_1371_journal_pone_0132440
crossref_primary_10_1002_cne_25015
crossref_primary_10_1111_evo_13929
crossref_primary_10_1007_s11692_018_9451_1
crossref_primary_10_1038_ncomms2516
crossref_primary_10_1038_s41598_024_61872_z
crossref_primary_10_1002_bies_201600017
crossref_primary_10_1016_j_palaeo_2019_05_032
crossref_primary_10_1073_pnas_1201030109
crossref_primary_10_1073_pnas_1402875111
crossref_primary_10_1086_675894
crossref_primary_10_1016_j_ecolmodel_2015_07_032
crossref_primary_10_1159_000519852
crossref_primary_10_1111_evo_12197
crossref_primary_10_1016_j_palaeo_2024_112041
crossref_primary_10_1038_s41598_019_45888_4
crossref_primary_10_1111_1365_2664_13368
crossref_primary_10_1038_nature_2012_9931
crossref_primary_10_1126_sciadv_adw2232
crossref_primary_10_1007_s10914_021_09584_3
crossref_primary_10_1038_534188a
crossref_primary_10_1187_cbe_19_01_0008
crossref_primary_10_1111_eva_12969
crossref_primary_10_1371_journal_pbio_1001853
crossref_primary_10_1146_annurev_earth_050212_124030
crossref_primary_10_1007_s00442_019_04403_2
crossref_primary_10_1111_ddi_13437
crossref_primary_10_1111_jzs_12002
crossref_primary_10_1038_ncomms3458
crossref_primary_10_1073_pnas_1311124110
crossref_primary_10_1038_s42003_018_0125_4
crossref_primary_10_1093_biolinnean_blab086
crossref_primary_10_1002_ece3_4019
crossref_primary_10_1111_j_1600_0587_2012_07913_x
crossref_primary_10_1007_s10914_025_09758_3
crossref_primary_10_1016_j_ecolmodel_2022_110061
crossref_primary_10_7554_eLife_11994
crossref_primary_10_1038_s41576_023_00643_4
crossref_primary_10_1038_s41598_017_05962_1
crossref_primary_10_1146_annurev_earth_060115_012147
crossref_primary_10_1016_j_gene_2024_148822
crossref_primary_10_1017_qua_2019_13
crossref_primary_10_1002_bies_202300098
crossref_primary_10_1162_artl_a_00360
crossref_primary_10_1073_pnas_2103745119
crossref_primary_10_1073_pnas_1419823112
crossref_primary_10_1371_journal_pone_0087553
crossref_primary_10_1017_pab_2024_35
crossref_primary_10_1007_s10144_018_0617_6
crossref_primary_10_1007_s10914_012_9211_4
crossref_primary_10_3390_d15020227
crossref_primary_10_1007_s11284_015_1250_x
crossref_primary_10_1016_j_tree_2018_04_001
crossref_primary_10_1111_evo_13422
crossref_primary_10_1111_jbi_13197
crossref_primary_10_1111_jzo_12829
crossref_primary_10_1371_journal_pone_0059668
crossref_primary_10_3389_fevo_2022_896111
crossref_primary_10_1111_jeb_13539
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1120774109
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 22308461
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
VXZ
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
~02
~KM
7X8
ADQXQ
ADXHL
ID FETCH-LOGICAL-a616t-596ddad2f5530c97e2b1cf08a3a8e9b7edefe82abc63732755afb901ad512aed2
IEDL.DBID 7X8
ISICitedReferencesCount 97
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301426700037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Oct 02 09:39:33 EDT 2025
Wed Feb 19 02:36:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a616t-596ddad2f5530c97e2b1cf08a3a8e9b7edefe82abc63732755afb901ad512aed2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/109/11/4187.full.pdf
PMID 22308461
PQID 928369595
PQPubID 23479
ParticipantIDs proquest_miscellaneous_928369595
pubmed_primary_22308461
PublicationCentury 2000
PublicationDate 2012-03-13
PublicationDateYYYYMMDD 2012-03-13
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-03-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
References 22355132 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4027-8
References_xml – reference: 22355132 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4027-8
SSID ssj0009580
Score 2.3984873
Snippet How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4187
SubjectTerms Animals
Biological Evolution
Body Weight
Mammals - anatomy & histology
Mammals - genetics
Mice
Quantitative Trait, Heritable
Time Factors
Title The maximum rate of mammal evolution
URI https://www.ncbi.nlm.nih.gov/pubmed/22308461
https://www.proquest.com/docview/928369595
Volume 109
WOSCitedRecordID wos000301426700037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleytABBqux49jxhBCiYoCqA0jdIscPiSFJIW3Fz-ecuIgFMbBY8mDJuvvO98k-f4fQEHBhEiGBudEixRCJGitwBmaEaWkhxIhuPf0kJpNsNpPTUJvThLLK9ZnYHtSm1v6OfCQhD3KZyvR2_o590yj_uBo6aGyiXgJMxoNazLIfmrtZJ0YgCeZMxmtlH5GM5pVq_O-ZGNhPW4z4G71s08x4758b3Ee7gV9Gdx0g-mjDVgeoHyK4ia6DzPTNIRoCQqJSfb6VyzLyghFR7WBelrDcrgIij9Dr-OHl_hGHnglYccIXOJXcGGWo8-2AtBSWFkS7OFOJyqwshDXW2YyqQvNEJFSkqXIFcAJlIPMra-gx2qrqyp6iqHCMskRzpQrLUkcUeC-2LJNUGU6ZGaBobYgcMOkfGlRl62WTf5tigE46Y-bzTjsjBzYSA-UhZ38vPkc7wE6oL_giyQXqOYhHe4m29Wrx1nxctb6GcTJ9_gIAgbKq
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+maximum+rate+of+mammal+evolution&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Evans%2C+Alistair+R&rft.au=Jones%2C+David&rft.au=Boyer%2C+Alison+G&rft.au=Brown%2C+James+H&rft.date=2012-03-13&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=109&rft.issue=11&rft.spage=4187&rft_id=info:doi/10.1073%2Fpnas.1120774109&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon