The maximum rate of mammal evolution
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 11; p. 4187 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
13.03.2012
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. |
|---|---|
| AbstractList | How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. |
| Author | Theodor, Jessica M Lintulaakso, Kari Costa, Daniel P Sibly, Richard M Gittleman, John L Harding, Larisa E Fitzgerald, Erich M G Okie, Jordan G Hamilton, Marcus J Lyons, S Kathleen Boyer, Alison G Evans, Alistair R Uhen, Mark D Brown, James H Ernest, S K Morgan Smith, Felisa A Saarinen, Juha J Jones, David Stephens, Patrick R Fortelius, Mikael |
| Author_xml | – sequence: 1 givenname: Alistair R surname: Evans fullname: Evans, Alistair R email: arevans@fastmail.fm organization: School of Biological Sciences, Monash University, VIC 3800, Australia. arevans@fastmail.fm – sequence: 2 givenname: David surname: Jones fullname: Jones, David – sequence: 3 givenname: Alison G surname: Boyer fullname: Boyer, Alison G – sequence: 4 givenname: James H surname: Brown fullname: Brown, James H – sequence: 5 givenname: Daniel P surname: Costa fullname: Costa, Daniel P – sequence: 6 givenname: S K Morgan surname: Ernest fullname: Ernest, S K Morgan – sequence: 7 givenname: Erich M G surname: Fitzgerald fullname: Fitzgerald, Erich M G – sequence: 8 givenname: Mikael surname: Fortelius fullname: Fortelius, Mikael – sequence: 9 givenname: John L surname: Gittleman fullname: Gittleman, John L – sequence: 10 givenname: Marcus J surname: Hamilton fullname: Hamilton, Marcus J – sequence: 11 givenname: Larisa E surname: Harding fullname: Harding, Larisa E – sequence: 12 givenname: Kari surname: Lintulaakso fullname: Lintulaakso, Kari – sequence: 13 givenname: S Kathleen surname: Lyons fullname: Lyons, S Kathleen – sequence: 14 givenname: Jordan G surname: Okie fullname: Okie, Jordan G – sequence: 15 givenname: Juha J surname: Saarinen fullname: Saarinen, Juha J – sequence: 16 givenname: Richard M surname: Sibly fullname: Sibly, Richard M – sequence: 17 givenname: Felisa A surname: Smith fullname: Smith, Felisa A – sequence: 18 givenname: Patrick R surname: Stephens fullname: Stephens, Patrick R – sequence: 19 givenname: Jessica M surname: Theodor fullname: Theodor, Jessica M – sequence: 20 givenname: Mark D surname: Uhen fullname: Uhen, Mark D |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22308461$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLxDAUhYOMOA9du5MuBFcdb5LmtZTBFwy4GdfltrnFStPWphX99xYcwc15wMeBs2aLtmuJsUsOWw5G3vYtxi3nAozJOLgTtpqVpzpzsPiXl2wd4zsAOGXhjC2FkGAzzVfs-vBGScCvOkwhGXCkpKvmHgI2CX12zTTWXXvOTitsIl0cfcNeH-4Pu6d0__L4vLvbp6i5HlPltPfoRaWUhNIZEgUvK7Ao0ZIrDHmqyAosSi2NFEYprAoHHL3iAsmLDbv53e2H7mOiOOahjiU1DbbUTTF3wkrtlFMzeXUkpyKQz_uhDjh853_HxA_wP1FS |
| CitedBy_id | crossref_primary_10_1093_zoolinnean_zlab089 crossref_primary_10_1007_s40806_021_00289_7 crossref_primary_10_1111_ele_13878 crossref_primary_10_1111_cobi_13486 crossref_primary_10_1126_science_adf6218 crossref_primary_10_1007_s11692_013_9250_7 crossref_primary_10_1002_ajpa_24099 crossref_primary_10_1007_s10914_022_09626_4 crossref_primary_10_1038_s41598_017_08820_2 crossref_primary_10_1016_j_ympev_2017_08_006 crossref_primary_10_1146_annurev_ecolsys_112414_054030 crossref_primary_10_1126_science_ade1833 crossref_primary_10_1093_jmammal_gyy171 crossref_primary_10_7717_peerj_3464 crossref_primary_10_1016_j_jtbi_2014_06_014 crossref_primary_10_1111_jbi_12096 crossref_primary_10_1007_s10162_012_0349_9 crossref_primary_10_1016_j_ijbiomac_2023_123165 crossref_primary_10_1126_science_aao5987 crossref_primary_10_1371_journal_pone_0132440 crossref_primary_10_1002_cne_25015 crossref_primary_10_1111_evo_13929 crossref_primary_10_1007_s11692_018_9451_1 crossref_primary_10_1038_ncomms2516 crossref_primary_10_1038_s41598_024_61872_z crossref_primary_10_1002_bies_201600017 crossref_primary_10_1016_j_palaeo_2019_05_032 crossref_primary_10_1073_pnas_1201030109 crossref_primary_10_1073_pnas_1402875111 crossref_primary_10_1086_675894 crossref_primary_10_1016_j_ecolmodel_2015_07_032 crossref_primary_10_1159_000519852 crossref_primary_10_1111_evo_12197 crossref_primary_10_1016_j_palaeo_2024_112041 crossref_primary_10_1038_s41598_019_45888_4 crossref_primary_10_1111_1365_2664_13368 crossref_primary_10_1038_nature_2012_9931 crossref_primary_10_1126_sciadv_adw2232 crossref_primary_10_1007_s10914_021_09584_3 crossref_primary_10_1038_534188a crossref_primary_10_1187_cbe_19_01_0008 crossref_primary_10_1111_eva_12969 crossref_primary_10_1371_journal_pbio_1001853 crossref_primary_10_1146_annurev_earth_050212_124030 crossref_primary_10_1007_s00442_019_04403_2 crossref_primary_10_1111_ddi_13437 crossref_primary_10_1111_jzs_12002 crossref_primary_10_1038_ncomms3458 crossref_primary_10_1073_pnas_1311124110 crossref_primary_10_1038_s42003_018_0125_4 crossref_primary_10_1093_biolinnean_blab086 crossref_primary_10_1002_ece3_4019 crossref_primary_10_1111_j_1600_0587_2012_07913_x crossref_primary_10_1007_s10914_025_09758_3 crossref_primary_10_1016_j_ecolmodel_2022_110061 crossref_primary_10_7554_eLife_11994 crossref_primary_10_1038_s41576_023_00643_4 crossref_primary_10_1038_s41598_017_05962_1 crossref_primary_10_1146_annurev_earth_060115_012147 crossref_primary_10_1016_j_gene_2024_148822 crossref_primary_10_1017_qua_2019_13 crossref_primary_10_1002_bies_202300098 crossref_primary_10_1162_artl_a_00360 crossref_primary_10_1073_pnas_2103745119 crossref_primary_10_1073_pnas_1419823112 crossref_primary_10_1371_journal_pone_0087553 crossref_primary_10_1017_pab_2024_35 crossref_primary_10_1007_s10144_018_0617_6 crossref_primary_10_1007_s10914_012_9211_4 crossref_primary_10_3390_d15020227 crossref_primary_10_1007_s11284_015_1250_x crossref_primary_10_1016_j_tree_2018_04_001 crossref_primary_10_1111_evo_13422 crossref_primary_10_1111_jbi_13197 crossref_primary_10_1111_jzo_12829 crossref_primary_10_1371_journal_pone_0059668 crossref_primary_10_3389_fevo_2022_896111 crossref_primary_10_1111_jeb_13539 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1120774109 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 22308461 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DOOOF DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA VXZ W8F WH7 WOQ WOW X7M XSW Y6R YBH YIF YIN YKV YSK ZCA ~02 ~KM 7X8 ADQXQ ADXHL |
| ID | FETCH-LOGICAL-a616t-596ddad2f5530c97e2b1cf08a3a8e9b7edefe82abc63732755afb901ad512aed2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 97 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301426700037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Oct 02 09:39:33 EDT 2025 Wed Feb 19 02:36:32 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a616t-596ddad2f5530c97e2b1cf08a3a8e9b7edefe82abc63732755afb901ad512aed2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/109/11/4187.full.pdf |
| PMID | 22308461 |
| PQID | 928369595 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_928369595 pubmed_primary_22308461 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-03-13 |
| PublicationDateYYYYMMDD | 2012-03-13 |
| PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-13 day: 13 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2012 |
| References | 22355132 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4027-8 |
| References_xml | – reference: 22355132 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4027-8 |
| SSID | ssj0009580 |
| Score | 2.3984873 |
| Snippet | How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4187 |
| SubjectTerms | Animals Biological Evolution Body Weight Mammals - anatomy & histology Mammals - genetics Mice Quantitative Trait, Heritable Time Factors |
| Title | The maximum rate of mammal evolution |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22308461 https://www.proquest.com/docview/928369595 |
| Volume | 109 |
| WOSCitedRecordID | wos000301426700037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleytABBqux49jxhBCiYoCqA0jdIscPiSFJIW3Fz-ecuIgFMbBY8mDJuvvO98k-f4fQEHBhEiGBudEixRCJGitwBmaEaWkhxIhuPf0kJpNsNpPTUJvThLLK9ZnYHtSm1v6OfCQhD3KZyvR2_o590yj_uBo6aGyiXgJMxoNazLIfmrtZJ0YgCeZMxmtlH5GM5pVq_O-ZGNhPW4z4G71s08x4758b3Ee7gV9Gdx0g-mjDVgeoHyK4ia6DzPTNIRoCQqJSfb6VyzLyghFR7WBelrDcrgIij9Dr-OHl_hGHnglYccIXOJXcGGWo8-2AtBSWFkS7OFOJyqwshDXW2YyqQvNEJFSkqXIFcAJlIPMra-gx2qrqyp6iqHCMskRzpQrLUkcUeC-2LJNUGU6ZGaBobYgcMOkfGlRl62WTf5tigE46Y-bzTjsjBzYSA-UhZ38vPkc7wE6oL_giyQXqOYhHe4m29Wrx1nxctb6GcTJ9_gIAgbKq |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+maximum+rate+of+mammal+evolution&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Evans%2C+Alistair+R&rft.au=Jones%2C+David&rft.au=Boyer%2C+Alison+G&rft.au=Brown%2C+James+H&rft.date=2012-03-13&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=109&rft.issue=11&rft.spage=4187&rft_id=info:doi/10.1073%2Fpnas.1120774109&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |