Drastic population fluctuations explain the rapid extinction of the passenger pigeon

To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 111; číslo 29; s. 10636
Hlavní autoři: Hung, Chih-Ming, Shaner, Pei-Jen L, Zink, Robert M, Liu, Wei-Chung, Chu, Te-Chin, Huang, Wen-San, Li, Shou-Hsien
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 22.07.2014
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction in 1914 raises the question of how such an abundant bird could have been driven to extinction in mere decades. Although human exploitation is often blamed, the role of natural population dynamics in the passenger pigeon's extinction remains unexplored. Applying high-throughput sequencing technologies to obtain sequences from most of the genome, we calculated that the passenger pigeon's effective population size throughout the last million years was persistently about 1/10,000 of the 1800's estimated number of individuals, a ratio 1,000-times lower than typically found. This result suggests that the passenger pigeon was not always super abundant but experienced dramatic population fluctuations, resembling those of an "outbreak" species. Ecological niche models supported inference of drastic changes in the extent of its breeding range over the last glacial-interglacial cycle. An estimate of acorn-based carrying capacity during the past 21,000 y showed great year-to-year variations. Based on our results, we hypothesize that ecological conditions that dramatically reduced population size under natural conditions could have interacted with human exploitation in causing the passenger pigeon's rapid demise. Our study illustrates that even species as abundant as the passenger pigeon can be vulnerable to human threats if they are subject to dramatic population fluctuations, and provides a new perspective on the greatest human-caused extinction in recorded history.
AbstractList To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction in 1914 raises the question of how such an abundant bird could have been driven to extinction in mere decades. Although human exploitation is often blamed, the role of natural population dynamics in the passenger pigeon's extinction remains unexplored. Applying high-throughput sequencing technologies to obtain sequences from most of the genome, we calculated that the passenger pigeon's effective population size throughout the last million years was persistently about 1/10,000 of the 1800's estimated number of individuals, a ratio 1,000-times lower than typically found. This result suggests that the passenger pigeon was not always super abundant but experienced dramatic population fluctuations, resembling those of an "outbreak" species. Ecological niche models supported inference of drastic changes in the extent of its breeding range over the last glacial-interglacial cycle. An estimate of acorn-based carrying capacity during the past 21,000 y showed great year-to-year variations. Based on our results, we hypothesize that ecological conditions that dramatically reduced population size under natural conditions could have interacted with human exploitation in causing the passenger pigeon's rapid demise. Our study illustrates that even species as abundant as the passenger pigeon can be vulnerable to human threats if they are subject to dramatic population fluctuations, and provides a new perspective on the greatest human-caused extinction in recorded history.To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction in 1914 raises the question of how such an abundant bird could have been driven to extinction in mere decades. Although human exploitation is often blamed, the role of natural population dynamics in the passenger pigeon's extinction remains unexplored. Applying high-throughput sequencing technologies to obtain sequences from most of the genome, we calculated that the passenger pigeon's effective population size throughout the last million years was persistently about 1/10,000 of the 1800's estimated number of individuals, a ratio 1,000-times lower than typically found. This result suggests that the passenger pigeon was not always super abundant but experienced dramatic population fluctuations, resembling those of an "outbreak" species. Ecological niche models supported inference of drastic changes in the extent of its breeding range over the last glacial-interglacial cycle. An estimate of acorn-based carrying capacity during the past 21,000 y showed great year-to-year variations. Based on our results, we hypothesize that ecological conditions that dramatically reduced population size under natural conditions could have interacted with human exploitation in causing the passenger pigeon's rapid demise. Our study illustrates that even species as abundant as the passenger pigeon can be vulnerable to human threats if they are subject to dramatic population fluctuations, and provides a new perspective on the greatest human-caused extinction in recorded history.
To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger pigeon was once the most abundant bird in the world, with a population size estimated at 3-5 billion in the 1800s; its abrupt extinction in 1914 raises the question of how such an abundant bird could have been driven to extinction in mere decades. Although human exploitation is often blamed, the role of natural population dynamics in the passenger pigeon's extinction remains unexplored. Applying high-throughput sequencing technologies to obtain sequences from most of the genome, we calculated that the passenger pigeon's effective population size throughout the last million years was persistently about 1/10,000 of the 1800's estimated number of individuals, a ratio 1,000-times lower than typically found. This result suggests that the passenger pigeon was not always super abundant but experienced dramatic population fluctuations, resembling those of an "outbreak" species. Ecological niche models supported inference of drastic changes in the extent of its breeding range over the last glacial-interglacial cycle. An estimate of acorn-based carrying capacity during the past 21,000 y showed great year-to-year variations. Based on our results, we hypothesize that ecological conditions that dramatically reduced population size under natural conditions could have interacted with human exploitation in causing the passenger pigeon's rapid demise. Our study illustrates that even species as abundant as the passenger pigeon can be vulnerable to human threats if they are subject to dramatic population fluctuations, and provides a new perspective on the greatest human-caused extinction in recorded history.
Author Shaner, Pei-Jen L
Huang, Wen-San
Li, Shou-Hsien
Hung, Chih-Ming
Zink, Robert M
Chu, Te-Chin
Liu, Wei-Chung
Author_xml – sequence: 1
  givenname: Chih-Ming
  surname: Hung
  fullname: Hung, Chih-Ming
  organization: Department of Life Science and
– sequence: 2
  givenname: Pei-Jen L
  surname: Shaner
  fullname: Shaner, Pei-Jen L
  organization: Department of Life Science and
– sequence: 3
  givenname: Robert M
  surname: Zink
  fullname: Zink, Robert M
  organization: Department of Ecology, Evolution, and Behavior, and Bell Museum, University of Minnesota, St. Paul, MN 55108
– sequence: 4
  givenname: Wei-Chung
  surname: Liu
  fullname: Liu, Wei-Chung
  organization: Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
– sequence: 5
  givenname: Te-Chin
  surname: Chu
  fullname: Chu, Te-Chin
  organization: Department of Computer Science and Information Engineering, National Taiwan Normal University, Taipei 116, Taiwan
– sequence: 6
  givenname: Wen-San
  surname: Huang
  fullname: Huang, Wen-San
  email: wshuang@mail.nmns.edu.tw, t43028@ntnu.edu.tw
  organization: Department of Biology, National Museum of Natural Science, Taichung 404, Taiwan; andDepartment of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan wshuang@mail.nmns.edu.tw t43028@ntnu.edu.tw
– sequence: 7
  givenname: Shou-Hsien
  surname: Li
  fullname: Li, Shou-Hsien
  email: wshuang@mail.nmns.edu.tw, t43028@ntnu.edu.tw
  organization: Department of Life Science and wshuang@mail.nmns.edu.tw t43028@ntnu.edu.tw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24979776$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLAzEYxINU7EPP3mSPXrbmy-axOUp9QsFLPS8x-22NbJO4yYL-95ZaQRiYYfgxh5mTiQ8eCbkEugSqqpvoTVoCpyCYBIATMgOqoZRc08m_PCXzlD4opVrU9IxMGddKKyVnZHM3mJSdLWKIY2-yC77o-tHm8ZBTgV-xN84X-R2LwUTX7pvsvD2QoTv00aSEfotDEd0Wgz8np53pE14cfUFeH-43q6dy_fL4vLpdl0YCz6WyrdGtkMpYbbWgykrBrbD1XlULFVNMM5Cg0BpUCCAoFxVqa2VlatuxBbn-3Y1D-Bwx5WbnksW-Nx7DmBoQvAZdcaX26NURHd922DZxcDszfDd_T7AfiFJjWA
CitedBy_id crossref_primary_10_1534_g3_117_300259
crossref_primary_10_3389_fevo_2022_931644
crossref_primary_10_1016_j_biocon_2020_108497
crossref_primary_10_3897_BDJ_11_e101942
crossref_primary_10_1146_annurev_animal_090414_014900
crossref_primary_10_1073_pnas_1607551114
crossref_primary_10_1093_molbev_msae108
crossref_primary_10_1111_mec_14784
crossref_primary_10_1002_oik_11480
crossref_primary_10_1093_gigascience_giy044
crossref_primary_10_1111_nph_14917
crossref_primary_10_3390_d16080456
crossref_primary_10_1002_cncr_32777
crossref_primary_10_1093_molbev_msz208
crossref_primary_10_1186_s12862_016_0817_7
crossref_primary_10_1111_geb_13551
crossref_primary_10_1038_s41467_024_45836_5
crossref_primary_10_1016_j_ympev_2018_09_005
crossref_primary_10_3389_fevo_2020_608339
crossref_primary_10_1098_rsos_180325
crossref_primary_10_1017_S0030605316000041
crossref_primary_10_1111_mec_16277
crossref_primary_10_1111_mec_14374
crossref_primary_10_1038_s41559_023_02055_3
crossref_primary_10_1186_s12864_024_10774_5
crossref_primary_10_1111_btp_70040
crossref_primary_10_1111_1365_2435_12728
crossref_primary_10_1038_s41437_018_0066_1
crossref_primary_10_1038_s41437_021_00443_8
crossref_primary_10_1126_science_aao0960
crossref_primary_10_1016_j_jgg_2023_05_002
crossref_primary_10_1016_j_biocon_2014_09_023
crossref_primary_10_1186_s12864_025_11257_x
crossref_primary_10_1038_hdy_2015_104
crossref_primary_10_1111_1365_2435_12843
crossref_primary_10_1038_srep23087
crossref_primary_10_1016_j_cub_2018_12_008
crossref_primary_10_1016_j_jhevol_2014_10_015
crossref_primary_10_1080_01584197_2017_1333392
crossref_primary_10_1007_s10592_022_01469_z
crossref_primary_10_1111_1755_0998_13908
crossref_primary_10_1371_journal_pgen_1005877
crossref_primary_10_3390_genes8070184
crossref_primary_10_1038_s41598_018_37851_6
crossref_primary_10_1111_cobi_13901
crossref_primary_10_3389_fevo_2021_698175
crossref_primary_10_1038_s41526_017_0018_8
crossref_primary_10_1016_j_cub_2021_04_035
crossref_primary_10_1002_ece3_5234
crossref_primary_10_1080_0734578X_2021_1898740
crossref_primary_10_1093_biosci_biw186
crossref_primary_10_3390_ani11092677
crossref_primary_10_1093_gigascience_giae124
crossref_primary_10_1111_mec_16770
crossref_primary_10_1111_mec_70002
crossref_primary_10_1038_nature_2014_15479
crossref_primary_10_1111_mec_13496
crossref_primary_10_1126_science_aah6647
crossref_primary_10_1002_ece3_9720
crossref_primary_10_1016_j_tree_2021_07_009
crossref_primary_10_1111_mec_15315
crossref_primary_10_1111_1365_2435_14097
crossref_primary_10_1111_mec_17451
crossref_primary_10_3390_biology13100837
crossref_primary_10_1017_S0959270921000241
crossref_primary_10_1093_ae_tmz001
crossref_primary_10_1111_bij_12494
crossref_primary_10_1111_cobi_12914
crossref_primary_10_3389_fevo_2022_970249
crossref_primary_10_1371_journal_pone_0223953
crossref_primary_10_1093_jcbiol_ruz019
crossref_primary_10_1111_csp2_12835
crossref_primary_10_1016_j_gene_2023_147219
crossref_primary_10_1002_ece3_4163
crossref_primary_10_1038_s41467_022_31381_6
crossref_primary_10_1111_mec_15023
crossref_primary_10_3390_genes9110548
crossref_primary_10_1111_ecog_05406
crossref_primary_10_1093_biolinnean_blaa068
crossref_primary_10_1093_zoolinnean_zlaf097
crossref_primary_10_1007_s12686_016_0648_2
crossref_primary_10_1016_j_ympev_2019_03_017
crossref_primary_10_1111_icad_12678
crossref_primary_10_1002_aqc_3810
crossref_primary_10_1146_annurev_ecolsys_110617_062431
crossref_primary_10_1016_j_cub_2017_11_021
crossref_primary_10_1111_fwb_13366
crossref_primary_10_1111_jav_01858
crossref_primary_10_1111_eva_70008
crossref_primary_10_1007_s12520_020_01212_0
crossref_primary_10_1093_aob_mcab114
crossref_primary_10_1016_j_quascirev_2020_106225
crossref_primary_10_1093_molbev_msx322
crossref_primary_10_1642_AUK_14_257_1
crossref_primary_10_1007_s40572_025_00495_6
crossref_primary_10_1002_evl3_165
crossref_primary_10_1016_j_ympev_2024_108056
crossref_primary_10_1126_sciadv_adm7980
crossref_primary_10_1186_s12864_021_07616_z
crossref_primary_10_1080_01584197_2025_2490644
crossref_primary_10_1002_ece3_8665
crossref_primary_10_1002_ece3_3135
crossref_primary_10_1016_j_tree_2017_12_002
crossref_primary_10_1080_21550085_2017_1291831
crossref_primary_10_1002_oa_3163
crossref_primary_10_7554_eLife_88028
crossref_primary_10_1111_1365_2435_12705
crossref_primary_10_1073_pnas_1410111111
crossref_primary_10_1093_molbev_msab050
crossref_primary_10_1186_s12862_021_01921_7
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1401526111
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Geography
Sciences (General)
EISSN 1091-6490
ExternalDocumentID 24979776
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-a614t-7cda9d567ac9c9507c654c5c85c83d13272921617ecae7e1150453e9cc63a8cf2
IEDL.DBID 7X8
ISICitedReferencesCount 127
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000339310700059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 07:20:37 EDT 2025
Mon Jul 21 05:20:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords genome sequences
toe pad
ancient DNA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a614t-7cda9d567ac9c9507c654c5c85c83d13272921617ecae7e1150453e9cc63a8cf2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/111/29/10636.full.pdf
PMID 24979776
PQID 1548193477
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1548193477
pubmed_primary_24979776
PublicationCentury 2000
PublicationDate 2014-07-22
PublicationDateYYYYMMDD 2014-07-22
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
References 24982191 - Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10400-1
References_xml – reference: 24982191 - Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10400-1
SSID ssj0009580
Score 2.5049517
Snippet To assess the role of human disturbances in species' extinction requires an understanding of the species population history before human impact. The passenger...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 10636
SubjectTerms Animals
Chromosome Mapping
Columbidae - physiology
Extinction, Biological
Food Supply
Genome - genetics
Geography
Markov Chains
Population Density
Population Dynamics
Quercus - physiology
United States
Title Drastic population fluctuations explain the rapid extinction of the passenger pigeon
URI https://www.ncbi.nlm.nih.gov/pubmed/24979776
https://www.proquest.com/docview/1548193477
Volume 111
WOSCitedRecordID wos000339310700059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQQPeojbbfNoTiLq4kGXPaywt5KmqRSWtLa74s930nbViyAIpYdAoEwnM983Sb5B6IIxP9Y0DgnEX01oEFMSQ6ImvkmUlxoZ8LT-009iNAqnUzluC25Ve6xyGRPrQJ3k2tXI-w5aA9igQtwUb8R1jXK7q20LjVXUCQDKOK8W0_CH6G7YqBHIAeFUektpHxH0C6uqa0cuGFCIweB3fFnnmeHWf79wG222CBPfNi7RRSvG7qBuu4YrfNkKTV_tosl9qZxMMy6-unjhdLZwV0pqb8Tmo5ipzGIAibhURZbAyDyz9VUInKf1eAHo252MLXGRvZrc7qGX4cPk7pG0XRaIgtQ8J0InSiaMC6WllgAPNWdUMx3CEyRAVgF--44FGa2MMA5BUhYYqTUPVKhTfx-t2dyaQ4RNyAMDHE4Bp6GeTuMkUUwy5XGpKPVUD50vLReBF7utCWVNvqiib9v10EFj_qho5DYiIIgCUCo_-sPsY7QBiIa64qvvn6BOCmvYnKJ1_T7PqvKsdg94j8bPnzr7xk4
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drastic+population+fluctuations+explain+the+rapid+extinction+of+the+passenger+pigeon&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hung%2C+Chih-Ming&rft.au=Shaner%2C+Pei-Jen+L&rft.au=Zink%2C+Robert+M&rft.au=Liu%2C+Wei-Chung&rft.date=2014-07-22&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=111&rft.issue=29&rft.spage=10636&rft_id=info:doi/10.1073%2Fpnas.1401526111&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon