Drastic population fluctuations explain the rapid extinction of the passenger pigeon
To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction...
Uložené v:
| Vydané v: | Proceedings of the National Academy of Sciences - PNAS Ročník 111; číslo 29; s. 10636 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
22.07.2014
|
| Predmet: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction in 1914 raises the question of how such an abundant bird could have been driven to extinction in mere decades. Although human exploitation is often blamed, the role of natural population dynamics in the passenger pigeon's extinction remains unexplored. Applying high-throughput sequencing technologies to obtain sequences from most of the genome, we calculated that the passenger pigeon's effective population size throughout the last million years was persistently about 1/10,000 of the 1800's estimated number of individuals, a ratio 1,000-times lower than typically found. This result suggests that the passenger pigeon was not always super abundant but experienced dramatic population fluctuations, resembling those of an "outbreak" species. Ecological niche models supported inference of drastic changes in the extent of its breeding range over the last glacial-interglacial cycle. An estimate of acorn-based carrying capacity during the past 21,000 y showed great year-to-year variations. Based on our results, we hypothesize that ecological conditions that dramatically reduced population size under natural conditions could have interacted with human exploitation in causing the passenger pigeon's rapid demise. Our study illustrates that even species as abundant as the passenger pigeon can be vulnerable to human threats if they are subject to dramatic population fluctuations, and provides a new perspective on the greatest human-caused extinction in recorded history. |
|---|---|
| AbstractList | To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction in 1914 raises the question of how such an abundant bird could have been driven to extinction in mere decades. Although human exploitation is often blamed, the role of natural population dynamics in the passenger pigeon's extinction remains unexplored. Applying high-throughput sequencing technologies to obtain sequences from most of the genome, we calculated that the passenger pigeon's effective population size throughout the last million years was persistently about 1/10,000 of the 1800's estimated number of individuals, a ratio 1,000-times lower than typically found. This result suggests that the passenger pigeon was not always super abundant but experienced dramatic population fluctuations, resembling those of an "outbreak" species. Ecological niche models supported inference of drastic changes in the extent of its breeding range over the last glacial-interglacial cycle. An estimate of acorn-based carrying capacity during the past 21,000 y showed great year-to-year variations. Based on our results, we hypothesize that ecological conditions that dramatically reduced population size under natural conditions could have interacted with human exploitation in causing the passenger pigeon's rapid demise. Our study illustrates that even species as abundant as the passenger pigeon can be vulnerable to human threats if they are subject to dramatic population fluctuations, and provides a new perspective on the greatest human-caused extinction in recorded history.To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction in 1914 raises the question of how such an abundant bird could have been driven to extinction in mere decades. Although human exploitation is often blamed, the role of natural population dynamics in the passenger pigeon's extinction remains unexplored. Applying high-throughput sequencing technologies to obtain sequences from most of the genome, we calculated that the passenger pigeon's effective population size throughout the last million years was persistently about 1/10,000 of the 1800's estimated number of individuals, a ratio 1,000-times lower than typically found. This result suggests that the passenger pigeon was not always super abundant but experienced dramatic population fluctuations, resembling those of an "outbreak" species. Ecological niche models supported inference of drastic changes in the extent of its breeding range over the last glacial-interglacial cycle. An estimate of acorn-based carrying capacity during the past 21,000 y showed great year-to-year variations. Based on our results, we hypothesize that ecological conditions that dramatically reduced population size under natural conditions could have interacted with human exploitation in causing the passenger pigeon's rapid demise. Our study illustrates that even species as abundant as the passenger pigeon can be vulnerable to human threats if they are subject to dramatic population fluctuations, and provides a new perspective on the greatest human-caused extinction in recorded history. To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction in 1914 raises the question of how such an abundant bird could have been driven to extinction in mere decades. Although human exploitation is often blamed, the role of natural population dynamics in the passenger pigeon's extinction remains unexplored. Applying high-throughput sequencing technologies to obtain sequences from most of the genome, we calculated that the passenger pigeon's effective population size throughout the last million years was persistently about 1/10,000 of the 1800's estimated number of individuals, a ratio 1,000-times lower than typically found. This result suggests that the passenger pigeon was not always super abundant but experienced dramatic population fluctuations, resembling those of an "outbreak" species. Ecological niche models supported inference of drastic changes in the extent of its breeding range over the last glacial-interglacial cycle. An estimate of acorn-based carrying capacity during the past 21,000 y showed great year-to-year variations. Based on our results, we hypothesize that ecological conditions that dramatically reduced population size under natural conditions could have interacted with human exploitation in causing the passenger pigeon's rapid demise. Our study illustrates that even species as abundant as the passenger pigeon can be vulnerable to human threats if they are subject to dramatic population fluctuations, and provides a new perspective on the greatest human-caused extinction in recorded history. |
| Author | Shaner, Pei-Jen L Huang, Wen-San Li, Shou-Hsien Hung, Chih-Ming Zink, Robert M Chu, Te-Chin Liu, Wei-Chung |
| Author_xml | – sequence: 1 givenname: Chih-Ming surname: Hung fullname: Hung, Chih-Ming organization: Department of Life Science and – sequence: 2 givenname: Pei-Jen L surname: Shaner fullname: Shaner, Pei-Jen L organization: Department of Life Science and – sequence: 3 givenname: Robert M surname: Zink fullname: Zink, Robert M organization: Department of Ecology, Evolution, and Behavior, and Bell Museum, University of Minnesota, St. Paul, MN 55108 – sequence: 4 givenname: Wei-Chung surname: Liu fullname: Liu, Wei-Chung organization: Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan – sequence: 5 givenname: Te-Chin surname: Chu fullname: Chu, Te-Chin organization: Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei 116, Taiwan – sequence: 6 givenname: Wen-San surname: Huang fullname: Huang, Wen-San email: wshuang@mail.nmns.edu.tw, t43028@ntnu.edu.tw organization: Department of Biology, National Museum of Natural Science, Taichung 404, Taiwan; andDepartment of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan wshuang@mail.nmns.edu.tw t43028@ntnu.edu.tw – sequence: 7 givenname: Shou-Hsien surname: Li fullname: Li, Shou-Hsien email: wshuang@mail.nmns.edu.tw, t43028@ntnu.edu.tw organization: Department of Life Science and wshuang@mail.nmns.edu.tw t43028@ntnu.edu.tw |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24979776$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtLAzEYxINU7EPP3mSPXrbmy-axOUp9QsFLPS8x-22NbJO4yYL-95ZaQRiYYfgxh5mTiQ8eCbkEugSqqpvoTVoCpyCYBIATMgOqoZRc08m_PCXzlD4opVrU9IxMGddKKyVnZHM3mJSdLWKIY2-yC77o-tHm8ZBTgV-xN84X-R2LwUTX7pvsvD2QoTv00aSEfotDEd0Wgz8np53pE14cfUFeH-43q6dy_fL4vLpdl0YCz6WyrdGtkMpYbbWgykrBrbD1XlULFVNMM5Cg0BpUCCAoFxVqa2VlatuxBbn-3Y1D-Bwx5WbnksW-Nx7DmBoQvAZdcaX26NURHd922DZxcDszfDd_T7AfiFJjWA |
| CitedBy_id | crossref_primary_10_1534_g3_117_300259 crossref_primary_10_3389_fevo_2022_931644 crossref_primary_10_1016_j_biocon_2020_108497 crossref_primary_10_3897_BDJ_11_e101942 crossref_primary_10_1146_annurev_animal_090414_014900 crossref_primary_10_1073_pnas_1607551114 crossref_primary_10_1093_molbev_msae108 crossref_primary_10_1111_mec_14784 crossref_primary_10_1002_oik_11480 crossref_primary_10_1093_gigascience_giy044 crossref_primary_10_1111_nph_14917 crossref_primary_10_3390_d16080456 crossref_primary_10_1002_cncr_32777 crossref_primary_10_1093_molbev_msz208 crossref_primary_10_1186_s12862_016_0817_7 crossref_primary_10_1111_geb_13551 crossref_primary_10_1038_s41467_024_45836_5 crossref_primary_10_1016_j_ympev_2018_09_005 crossref_primary_10_3389_fevo_2020_608339 crossref_primary_10_1098_rsos_180325 crossref_primary_10_1017_S0030605316000041 crossref_primary_10_1111_mec_16277 crossref_primary_10_1111_mec_14374 crossref_primary_10_1038_s41559_023_02055_3 crossref_primary_10_1186_s12864_024_10774_5 crossref_primary_10_1111_btp_70040 crossref_primary_10_1111_1365_2435_12728 crossref_primary_10_1038_s41437_018_0066_1 crossref_primary_10_1038_s41437_021_00443_8 crossref_primary_10_1126_science_aao0960 crossref_primary_10_1016_j_jgg_2023_05_002 crossref_primary_10_1016_j_biocon_2014_09_023 crossref_primary_10_1186_s12864_025_11257_x crossref_primary_10_1038_hdy_2015_104 crossref_primary_10_1111_1365_2435_12843 crossref_primary_10_1038_srep23087 crossref_primary_10_1016_j_cub_2018_12_008 crossref_primary_10_1016_j_jhevol_2014_10_015 crossref_primary_10_1080_01584197_2017_1333392 crossref_primary_10_1007_s10592_022_01469_z crossref_primary_10_1111_1755_0998_13908 crossref_primary_10_1371_journal_pgen_1005877 crossref_primary_10_3390_genes8070184 crossref_primary_10_1038_s41598_018_37851_6 crossref_primary_10_1111_cobi_13901 crossref_primary_10_3389_fevo_2021_698175 crossref_primary_10_1038_s41526_017_0018_8 crossref_primary_10_1016_j_cub_2021_04_035 crossref_primary_10_1002_ece3_5234 crossref_primary_10_1080_0734578X_2021_1898740 crossref_primary_10_1093_biosci_biw186 crossref_primary_10_3390_ani11092677 crossref_primary_10_1093_gigascience_giae124 crossref_primary_10_1111_mec_16770 crossref_primary_10_1111_mec_70002 crossref_primary_10_1038_nature_2014_15479 crossref_primary_10_1111_mec_13496 crossref_primary_10_1126_science_aah6647 crossref_primary_10_1002_ece3_9720 crossref_primary_10_1016_j_tree_2021_07_009 crossref_primary_10_1111_mec_15315 crossref_primary_10_1111_1365_2435_14097 crossref_primary_10_1111_mec_17451 crossref_primary_10_3390_biology13100837 crossref_primary_10_1017_S0959270921000241 crossref_primary_10_1093_ae_tmz001 crossref_primary_10_1111_bij_12494 crossref_primary_10_1111_cobi_12914 crossref_primary_10_3389_fevo_2022_970249 crossref_primary_10_1371_journal_pone_0223953 crossref_primary_10_1093_jcbiol_ruz019 crossref_primary_10_1111_csp2_12835 crossref_primary_10_1016_j_gene_2023_147219 crossref_primary_10_1002_ece3_4163 crossref_primary_10_1038_s41467_022_31381_6 crossref_primary_10_1111_mec_15023 crossref_primary_10_3390_genes9110548 crossref_primary_10_1111_ecog_05406 crossref_primary_10_1093_biolinnean_blaa068 crossref_primary_10_1093_zoolinnean_zlaf097 crossref_primary_10_1007_s12686_016_0648_2 crossref_primary_10_1016_j_ympev_2019_03_017 crossref_primary_10_1111_icad_12678 crossref_primary_10_1002_aqc_3810 crossref_primary_10_1146_annurev_ecolsys_110617_062431 crossref_primary_10_1016_j_cub_2017_11_021 crossref_primary_10_1111_fwb_13366 crossref_primary_10_1111_jav_01858 crossref_primary_10_1111_eva_70008 crossref_primary_10_1007_s12520_020_01212_0 crossref_primary_10_1093_aob_mcab114 crossref_primary_10_1016_j_quascirev_2020_106225 crossref_primary_10_1093_molbev_msx322 crossref_primary_10_1642_AUK_14_257_1 crossref_primary_10_1007_s40572_025_00495_6 crossref_primary_10_1002_evl3_165 crossref_primary_10_1016_j_ympev_2024_108056 crossref_primary_10_1126_sciadv_adm7980 crossref_primary_10_1186_s12864_021_07616_z crossref_primary_10_1080_01584197_2025_2490644 crossref_primary_10_1002_ece3_8665 crossref_primary_10_1002_ece3_3135 crossref_primary_10_1016_j_tree_2017_12_002 crossref_primary_10_1080_21550085_2017_1291831 crossref_primary_10_1002_oa_3163 crossref_primary_10_7554_eLife_88028 crossref_primary_10_1111_1365_2435_12705 crossref_primary_10_1073_pnas_1410111111 crossref_primary_10_1093_molbev_msab050 crossref_primary_10_1186_s12862_021_01921_7 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1401526111 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Geography Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 24979776 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-a614t-7cda9d567ac9c9507c654c5c85c83d13272921617ecae7e1150453e9cc63a8cf2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 127 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000339310700059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 07:20:37 EDT 2025 Mon Jul 21 05:20:40 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 29 |
| Keywords | genome sequences toe pad ancient DNA |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a614t-7cda9d567ac9c9507c654c5c85c83d13272921617ecae7e1150453e9cc63a8cf2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/111/29/10636.full.pdf |
| PMID | 24979776 |
| PQID | 1548193477 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1548193477 pubmed_primary_24979776 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-07-22 |
| PublicationDateYYYYMMDD | 2014-07-22 |
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-22 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2014 |
| References | 24982191 - Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10400-1 |
| References_xml | – reference: 24982191 - Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10400-1 |
| SSID | ssj0009580 |
| Score | 2.5049517 |
| Snippet | To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 10636 |
| SubjectTerms | Animals Chromosome Mapping Columbidae - physiology Extinction, Biological Food Supply Genome - genetics Geography Markov Chains Population Density Population Dynamics Quercus - physiology United States |
| Title | Drastic population fluctuations explain the rapid extinction of the passenger pigeon |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24979776 https://www.proquest.com/docview/1548193477 |
| Volume | 111 |
| WOSCitedRecordID | wos000339310700059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8QwEMeDuh68qOtzfRHBgx6itk2b5iSiLh502cMKe1um01QKS1vbXfHjO2m76kUQhNJDQqGEycxv8vgPY2c-ul4UOaFIJCghI_KDWisQAXX4TkT-EWt1_Sc1GITjsR62C25Ve6xy4RNrRx3naNfIryxaE2xIpW6KN2GrRtnd1baExjLreIQy1qrVOPwhuhs2agTaEYHU1wtpH-VdFRlUlza58CmFcJzf-bKOM_2N__7hJltvCZPfNibRZUsm22Lddg5X_LwVmr7YZqP7EqxMMy--qnjxZDq3V0pqa-Tmo5hCmnGCRF5CkcbUMkuz-ioEz5O6vSD6tidjS16krybPdthL_2F09yjaKgsCKDTPhMIYdOwHClCjJjzEwJfoY0iPF1OySvjt2izIIBhlLEFK3zMaMfAgxMTdZStZnpl9xg1SOIwjBYBSugghqJgAIk6MzXPA6bHTxchNyIrt1gRkJp9Xk--x67G9ZvgnRSO3MaEEURGlBgd_-PqQrRHRSLv46rpHrJPQHDbHbBXfZ2lVntTmQe_B8PkTMkjF5g |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drastic+population+fluctuations+explain+the+rapid+extinction+of+the+passenger+pigeon&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hung%2C+Chih-Ming&rft.au=Shaner%2C+Pei-Jen+L&rft.au=Zink%2C+Robert+M&rft.au=Liu%2C+Wei-Chung&rft.date=2014-07-22&rft.eissn=1091-6490&rft.volume=111&rft.issue=29&rft.spage=10636&rft_id=info:doi/10.1073%2Fpnas.1401526111&rft_id=info%3Apmid%2F24979776&rft_id=info%3Apmid%2F24979776&rft.externalDocID=24979776 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |