Multivariate spatio-temporal modelling for assessing Antarctica's present-day contribution to sea-level rise
Antarctica is the world's largest fresh‐water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea‐level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice s...
Uloženo v:
| Vydáno v: | Environmetrics (London, Ont.) Ročník 26; číslo 3; s. 159 - 177 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Blackwell Publishing Ltd
01.05.2015
|
| Témata: | |
| ISSN: | 1180-4009, 1099-095X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Antarctica is the world's largest fresh‐water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea‐level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present‐day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as in situ data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean.In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio‐temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio‐temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high‐performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which in situ data are hard to obtain. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd. |
|---|---|
| AbstractList | Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea-level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present-day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as in situ data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean. In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio-temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio-temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high-performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which in situ data are hard to obtain. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd. Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60m. An ice sheet contributes to sea-level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present-day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as in situ data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean. In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio-temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio-temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high-performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which in situ data are hard to obtain. copyright 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd. Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea-level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present-day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean. In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio-temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio-temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high-performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which data are hard to obtain. © 2015 The Authors. published by John Wiley & Sons Ltd. Antarctica is the world's largest fresh‐water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea‐level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present‐day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as in situ data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean. In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio‐temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio‐temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high‐performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which in situ data are hard to obtain. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd. |
| Author | Lindgren, Finn Bamber, Jonathan Rougier, Jonathan Zammit-Mangion, Andrew Schön, Nana |
| Author_xml | – sequence: 1 givenname: Andrew surname: Zammit-Mangion fullname: Zammit-Mangion, Andrew email: A.ZammitMangion@bristol.ac.uk organization: School of Geographical Sciences, University of Bristol, BS8 1SS, Bristol, U.K – sequence: 2 givenname: Jonathan surname: Rougier fullname: Rougier, Jonathan organization: Department of Mathematics, University of Bristol, BS8 1TW, Bristol, U.K – sequence: 3 givenname: Nana surname: Schön fullname: Schön, Nana organization: School of Geographical Sciences, University of Bristol, BS8 1SS, Bristol, U.K – sequence: 4 givenname: Finn surname: Lindgren fullname: Lindgren, Finn organization: Department of Mathematical Sciences, University of Bath, BA2 7AQ, Bath, U.K – sequence: 5 givenname: Jonathan surname: Bamber fullname: Bamber, Jonathan organization: School of Geographical Sciences, University of Bristol, BS8 1SS, Bristol, U.K |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25937792$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkttu1DAQhi1URA8g8QQod3CTxYfEjm-QqlVpkdpCJQ69sxxnUgxZO7WdhX37OmpZKALBjT0jf_Nrxv_sox3nHSD0lOAFwZi-BLdeUEbZA7RHsJQllvXlTo5Jg8sKY7mL9mP8gnPEa_EI7dJaMiEk3UPD2TQku9bB6gRFHHWyvkywGn3QQ7HyHQyDdVdF70OhY4QY5-zQJR1MskY_j8UYIIJLZac3hfEuBdtOWcUVyRcRdDnAGoYi2AiP0cNeDxGe3N0H6MPro_fLk_L07fGb5eFpqTkWrJQ9py1rTNMyRnEvpTBS47ZqSVsBNZ0WWvLG1KavGKmobitcQ4sNabqKU9qwA_TqVnec2hV0JneXp1FjsCsdNsprq-6_OPtZXfm1qirCGJdZ4MWdQPDXE8SkVjaa_BXagZ-iIg3lnOYT_xvlTS1Ek534D1RwVlPWsIw--3WCbes_jPupZYKPMUC_RQhW806ovBNq3omMLn5DjU2zz_PsdvhTQXlb8M0OsPmrsDo6_3iftzHB9y2vw1fFBRO1-nR-rM4u3vELtrxUhN0A4_XYXw |
| CitedBy_id | crossref_primary_10_1002_2015JF003550 crossref_primary_10_1002_2016GL067818 crossref_primary_10_1002_env_2649 crossref_primary_10_1016_j_csda_2018_02_001 crossref_primary_10_1029_2020JF005966 crossref_primary_10_1146_annurev_statistics_040120_020733 crossref_primary_10_1080_10618600_2023_2191667 crossref_primary_10_1002_2017GL072937 crossref_primary_10_1016_j_spasta_2020_100411 crossref_primary_10_1080_01621459_2021_2013241 crossref_primary_10_1093_biomet_asw045 crossref_primary_10_1111_sjos_12234 crossref_primary_10_1111_2041_210X_14505 crossref_primary_10_5194_tc_14_349_2020 crossref_primary_10_1002_2016JB013154 crossref_primary_10_5194_tc_16_1349_2022 crossref_primary_10_1002_2017GL073087 crossref_primary_10_3389_feart_2023_1076732 |
| Cites_doi | 10.1198/jasa.2011.tm09680 10.1201/9780203492024 10.1515/9780691218632 10.1029/2011GL050713 10.3189/2013JoG12J147 10.1007/978-3-642-04016-0 10.1198/TECH.2009.08019 10.1029/2011GL046583 10.1007/s13253-011-0068-4 10.1017/S0022143000007486 10.1038/ngeo102 10.5194/tc-7-375-2013 10.1130/G20317.1 10.5194/tc-5-809-2011 10.1126/science.287.5456.1248 10.1016/j.epsl.2009.10.013 10.1111/j.1467-9868.2011.00777.x 10.1126/science.1208336 10.1126/science.1228102 10.1111/j.1467-9868.2008.00700.x 10.1198/016214501753168109 10.1073/pnas.1203177109 10.1017/S0954102005002968 10.5194/tc-3-125-2009 10.1198/jcgs.2010.09051 10.1191/1471082x02st029oa 10.1111/j.1467-9892.2011.00732.x 10.1029/97JB01441 10.1111/1467-9868.00305 10.1002/env.2247 10.1098/rsta.2006.1793 10.1016/j.physd.2006.09.017 10.5194/tc-8-743-2014 10.1007/s10260-007-0077-1 10.1214/aos/1056562461 10.3189/172756502781831115 10.1002/j.1538-7305.1970.tb01770.x 10.1002/grl.50527 10.1029/2011JF002072 10.1002/jgrb.50208 10.1002/env.1147 10.1002/2014GL060111 10.18637/jss.v019.i04 10.1175/1520-0442(2001)013<3953:LLPOPS>2.0.CO;2 10.1080/15598608.2009.10411933 10.3189/2014JoG14J051 |
| ContentType | Journal Article |
| Copyright | 2015 The Authors. published by John Wiley & Sons Ltd. 2015 The Authors. published by John Wiley & Sons Ltd. 2015 |
| Copyright_xml | – notice: 2015 The Authors. published by John Wiley & Sons Ltd. – notice: 2015 The Authors. published by John Wiley & Sons Ltd. 2015 |
| DBID | BSCLL 24P AAYXX CITATION NPM 7ST 7TG 7TN C1K F1W H96 KL. L.G SOI 7SU 8FD FR3 KR7 7U8 7X8 JXQ 5PM |
| DOI | 10.1002/env.2323 |
| DatabaseName | Istex Wiley Online Library Open Access CrossRef PubMed Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Environmental Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts TOXLINE MEDLINE - Academic Toxline PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environmental Sciences and Pollution Management Civil Engineering Abstracts Engineering Research Database Technology Research Database Environmental Engineering Abstracts TOXLINE MEDLINE - Academic |
| DatabaseTitleList | TOXLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional Civil Engineering Abstracts PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1099-095X |
| EndPage | 177 |
| ExternalDocumentID | PMC4413369 25937792 10_1002_env_2323 ENV2323 ark_67375_WNG_MQP6Q3CX_1 |
| Genre | article Journal Article |
| GeographicLocations | PS, Antarctica |
| GeographicLocations_xml | – name: PS, Antarctica |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EDH EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 Y6R ZY4 ZZTAW ~02 ~IA ~WT 24P AAHHS ABTAH ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI WRC WWD AAYXX BANNL CITATION O8X NPM 7ST 7TG 7TN C1K F1W H96 KL. L.G SOI 7SU 8FD FR3 KR7 7U8 7X8 JXQ 5PM |
| ID | FETCH-LOGICAL-a6073-9f62b38c8b3320f997c9a0b4b1b4e2cda7a968c5cf43142ab405eb0c18d462283 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 25 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352574900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1180-4009 |
| IngestDate | Tue Nov 04 02:02:11 EST 2025 Fri Jul 11 14:26:47 EDT 2025 Tue Oct 07 09:58:13 EDT 2025 Tue Oct 07 09:24:43 EDT 2025 Thu Apr 03 06:58:20 EDT 2025 Tue Nov 18 22:37:40 EST 2025 Sat Nov 29 02:27:46 EST 2025 Wed Jan 22 16:46:39 EST 2025 Tue Nov 11 03:31:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | spatio-temporal statistics Multivariate modelling parallel MCMC sea-level rise stochastic partial differential equations |
| Language | English |
| License | Attribution http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a6073-9f62b38c8b3320f997c9a0b4b1b4e2cda7a968c5cf43142ab405eb0c18d462283 |
| Notes | istex:566C45B5CE018C8DAFEDB18D44629EF0F51CE245 ArticleID:ENV2323 ark:/67375/WNG-MQP6Q3CX-1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fenv.2323 |
| PMID | 25937792 |
| PQID | 1676352383 |
| PQPubID | 23462 |
| PageCount | 19 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4413369 proquest_miscellaneous_1826621820 proquest_miscellaneous_1685778180 proquest_miscellaneous_1676352383 pubmed_primary_25937792 crossref_primary_10_1002_env_2323 crossref_citationtrail_10_1002_env_2323 wiley_primary_10_1002_env_2323_ENV2323 istex_primary_ark_67375_WNG_MQP6Q3CX_1 |
| PublicationCentury | 2000 |
| PublicationDate | May 2015 |
| PublicationDateYYYYMMDD | 2015-05-01 |
| PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford, UK |
| PublicationTitle | Environmetrics (London, Ont.) |
| PublicationTitleAlternate | Environmetrics |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Hamilton JD. 1994. Time Series Analysis. Princeton University Press: Princeton. Rue H, Held L. 2005. Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC Press: Boca Raton, FL. Molloy M, Reed B. 2002. Graph Colouring and the Probabilistic Method, Algorithms and Combinatorics, vol. 23. Springer: Berlin. Calder CA, Berrett C, Shi T, Xiao N, Munroe DK. 2011. Modeling space-time dynamics of aerosols using satellite data and atmospheric transport model output. Journal of Agricultural, Biological, and Environmental Statistics 16(4):495-512. Scott JBT, Gudmundsson GH, Smith AM, Bingham RG, Pritchard HD, Vaughan DG. 2009. Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress. The Cryosphere 3: 125-131. Lenaerts JTM, Van den Broeke MR, van de Berg WJ, van Meijgaard E, Munneke PK. 2012. A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling. Geophysical Research Letters 39(4):L04501. Ligtenberg SRM, Helsen MM, van den Broeke MR. 2011. An improved semi-empirical model for the densification of Antarctic firn. The Cryosphere 5(4):809-819. Rignot E. 2006. Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1844):1637-1655. Wikle CK, Berliner LM. 2007. A Bayesian tutorial for data assimilation. Physica D: Nonlinear Phenomena 230(1-2): 1-16. Kang EL, Cressie N. 2011. Bayesian inference for the spatial random effects model. Journal of the American Statistical Association 106(495):972-983. Rignot E, Mouginot J, Scheuchl B. 2011a. Ice flow of the Antarctic ice sheet. Science 333(6048):1427-1430. Storvik G, Frigessi A, Hirst D. 2002. Stationary space-time Gaussian fields and their time autoregressive representation. Statistical Modelling 2: 139-161. Cressie N, Wikle CK. 2011. Statistics for Spatio-Temporal Data. Wiley: Hoboken, NJ. Luthcke SB, Sabaka TJ, Loomis BD, Arendt A, McCarthy JJ, Camp J. 2013. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology 59(216):613-631. Lindgren F, Rue H, Lindström J. 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society B 73(4):423-498. Berliner LM, Wikle CK, Cressie N. 2000. Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. Journal of Climate 13(22):3953-3968. Katzfuss M, Cressie N. 2012. Bayesian hierarchical spatio-temporal smoothing for very large datasets. Environmetrics 23(1):94-107. Isaksson E, Karlen W. 1994. Spatial and temporal patterns in snow accumulation, Western Dronning Maud Land, Antarctica. Journal of Glaciology 40(135):399-409. Bamber JL, Vaughan DG, Joughin I. 2000. Widespread complex flow in the interior of the Antarctic ice sheet. Science 287(5456):1248-1250. Zammit-Mangion A, Dewar M, Kadirkamanathan V, Sanguinetti G. 2012. Point process modelling of the Afghan War Diary. Proceedings of the National Academy of Sciences 109(31):12414-12419. Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, SRM Ligtenberg, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, JP Nicolas, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Srensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, DG Vaughan, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ. 2012. A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183-1189. Finley AO, Banerjee S, Carlin BP. 2007. spBayes: an R package for univariate and multivariate hierarchical point-referenced spatial models. Journal of Statistical Software 19(4):1-24. Gunter BC, Didova O, Riva REM, Ligtenberg SRM, Lenaerts JTM, King MA, van den Broeke MR, Urban T. 2014. Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. The Cryosphere 8:743-760. van Wessem JM, Reijmer CH, Morlighem M, Mouginot J, Rignot E, Medley B, Joughin I, B Wouters, Depoorter MA, Bamber JL, Lenaerts JTM, van de Berg WJ, van den Broeke MR, E van Meijgaard. 2014. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology 60(222):761-770. Hurkmans RTWL, Bamber JL, Sørensen LS, Joughin IR, Davis CH, Krabill WB. 2012. Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbræ, Greenland. Journal of Geophysical Research 117(F3): F03001. Pattyn Frank, Derauw Dominique. 2002. Ice-dynamic conditions of Shirase Glacier, Antarctica, inferred from ERS SAR interferometry. Journal of Glaciology 48(163):559-565. Zammit-Mangion A, Rougier JC, Bamber JL, Schoen NW. 2014. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework. Environmetrics 25: 245-264. Riva REM, Gunter BC, Urban TJ, Vermeersen BLA, Lindenbergh RC, Helsen MM, Bamber JL, van de Wal RSW, van den Broeke MR, Schutz BE. 2009. Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth and Planetary Science Letters 288: 516-523. Richardson C, Aarholt E, Hamran SE, Holmlund Per, Isaksson Elisabeth. 1997. Spatial distribution of snow in Western Dronning Maud Land, East Antarctica, mapped by a ground-based snow radar. Journal of Geophysical Research: Solid Earth 102(B9): 20343-20353. Bastos LS, O'Hagan A. 2009. Diagnostics for Gaussian process emulators. Technometrics 51(4):425-438. Ivins ER, James TS. 2005. Antarctic glacial isostatic adjustment: a new assessment. Antarctic Science 17(04):541-553. Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7:375-393. Rignot E, Bamber JL, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience 1(2):106-110. Ivins ER, James TS, Wahr J, Schrama O, Ernst J, Landerer FW, Simon KM. 2013. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. Journal of Geophysical Research: Solid Earth 118(6):3126-3141. Neal RM. 2003. Slice sampling. Annals of statistics 31(3):705-741. Rignot E, Velicogna I, Van den Broeke MR, Monaghan A, Lenaerts JTM. 2011b. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38(5):L05503. Vaughan DG, Adalgeirsdóttir G, Agosta C, Bamber JL, Barletta V, Durand G, Edwards TL, X Fettweis, Gagliardini O, Hellmer HH, Holland PB, Howard T, Payne AJ, Ridley J, Smeets P, G Spada, Timmermann R, Trouvilliez A, van den Broeke M. 2013. From Ice To High Seas: Sea-level Rise and European Coastlines, Ford EAK (ed.).: The ice2sea Consortium, Cambridge, United Kingdom. Gonthier G. 2008. Formal proof-the four-color theorem. Notices of the AMS 55(11):1382-1393. Rue H, Martino S. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society B 71: 319-392. Ng F, Conway H. 2004. Fast-flow signature in the stagnated Kamb Ice Stream, West Antarctica. Geology 32(6):481-484. Velicogna I, Wahr J. 2013. Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophysical Research Letters 12: 3055-3063. McMillan M, Shepherd A, Sundal A, Briggs K, Muir A, Ridout A, Hogg A, Wingham D. 2014. Increased ice losses from Antarctica detected by CryoSat-2. Geophysical Research Letters 41(11):3899-3905. Rasmussen CE, Williams CKI. 2006. Gaussian Processes for Machine Learning. MIT Press: Cambridge, MA. Stroud JR, Müller P, Sanso B. 2001. Dynamic models for spatiotemporal data. Journal of the Royal Statistical Society B 63: 673-689. Choi J, Reich BJ, Fuentes M, Davis JM. 2009. Multivariate spatial-temporal modeling and prediction of speciated fine particles. Journal of Statistical Theory and Practice 3(2):407-418. Cressie N, Shi T, Kang EL. 2010. Fixed rank filtering for spatio-temporal data. Journal of Computational and Graphical Statistics 19(3):724-745. Kernighan BW, Lin S. 1970. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal 49(2):291-307. Berliner LM, Cressie N, Jezek K, Kim Y, Lam CQ, van der Veen CJ. 2008. Equilibrium dynamics of ice streams: a Bayesian statistical analysis. Statistical Methods and Applications 17(2):145-165. Wikle CK, Milliff RF, Nychka D, Berliner LM. 2001. Spatiotemporal hierarchical Bayesian modeling tropical ocean surface winds. Journal of the American Statistical Association 96(454):382-397. Katzfuss M, Cressie N. 2011. Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets. Journal of Time Series Analysis 32(4):430-446. 2010; 19 2014; 25 2013; 7 2008; 1 2011; 16 2014; 60 2004; 32 1997; 102 2002; 48 2013; 59 2009; 51 2011a; 333 2000; 13 2013; 12 2013; 118 2011; 73 2009; 288 2000; 287 2014; 8 2012; 23 2012; 338 2006; 364 2001; 96 2007; 19 2011 2008; 17 2002; 2 2011; 32 2006 1994 2005 2008; 55 2012; 39 2002 2014; 41 2011; 5 2003; 31 1994; 40 2001; 63 2012; 109 2011; 106 2011b; 38 2009; 71 2007; 230 2013 2009; 3 2005; 17 2012; 117 1970; 49 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 Rasmussen CE (e_1_2_7_36_1) 2006 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Cressie N (e_1_2_7_9_1) 2011 Vaughan DG (e_1_2_7_50_1) 2013 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_38_1 Gonthier G (e_1_2_7_13_1) 2008; 55 20407598 - J Stat Theory Pract. 2009 Jun 1;3(2):407-418 21494410 - J Stat Softw. 2007 Apr;19(4):1-24 10678828 - Science. 2000 Feb 18;287(5456):1248-50 22802667 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12414-9 25505370 - Environmetrics. 2014 Jun;25(4):245-264 23197528 - Science. 2012 Nov 30;338(6111):1183-9 16782604 - Philos Trans A Math Phys Eng Sci. 2006 Jul 15;364(1844):1637-55 21852457 - Science. 2011 Sep 9;333(6048):1427-30 |
| References_xml | – reference: Finley AO, Banerjee S, Carlin BP. 2007. spBayes: an R package for univariate and multivariate hierarchical point-referenced spatial models. Journal of Statistical Software 19(4):1-24. – reference: Cressie N, Wikle CK. 2011. Statistics for Spatio-Temporal Data. Wiley: Hoboken, NJ. – reference: van Wessem JM, Reijmer CH, Morlighem M, Mouginot J, Rignot E, Medley B, Joughin I, B Wouters, Depoorter MA, Bamber JL, Lenaerts JTM, van de Berg WJ, van den Broeke MR, E van Meijgaard. 2014. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology 60(222):761-770. – reference: Neal RM. 2003. Slice sampling. Annals of statistics 31(3):705-741. – reference: Cressie N, Shi T, Kang EL. 2010. Fixed rank filtering for spatio-temporal data. Journal of Computational and Graphical Statistics 19(3):724-745. – reference: Ivins ER, James TS, Wahr J, Schrama O, Ernst J, Landerer FW, Simon KM. 2013. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. Journal of Geophysical Research: Solid Earth 118(6):3126-3141. – reference: Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7:375-393. – reference: Katzfuss M, Cressie N. 2011. Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets. Journal of Time Series Analysis 32(4):430-446. – reference: Berliner LM, Wikle CK, Cressie N. 2000. Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. Journal of Climate 13(22):3953-3968. – reference: Velicogna I, Wahr J. 2013. Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophysical Research Letters 12: 3055-3063. – reference: Rue H, Held L. 2005. Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC Press: Boca Raton, FL. – reference: Ng F, Conway H. 2004. Fast-flow signature in the stagnated Kamb Ice Stream, West Antarctica. Geology 32(6):481-484. – reference: Vaughan DG, Adalgeirsdóttir G, Agosta C, Bamber JL, Barletta V, Durand G, Edwards TL, X Fettweis, Gagliardini O, Hellmer HH, Holland PB, Howard T, Payne AJ, Ridley J, Smeets P, G Spada, Timmermann R, Trouvilliez A, van den Broeke M. 2013. From Ice To High Seas: Sea-level Rise and European Coastlines, Ford EAK (ed.).: The ice2sea Consortium, Cambridge, United Kingdom. – reference: Rignot E, Velicogna I, Van den Broeke MR, Monaghan A, Lenaerts JTM. 2011b. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38(5):L05503. – reference: Riva REM, Gunter BC, Urban TJ, Vermeersen BLA, Lindenbergh RC, Helsen MM, Bamber JL, van de Wal RSW, van den Broeke MR, Schutz BE. 2009. Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth and Planetary Science Letters 288: 516-523. – reference: Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, SRM Ligtenberg, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, JP Nicolas, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Srensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, DG Vaughan, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ. 2012. A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183-1189. – reference: Gonthier G. 2008. Formal proof-the four-color theorem. Notices of the AMS 55(11):1382-1393. – reference: Kang EL, Cressie N. 2011. Bayesian inference for the spatial random effects model. Journal of the American Statistical Association 106(495):972-983. – reference: Storvik G, Frigessi A, Hirst D. 2002. Stationary space-time Gaussian fields and their time autoregressive representation. Statistical Modelling 2: 139-161. – reference: Isaksson E, Karlen W. 1994. Spatial and temporal patterns in snow accumulation, Western Dronning Maud Land, Antarctica. Journal of Glaciology 40(135):399-409. – reference: Lindgren F, Rue H, Lindström J. 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society B 73(4):423-498. – reference: Calder CA, Berrett C, Shi T, Xiao N, Munroe DK. 2011. Modeling space-time dynamics of aerosols using satellite data and atmospheric transport model output. Journal of Agricultural, Biological, and Environmental Statistics 16(4):495-512. – reference: Katzfuss M, Cressie N. 2012. Bayesian hierarchical spatio-temporal smoothing for very large datasets. Environmetrics 23(1):94-107. – reference: Ivins ER, James TS. 2005. Antarctic glacial isostatic adjustment: a new assessment. Antarctic Science 17(04):541-553. – reference: Rasmussen CE, Williams CKI. 2006. Gaussian Processes for Machine Learning. MIT Press: Cambridge, MA. – reference: Hamilton JD. 1994. Time Series Analysis. Princeton University Press: Princeton. – reference: Choi J, Reich BJ, Fuentes M, Davis JM. 2009. Multivariate spatial-temporal modeling and prediction of speciated fine particles. Journal of Statistical Theory and Practice 3(2):407-418. – reference: Luthcke SB, Sabaka TJ, Loomis BD, Arendt A, McCarthy JJ, Camp J. 2013. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology 59(216):613-631. – reference: Rignot E, Bamber JL, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience 1(2):106-110. – reference: Rue H, Martino S. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society B 71: 319-392. – reference: Rignot E. 2006. Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1844):1637-1655. – reference: Wikle CK, Milliff RF, Nychka D, Berliner LM. 2001. Spatiotemporal hierarchical Bayesian modeling tropical ocean surface winds. Journal of the American Statistical Association 96(454):382-397. – reference: Rignot E, Mouginot J, Scheuchl B. 2011a. Ice flow of the Antarctic ice sheet. Science 333(6048):1427-1430. – reference: Zammit-Mangion A, Rougier JC, Bamber JL, Schoen NW. 2014. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework. Environmetrics 25: 245-264. – reference: Pattyn Frank, Derauw Dominique. 2002. Ice-dynamic conditions of Shirase Glacier, Antarctica, inferred from ERS SAR interferometry. Journal of Glaciology 48(163):559-565. – reference: Lenaerts JTM, Van den Broeke MR, van de Berg WJ, van Meijgaard E, Munneke PK. 2012. A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling. Geophysical Research Letters 39(4):L04501. – reference: Bamber JL, Vaughan DG, Joughin I. 2000. Widespread complex flow in the interior of the Antarctic ice sheet. Science 287(5456):1248-1250. – reference: Hurkmans RTWL, Bamber JL, Sørensen LS, Joughin IR, Davis CH, Krabill WB. 2012. Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbræ, Greenland. Journal of Geophysical Research 117(F3): F03001. – reference: McMillan M, Shepherd A, Sundal A, Briggs K, Muir A, Ridout A, Hogg A, Wingham D. 2014. Increased ice losses from Antarctica detected by CryoSat-2. Geophysical Research Letters 41(11):3899-3905. – reference: Richardson C, Aarholt E, Hamran SE, Holmlund Per, Isaksson Elisabeth. 1997. Spatial distribution of snow in Western Dronning Maud Land, East Antarctica, mapped by a ground-based snow radar. Journal of Geophysical Research: Solid Earth 102(B9): 20343-20353. – reference: Bastos LS, O'Hagan A. 2009. Diagnostics for Gaussian process emulators. Technometrics 51(4):425-438. – reference: Berliner LM, Cressie N, Jezek K, Kim Y, Lam CQ, van der Veen CJ. 2008. Equilibrium dynamics of ice streams: a Bayesian statistical analysis. Statistical Methods and Applications 17(2):145-165. – reference: Wikle CK, Berliner LM. 2007. A Bayesian tutorial for data assimilation. Physica D: Nonlinear Phenomena 230(1-2): 1-16. – reference: Stroud JR, Müller P, Sanso B. 2001. Dynamic models for spatiotemporal data. Journal of the Royal Statistical Society B 63: 673-689. – reference: Scott JBT, Gudmundsson GH, Smith AM, Bingham RG, Pritchard HD, Vaughan DG. 2009. Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress. The Cryosphere 3: 125-131. – reference: Molloy M, Reed B. 2002. Graph Colouring and the Probabilistic Method, Algorithms and Combinatorics, vol. 23. Springer: Berlin. – reference: Zammit-Mangion A, Dewar M, Kadirkamanathan V, Sanguinetti G. 2012. Point process modelling of the Afghan War Diary. Proceedings of the National Academy of Sciences 109(31):12414-12419. – reference: Kernighan BW, Lin S. 1970. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal 49(2):291-307. – reference: Ligtenberg SRM, Helsen MM, van den Broeke MR. 2011. An improved semi-empirical model for the densification of Antarctic firn. The Cryosphere 5(4):809-819. – reference: Gunter BC, Didova O, Riva REM, Ligtenberg SRM, Lenaerts JTM, King MA, van den Broeke MR, Urban T. 2014. Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. The Cryosphere 8:743-760. – year: 2011 – volume: 364 start-page: 1637 issue: 1844 year: 2006 end-page: 1655 article-title: Changes in ice dynamics and mass balance of the Antarctic ice sheet publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 51 start-page: 425 issue: 4 year: 2009 end-page: 438 article-title: Diagnostics for Gaussian process emulators publication-title: Technometrics – volume: 49 start-page: 291 issue: 2 year: 1970 end-page: 307 article-title: An efficient heuristic procedure for partitioning graphs publication-title: The Bell System Technical Journal – year: 2005 – volume: 17 start-page: 145 issue: 2 year: 2008 end-page: 165 article-title: Equilibrium dynamics of ice streams: a Bayesian statistical analysis publication-title: Statistical Methods and Applications – volume: 60 start-page: 761 issue: 222 year: 2014 end-page: 770 article-title: Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model publication-title: Journal of Glaciology – volume: 19 start-page: 1 issue: 4 year: 2007 end-page: 24 article-title: spBayes: an R package for univariate and multivariate hierarchical point‐referenced spatial models publication-title: Journal of Statistical Software – year: 2011 article-title: SPARSEINV: a MATLAB toolbox for computing the sparse inverse subset using the Takahashi equations – volume: 25 start-page: 245 year: 2014 end-page: 264 article-title: Resolving the Antarctic contribution to sea‐level rise: a hierarchical modelling framework publication-title: Environmetrics – volume: 13 start-page: 3953 issue: 22 year: 2000 end-page: 3968 article-title: Long‐lead prediction of Pacific SSTs via Bayesian dynamic modeling publication-title: Journal of Climate – volume: 19 start-page: 724 issue: 3 year: 2010 end-page: 745 article-title: Fixed rank filtering for spatio‐temporal data publication-title: Journal of Computational and Graphical Statistics – year: 1994 – volume: 48 start-page: 559 issue: 163 year: 2002 end-page: 565 article-title: Ice‐dynamic conditions of Shirase Glacier, Antarctica, inferred from ERS SAR interferometry publication-title: Journal of Glaciology – volume: 71 start-page: 319 year: 2009 end-page: 392 article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations publication-title: Journal of the Royal Statistical Society B – volume: 118 start-page: 3126 issue: 6 year: 2013 end-page: 3141 article-title: Antarctic contribution to sea level rise observed by GRACE with improved GIA correction publication-title: Journal of Geophysical Research: Solid Earth – volume: 288 start-page: 516 year: 2009 end-page: 523 article-title: Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data publication-title: Earth and Planetary Science Letters – volume: 16 start-page: 495 issue: 4 year: 2011 end-page: 512 article-title: Modeling space–time dynamics of aerosols using satellite data and atmospheric transport model output publication-title: Journal of Agricultural, Biological, and Environmental Statistics – volume: 8 start-page: 743 year: 2014 end-page: 760 article-title: Empirical estimation of present‐day Antarctic glacial isostatic adjustment and ice mass change publication-title: The Cryosphere – volume: 12 start-page: 3055 year: 2013 end-page: 3063 article-title: Time‐variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data publication-title: Geophysical Research Letters – volume: 73 start-page: 423 issue: 4 year: 2011 end-page: 498 article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach publication-title: Journal of the Royal Statistical Society B – volume: 230 start-page: 1 issue: 1–2 year: 2007 end-page: 16 article-title: A Bayesian tutorial for data assimilation publication-title: Physica D: Nonlinear Phenomena – volume: 287 start-page: 1248 issue: 5456 year: 2000 end-page: 1250 article-title: Widespread complex flow in the interior of the Antarctic ice sheet publication-title: Science – volume: 32 start-page: 481 issue: 6 year: 2004 end-page: 484 article-title: Fast‐flow signature in the stagnated Kamb Ice Stream, West Antarctica publication-title: Geology – volume: 106 start-page: 972 issue: 495 year: 2011 end-page: 983 article-title: Bayesian inference for the spatial random effects model publication-title: Journal of the American Statistical Association – volume: 41 start-page: 3899 issue: 11 year: 2014 end-page: 3905 article-title: Increased ice losses from Antarctica detected by CryoSat‐2 publication-title: Geophysical Research Letters – volume: 109 start-page: 12414 issue: 31 year: 2012 end-page: 12419 article-title: Point process modelling of the Afghan War Diary publication-title: Proceedings of the National Academy of Sciences – volume: 31 start-page: 705 issue: 3 year: 2003 end-page: 741 article-title: Slice sampling publication-title: Annals of statistics – volume: 39 start-page: L04501 issue: 4 year: 2012 article-title: A new, high‐resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling publication-title: Geophysical Research Letters – start-page: 324 year: 2011 end-page: 332 – volume: 40 start-page: 399 issue: 135 year: 1994 end-page: 409 article-title: Spatial and temporal patterns in snow accumulation, Western Dronning Maud Land, Antarctica publication-title: Journal of Glaciology – volume: 117 start-page: F03001 issue: F3 year: 2012 article-title: Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbræ, Greenland publication-title: Journal of Geophysical Research – volume: 23 start-page: 94 issue: 1 year: 2012 end-page: 107 article-title: Bayesian hierarchical spatio‐temporal smoothing for very large datasets publication-title: Environmetrics – volume: 5 start-page: 809 issue: 4 year: 2011 end-page: 819 article-title: An improved semi‐empirical model for the densification of Antarctic firn publication-title: The Cryosphere – article-title: MODIS mosaic of Antarctica (MOA) image map – volume: 7 start-page: 375 year: 2013 end-page: 393 article-title: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica publication-title: The Cryosphere – volume: 102 start-page: 20343 issue: B9 year: 1997 end-page: 20353 article-title: Spatial distribution of snow in Western Dronning Maud Land, East Antarctica, mapped by a ground‐based snow radar publication-title: Journal of Geophysical Research: Solid Earth – volume: 96 start-page: 382 issue: 454 year: 2001 end-page: 397 article-title: Spatiotemporal hierarchical Bayesian modeling tropical ocean surface winds publication-title: Journal of the American Statistical Association – volume: 38 start-page: L05503 issue: 5 year: 2011b article-title: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise publication-title: Geophysical Research Letters – volume: 59 start-page: 613 issue: 216 year: 2013 end-page: 631 article-title: Antarctica, Greenland and Gulf of Alaska land‐ice evolution from an iterated GRACE global mascon solution publication-title: Journal of Glaciology – year: 2002 – year: 2006 – volume: 3 start-page: 125 year: 2009 end-page: 131 article-title: Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress publication-title: The Cryosphere – volume: 17 start-page: 541 issue: 04 year: 2005 end-page: 553 article-title: Antarctic glacial isostatic adjustment: a new assessment publication-title: Antarctic Science – volume: 63 start-page: 673 year: 2001 end-page: 689 article-title: Dynamic models for spatiotemporal data publication-title: Journal of the Royal Statistical Society B – article-title: Graph bisection in R – volume: 333 start-page: 1427 issue: 6048 year: 2011a end-page: 1430 article-title: Ice flow of the Antarctic ice sheet publication-title: Science – volume: 32 start-page: 430 issue: 4 year: 2011 end-page: 446 article-title: Spatio‐temporal smoothing and EM estimation for massive remote‐sensing data sets publication-title: Journal of Time Series Analysis – volume: 55 start-page: 1382 issue: 11 year: 2008 end-page: 1393 article-title: Formal proof–the four‐color theorem publication-title: Notices of the AMS – volume: 2 start-page: 139 year: 2002 end-page: 161 article-title: Stationary space‐time Gaussian fields and their time autoregressive representation publication-title: Statistical Modelling – volume: 338 start-page: 1183 issue: 6111 year: 2012 end-page: 1189 article-title: A reconciled estimate of ice‐sheet mass balance publication-title: Science – volume: 3 start-page: 407 issue: 2 year: 2009 end-page: 418 article-title: Multivariate spatial‐temporal modeling and prediction of speciated fine particles publication-title: Journal of Statistical Theory and Practice – volume: 1 start-page: 106 issue: 2 year: 2008 end-page: 110 article-title: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling publication-title: Nature Geoscience – year: 2013 – ident: e_1_2_7_22_1 doi: 10.1198/jasa.2011.tm09680 – ident: e_1_2_7_43_1 doi: 10.1201/9780203492024 – ident: e_1_2_7_16_1 doi: 10.1515/9780691218632 – ident: e_1_2_7_27_1 doi: 10.1029/2011GL050713 – ident: e_1_2_7_30_1 doi: 10.3189/2013JoG12J147 – ident: e_1_2_7_32_1 doi: 10.1007/978-3-642-04016-0 – ident: e_1_2_7_3_1 doi: 10.1198/TECH.2009.08019 – ident: e_1_2_7_41_1 doi: 10.1029/2011GL046583 – ident: e_1_2_7_6_1 doi: 10.1007/s13253-011-0068-4 – ident: e_1_2_7_19_1 doi: 10.1017/S0022143000007486 – ident: e_1_2_7_38_1 doi: 10.1038/ngeo102 – ident: e_1_2_7_12_1 doi: 10.5194/tc-7-375-2013 – ident: e_1_2_7_17_1 – ident: e_1_2_7_34_1 doi: 10.1130/G20317.1 – ident: e_1_2_7_28_1 doi: 10.5194/tc-5-809-2011 – ident: e_1_2_7_10_1 – ident: e_1_2_7_2_1 doi: 10.1126/science.287.5456.1248 – ident: e_1_2_7_42_1 doi: 10.1016/j.epsl.2009.10.013 – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: e_1_2_7_36_1 – ident: e_1_2_7_29_1 doi: 10.1111/j.1467-9868.2011.00777.x – ident: e_1_2_7_39_1 doi: 10.1126/science.1208336 – ident: e_1_2_7_46_1 doi: 10.1126/science.1228102 – ident: e_1_2_7_44_1 doi: 10.1111/j.1467-9868.2008.00700.x – ident: e_1_2_7_53_1 doi: 10.1198/016214501753168109 – ident: e_1_2_7_55_1 doi: 10.1073/pnas.1203177109 – ident: e_1_2_7_20_1 doi: 10.1017/S0954102005002968 – ident: e_1_2_7_45_1 doi: 10.5194/tc-3-125-2009 – ident: e_1_2_7_8_1 doi: 10.1198/jcgs.2010.09051 – ident: e_1_2_7_47_1 doi: 10.1191/1471082x02st029oa – ident: e_1_2_7_23_1 doi: 10.1111/j.1467-9892.2011.00732.x – volume: 55 start-page: 1382 issue: 11 year: 2008 ident: e_1_2_7_13_1 article-title: Formal proof–the four‐color theorem publication-title: Notices of the AMS – ident: e_1_2_7_37_1 doi: 10.1029/97JB01441 – ident: e_1_2_7_48_1 doi: 10.1111/1467-9868.00305 – ident: e_1_2_7_54_1 doi: 10.1002/env.2247 – ident: e_1_2_7_14_1 – volume-title: Statistics for Spatio‐Temporal Data year: 2011 ident: e_1_2_7_9_1 – ident: e_1_2_7_40_1 doi: 10.1098/rsta.2006.1793 – ident: e_1_2_7_52_1 doi: 10.1016/j.physd.2006.09.017 – ident: e_1_2_7_15_1 doi: 10.5194/tc-8-743-2014 – volume-title: From Ice To High Seas: Sea‐level Rise and European Coastlines year: 2013 ident: e_1_2_7_50_1 – ident: e_1_2_7_4_1 doi: 10.1007/s10260-007-0077-1 – ident: e_1_2_7_33_1 doi: 10.1214/aos/1056562461 – ident: e_1_2_7_35_1 doi: 10.3189/172756502781831115 – ident: e_1_2_7_25_1 doi: 10.1002/j.1538-7305.1970.tb01770.x – ident: e_1_2_7_51_1 doi: 10.1002/grl.50527 – ident: e_1_2_7_18_1 doi: 10.1029/2011JF002072 – ident: e_1_2_7_21_1 doi: 10.1002/jgrb.50208 – ident: e_1_2_7_24_1 doi: 10.1002/env.1147 – ident: e_1_2_7_31_1 doi: 10.1002/2014GL060111 – ident: e_1_2_7_11_1 doi: 10.18637/jss.v019.i04 – ident: e_1_2_7_26_1 – ident: e_1_2_7_5_1 doi: 10.1175/1520-0442(2001)013<3953:LLPOPS>2.0.CO;2 – ident: e_1_2_7_7_1 doi: 10.1080/15598608.2009.10411933 – ident: e_1_2_7_49_1 doi: 10.3189/2014JoG14J051 – reference: 22802667 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12414-9 – reference: 25505370 - Environmetrics. 2014 Jun;25(4):245-264 – reference: 16782604 - Philos Trans A Math Phys Eng Sci. 2006 Jul 15;364(1844):1637-55 – reference: 10678828 - Science. 2000 Feb 18;287(5456):1248-50 – reference: 21494410 - J Stat Softw. 2007 Apr;19(4):1-24 – reference: 23197528 - Science. 2012 Nov 30;338(6111):1183-9 – reference: 21852457 - Science. 2011 Sep 9;333(6048):1427-30 – reference: 20407598 - J Stat Theory Pract. 2009 Jun 1;3(2):407-418 |
| SSID | ssj0009657 |
| Score | 2.2202237 |
| Snippet | Antarctica is the world's largest fresh‐water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea‐level rise (SLR)... Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea-level rise (SLR)... Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60m. An ice sheet contributes to sea-level rise (SLR)... |
| SourceID | pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 159 |
| SubjectTerms | Antarctica Assessments Coastal Geophysics Ice sheets Markov models Mathematical models Monte Carlo methods Multivariate modelling parallel MCMC Sampling sea-level rise spatio-temporal statistics stochastic partial differential equations |
| Title | Multivariate spatio-temporal modelling for assessing Antarctica's present-day contribution to sea-level rise |
| URI | https://api.istex.fr/ark:/67375/WNG-MQP6Q3CX-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fenv.2323 https://www.ncbi.nlm.nih.gov/pubmed/25937792 https://www.proquest.com/docview/1676352383 https://www.proquest.com/docview/1685778180 https://www.proquest.com/docview/1826621820 https://pubmed.ncbi.nlm.nih.gov/PMC4413369 |
| Volume | 26 |
| WOSCitedRecordID | wos000352574900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-095X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009657 issn: 1180-4009 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagy4EL78LyqIyE6Ck0iR0_jlXZhUNZbRGFvUVjxxEVq2yVbFdw4yfwG_kljJ1slhWlQuKSKPIksp0Zz-dk5htCXiSyRLeRmcg5HkfcaRdpBiyKAUrHE1NwE3hmj-VkomYzPe2iKn0uTMsP0X9w85YR1mtv4GCagw1pqKtWrxAOsOtkkCRMeo1O-XRDuCuytrCKwi7g5Zp4Nk4P1nduuaKBn9Wvl-HMP8Mlf4exwQ-Nb__PCO6QWx36pIetutwl11x1j-yONslu2NhZe3Of1CE7d4W7aQSktAmx1z-__-jYrOY0VNHx6ewUkS-F8PvYXx3ic2qfewX7DT1v85vwvgK-0RAZ35XYossFRUPDlrmPXKK43LgH5HQ8-nD0NupqNEQgcHWIdClSw5RVhrE0LrWWVkNsuEkMd6ktQIIWyma2RKTCUzAIEJ2JbaIKLjz1zi7ZqRaVe0RoKp0CKBBAg0UvabUruU05KEi4NQKGZH_9unLbEZj7OhrzvKVeTtHQV7mf0CF53kuet6Qdl8i8DG-8F4D6iw9yk1n-afImf3cyFSfsaJYn-LC1SuRoev5_ClRucdHkifBsfoh52FUyKpPSJ9RfIYNbPBGY9IfkYatqfa9wd-opIdMhkVtK2At4evDtlursc6AJR6DLmNA40KCEf52JfDT56M-P_1XwCbmJsDFrwz6fkp1lfeGekRt2tTxr6r1ghniUM7VHBq_fj0-PfwEXz0AT |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXSS48C5dnkZC9BSah-PE4lSVXYrYrlrUwt4s23FE1VW2SrYruPET-I38EsbOY1lRKiROkeWJlTgzns_OzDcAL4MkR7cRK88Y6nvUcOPxSEaeL2VuaKAyqhzP7DiZTNLplB9uwJs2F6bmh-gO3KxluPXaGrg9kN5ZsYaaYvka8UB0DfoUtSjuQf_tx9HJeMW5y-K6tkqKT4HNlnvWD3fae9e8Ud9O7NfLoOafEZO_I1nnika3_-sl7sCtBoGS3Vpl7sKGKe7B5nCV8IadjcVX96F0GbpL3FEjKCWVi7_--f1Hw2g1I66Sjk1pJ4h-iXS_kG1rF8cpbf6V3K7IeZ3jhPdl8htx0fFNmS2ymBM0NuyZ2eglgkuOeQAno-Hx3r7X1GnwJMMVwuM5C1WU6lRFUejnnCeaS19RFShqQp3JRHKW6ljniFZoKBWCRKN8HaQZZZZ-ZxN6xbwwW0DCxKRSZgiipUZPqbnJqQ6pTGVAtWJyANvt9xK6ITG3tTRmoqZfDtHYl8JO6ABedJLnNXHHJTKv3CfvBGR5ZgPdklh8nrwTB0eH7Cjam4oAB2t1QqD52X8qsjDzi0oEzDL6Ie6JrpJJ4ySxSfVXyOA2jzk2_QE8rHWteyrcoVpayHAAyZoWdgKWIny9pzj94qjCEexGEeP4ok4L_zoTYjj5ZK-P_lXwOdzYPz4Yi_H7yYfHcBNhZFyHgT6B3qK8ME_hul4uTqvyWWOVvwAKNEMI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKixAX3oXlaSRET2mT2HFicarKLiDKaivx2Js1dhxRscquku0KbvwEfiO_hLHzWFaUColTFHli2c7M-HMy8w0hz6K0wG0j0YG1PAy4lTaQDFgQAhSWRzrn2vPMHqfjcTadyskWedHlwjT8EP0HN2cZ3l87A7eLvDhYs4bacrWPeIBdIjs8QRfraJ35ZM24K5KmskqGY8Dbjnk2jA-6Jzf2oh23rF_PA5p_xkv-jmP9RjS6_l9TuEGutfiTHjYKc5Ns2fIW2R2u092wsbX3-japfH7uCs_TCElp7aOvf37_0fJZzaivo-MS2iliXwr-B7K7O8R-Kpd9BXs1XTQZTvhcDt-oj41vi2zR5ZyiqWHLzMUuUXQ49g75MBq-P3odtFUaAhDoHwJZiFizzGSasTgspEyNhFBzHWluY5NDClJkJjEFYhUeg0aIaHVooiznwpHv7JLtcl7ae4TGqc0AcoTQYHCfNNIW3MQcMoi40QIGZK97X8q0FOauksZMNeTLMZr6SrkFHZCnveSioe04R-a5f-W9AFRfXJhbmqhP41fq3clEnLCjqYqws04nFBqf-6MCpZ2f1SoSjs8PUQ-7SCZL0tSl1F8gg4c84bn0B-Ruo2v9qPB86kgh4wFJN7SwF3AE4Zst5elnTxSOUJcxIXGiXgv_uhJqOP7orvf_VfAJuTJ5OVLHb8ZvH5CriCGTJgb0IdleVmf2EblsVsvTunrsTfIXndNA8Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+spatio-temporal+modelling+for+assessing+Antarctica%27s+present-day+contribution+to+sea-level+rise&rft.jtitle=Environmetrics+%28London%2C+Ont.%29&rft.au=Zammit-Mangion%2C+Andrew&rft.au=Rougier%2C+Jonathan&rft.au=Sch%C3%B6n%2C+Nana&rft.au=Lindgren%2C+Finn&rft.date=2015-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1180-4009&rft.eissn=1099-095X&rft.volume=26&rft.issue=3&rft.spage=159&rft.epage=177&rft_id=info:doi/10.1002%2Fenv.2323&rft_id=info%3Apmid%2F25937792&rft.externalDocID=PMC4413369 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1180-4009&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1180-4009&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1180-4009&client=summon |