Multivariate spatio-temporal modelling for assessing Antarctica's present-day contribution to sea-level rise

Antarctica is the world's largest fresh‐water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea‐level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice s...

Full description

Saved in:
Bibliographic Details
Published in:Environmetrics (London, Ont.) Vol. 26; no. 3; pp. 159 - 177
Main Authors: Zammit-Mangion, Andrew, Rougier, Jonathan, Schön, Nana, Lindgren, Finn, Bamber, Jonathan
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01.05.2015
Subjects:
ISSN:1180-4009, 1099-095X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Antarctica is the world's largest fresh‐water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea‐level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present‐day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as in situ data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean.In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio‐temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio‐temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high‐performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which in situ data are hard to obtain. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd.
AbstractList Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea-level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present-day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean. In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio-temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio-temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high-performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which data are hard to obtain. © 2015 The Authors. published by John Wiley & Sons Ltd.
Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea-level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present-day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as in situ data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean. In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio-temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio-temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high-performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which in situ data are hard to obtain. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd.
Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60m. An ice sheet contributes to sea-level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present-day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as in situ data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean. In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio-temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio-temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high-performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which in situ data are hard to obtain. copyright 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd.
Antarctica is the world's largest fresh‐water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea‐level rise (SLR) when its rate of ice discharge and/or surface melting exceeds accumulation through snowfall. Constraining the contribution of the ice sheets to present‐day SLR is vital both for coastal development and planning, and climate projections. Information on various ice sheet processes is available from several remote sensing data sets, as well as in situ data such as global positioning system data. These data have differing coverage, spatial support, temporal sampling and sensing characteristics, and thus, it is advantageous to combine them all in a single framework for estimation of the SLR contribution and the assessment of processes controlling mass exchange with the ocean. In this paper, we predict the rate of height change due to salient geophysical processes in Antarctica and use these to provide estimates of SLR contribution with associated uncertainties. We employ a multivariate spatio‐temporal model, approximated as a Gaussian Markov random field, to take advantage of differing spatio‐temporal properties of the processes to separate the causes of the observed change. The process parameters are estimated from geophysical models, while the remaining parameters are estimated using a Markov chain Monte Carlo scheme, designed to operate in a high‐performance computing environment across multiple nodes. We validate our methods against a separate data set and compare the results to those from studies that invariably employ numerical model outputs directly. We conclude that it is possible, and insightful, to assess Antarctica's contribution without explicit use of numerical models. Further, the results obtained here can be used to test the geophysical numerical models for which in situ data are hard to obtain. © 2015 The Authors. Environmetrics published by John Wiley & Sons Ltd.
Author Lindgren, Finn
Bamber, Jonathan
Rougier, Jonathan
Zammit-Mangion, Andrew
Schön, Nana
Author_xml – sequence: 1
  givenname: Andrew
  surname: Zammit-Mangion
  fullname: Zammit-Mangion, Andrew
  email: A.ZammitMangion@bristol.ac.uk
  organization: School of Geographical Sciences, University of Bristol, BS8 1SS, Bristol, U.K
– sequence: 2
  givenname: Jonathan
  surname: Rougier
  fullname: Rougier, Jonathan
  organization: Department of Mathematics, University of Bristol, BS8 1TW, Bristol, U.K
– sequence: 3
  givenname: Nana
  surname: Schön
  fullname: Schön, Nana
  organization: School of Geographical Sciences, University of Bristol, BS8 1SS, Bristol, U.K
– sequence: 4
  givenname: Finn
  surname: Lindgren
  fullname: Lindgren, Finn
  organization: Department of Mathematical Sciences, University of Bath, BA2 7AQ, Bath, U.K
– sequence: 5
  givenname: Jonathan
  surname: Bamber
  fullname: Bamber, Jonathan
  organization: School of Geographical Sciences, University of Bristol, BS8 1SS, Bristol, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25937792$$D View this record in MEDLINE/PubMed
BookMark eNqNkttu1DAQhi1URA8g8QQod3CTxYfEjm-QqlVpkdpCJQ69sxxnUgxZO7WdhX37OmpZKALBjT0jf_Nrxv_sox3nHSD0lOAFwZi-BLdeUEbZA7RHsJQllvXlTo5Jg8sKY7mL9mP8gnPEa_EI7dJaMiEk3UPD2TQku9bB6gRFHHWyvkywGn3QQ7HyHQyDdVdF70OhY4QY5-zQJR1MskY_j8UYIIJLZac3hfEuBdtOWcUVyRcRdDnAGoYi2AiP0cNeDxGe3N0H6MPro_fLk_L07fGb5eFpqTkWrJQ9py1rTNMyRnEvpTBS47ZqSVsBNZ0WWvLG1KavGKmobitcQ4sNabqKU9qwA_TqVnec2hV0JneXp1FjsCsdNsprq-6_OPtZXfm1qirCGJdZ4MWdQPDXE8SkVjaa_BXagZ-iIg3lnOYT_xvlTS1Ek534D1RwVlPWsIw--3WCbes_jPupZYKPMUC_RQhW806ovBNq3omMLn5DjU2zz_PsdvhTQXlb8M0OsPmrsDo6_3iftzHB9y2vw1fFBRO1-nR-rM4u3vELtrxUhN0A4_XYXw
CitedBy_id crossref_primary_10_1002_2015JF003550
crossref_primary_10_1002_2016GL067818
crossref_primary_10_1002_env_2649
crossref_primary_10_1016_j_csda_2018_02_001
crossref_primary_10_1029_2020JF005966
crossref_primary_10_1146_annurev_statistics_040120_020733
crossref_primary_10_1080_10618600_2023_2191667
crossref_primary_10_1002_2017GL072937
crossref_primary_10_1016_j_spasta_2020_100411
crossref_primary_10_1080_01621459_2021_2013241
crossref_primary_10_1093_biomet_asw045
crossref_primary_10_1111_sjos_12234
crossref_primary_10_1111_2041_210X_14505
crossref_primary_10_5194_tc_14_349_2020
crossref_primary_10_1002_2016JB013154
crossref_primary_10_5194_tc_16_1349_2022
crossref_primary_10_1002_2017GL073087
crossref_primary_10_3389_feart_2023_1076732
Cites_doi 10.1198/jasa.2011.tm09680
10.1201/9780203492024
10.1515/9780691218632
10.1029/2011GL050713
10.3189/2013JoG12J147
10.1007/978-3-642-04016-0
10.1198/TECH.2009.08019
10.1029/2011GL046583
10.1007/s13253-011-0068-4
10.1017/S0022143000007486
10.1038/ngeo102
10.5194/tc-7-375-2013
10.1130/G20317.1
10.5194/tc-5-809-2011
10.1126/science.287.5456.1248
10.1016/j.epsl.2009.10.013
10.1111/j.1467-9868.2011.00777.x
10.1126/science.1208336
10.1126/science.1228102
10.1111/j.1467-9868.2008.00700.x
10.1198/016214501753168109
10.1073/pnas.1203177109
10.1017/S0954102005002968
10.5194/tc-3-125-2009
10.1198/jcgs.2010.09051
10.1191/1471082x02st029oa
10.1111/j.1467-9892.2011.00732.x
10.1029/97JB01441
10.1111/1467-9868.00305
10.1002/env.2247
10.1098/rsta.2006.1793
10.1016/j.physd.2006.09.017
10.5194/tc-8-743-2014
10.1007/s10260-007-0077-1
10.1214/aos/1056562461
10.3189/172756502781831115
10.1002/j.1538-7305.1970.tb01770.x
10.1002/grl.50527
10.1029/2011JF002072
10.1002/jgrb.50208
10.1002/env.1147
10.1002/2014GL060111
10.18637/jss.v019.i04
10.1175/1520-0442(2001)013<3953:LLPOPS>2.0.CO;2
10.1080/15598608.2009.10411933
10.3189/2014JoG14J051
ContentType Journal Article
Copyright 2015 The Authors. published by John Wiley & Sons Ltd.
2015 The Authors. published by John Wiley & Sons Ltd. 2015
Copyright_xml – notice: 2015 The Authors. published by John Wiley & Sons Ltd.
– notice: 2015 The Authors. published by John Wiley & Sons Ltd. 2015
DBID BSCLL
24P
AAYXX
CITATION
NPM
7ST
7TG
7TN
C1K
F1W
H96
KL.
L.G
SOI
7SU
8FD
FR3
KR7
7U8
7X8
JXQ
5PM
DOI 10.1002/env.2323
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
PubMed
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Environmental Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
TOXLINE
MEDLINE - Academic
Toxline
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environmental Engineering Abstracts
TOXLINE
MEDLINE - Academic
DatabaseTitleList PubMed
TOXLINE
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1099-095X
EndPage 177
ExternalDocumentID PMC4413369
25937792
10_1002_env_2323
ENV2323
ark_67375_WNG_MQP6Q3CX_1
Genre article
Journal Article
GeographicLocations PS, Antarctica
GeographicLocations_xml – name: PS, Antarctica
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
ZY4
ZZTAW
~02
~IA
~WT
24P
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
WRC
WWD
AAYXX
BANNL
CITATION
O8X
NPM
7ST
7TG
7TN
C1K
F1W
H96
KL.
L.G
SOI
7SU
8FD
FR3
KR7
7U8
7X8
JXQ
5PM
ID FETCH-LOGICAL-a6073-9f62b38c8b3320f997c9a0b4b1b4e2cda7a968c5cf43142ab405eb0c18d462283
IEDL.DBID 24P
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352574900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1180-4009
IngestDate Tue Nov 04 02:02:11 EST 2025
Fri Jul 11 14:26:47 EDT 2025
Tue Oct 07 09:58:13 EDT 2025
Tue Oct 07 09:24:43 EDT 2025
Thu Apr 03 06:58:20 EDT 2025
Tue Nov 18 22:37:40 EST 2025
Sat Nov 29 02:27:46 EST 2025
Wed Jan 22 16:46:39 EST 2025
Tue Nov 11 03:31:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords spatio-temporal statistics
Multivariate modelling
parallel MCMC
sea-level rise
stochastic partial differential equations
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a6073-9f62b38c8b3320f997c9a0b4b1b4e2cda7a968c5cf43142ab405eb0c18d462283
Notes istex:566C45B5CE018C8DAFEDB18D44629EF0F51CE245
ArticleID:ENV2323
ark:/67375/WNG-MQP6Q3CX-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fenv.2323
PMID 25937792
PQID 1676352383
PQPubID 23462
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4413369
proquest_miscellaneous_1826621820
proquest_miscellaneous_1685778180
proquest_miscellaneous_1676352383
pubmed_primary_25937792
crossref_primary_10_1002_env_2323
crossref_citationtrail_10_1002_env_2323
wiley_primary_10_1002_env_2323_ENV2323
istex_primary_ark_67375_WNG_MQP6Q3CX_1
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford, UK
PublicationTitle Environmetrics (London, Ont.)
PublicationTitleAlternate Environmetrics
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Hamilton JD. 1994. Time Series Analysis. Princeton University Press: Princeton.
Rue H, Held L. 2005. Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC Press: Boca Raton, FL.
Molloy M, Reed B. 2002. Graph Colouring and the Probabilistic Method, Algorithms and Combinatorics, vol. 23. Springer: Berlin.
Calder CA, Berrett C, Shi T, Xiao N, Munroe DK. 2011. Modeling space-time dynamics of aerosols using satellite data and atmospheric transport model output. Journal of Agricultural, Biological, and Environmental Statistics 16(4):495-512.
Scott JBT, Gudmundsson GH, Smith AM, Bingham RG, Pritchard HD, Vaughan DG. 2009. Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress. The Cryosphere 3: 125-131.
Lenaerts JTM, Van den Broeke MR, van de Berg WJ, van Meijgaard E, Munneke PK. 2012. A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling. Geophysical Research Letters 39(4):L04501.
Ligtenberg SRM, Helsen MM, van den Broeke MR. 2011. An improved semi-empirical model for the densification of Antarctic firn. The Cryosphere 5(4):809-819.
Rignot E. 2006. Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1844):1637-1655.
Wikle CK, Berliner LM. 2007. A Bayesian tutorial for data assimilation. Physica D: Nonlinear Phenomena 230(1-2): 1-16.
Kang EL, Cressie N. 2011. Bayesian inference for the spatial random effects model. Journal of the American Statistical Association 106(495):972-983.
Rignot E, Mouginot J, Scheuchl B. 2011a. Ice flow of the Antarctic ice sheet. Science 333(6048):1427-1430.
Storvik G, Frigessi A, Hirst D. 2002. Stationary space-time Gaussian fields and their time autoregressive representation. Statistical Modelling 2: 139-161.
Cressie N, Wikle CK. 2011. Statistics for Spatio-Temporal Data. Wiley: Hoboken, NJ.
Luthcke SB, Sabaka TJ, Loomis BD, Arendt A, McCarthy JJ, Camp J. 2013. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology 59(216):613-631.
Lindgren F, Rue H, Lindström J. 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society B 73(4):423-498.
Berliner LM, Wikle CK, Cressie N. 2000. Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. Journal of Climate 13(22):3953-3968.
Katzfuss M, Cressie N. 2012. Bayesian hierarchical spatio-temporal smoothing for very large datasets. Environmetrics 23(1):94-107.
Isaksson E, Karlen W. 1994. Spatial and temporal patterns in snow accumulation, Western Dronning Maud Land, Antarctica. Journal of Glaciology 40(135):399-409.
Bamber JL, Vaughan DG, Joughin I. 2000. Widespread complex flow in the interior of the Antarctic ice sheet. Science 287(5456):1248-1250.
Zammit-Mangion A, Dewar M, Kadirkamanathan V, Sanguinetti G. 2012. Point process modelling of the Afghan War Diary. Proceedings of the National Academy of Sciences 109(31):12414-12419.
Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, SRM Ligtenberg, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, JP Nicolas, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Srensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, DG Vaughan, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ. 2012. A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183-1189.
Finley AO, Banerjee S, Carlin BP. 2007. spBayes: an R package for univariate and multivariate hierarchical point-referenced spatial models. Journal of Statistical Software 19(4):1-24.
Gunter BC, Didova O, Riva REM, Ligtenberg SRM, Lenaerts JTM, King MA, van den Broeke MR, Urban T. 2014. Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. The Cryosphere 8:743-760.
van Wessem JM, Reijmer CH, Morlighem M, Mouginot J, Rignot E, Medley B, Joughin I, B Wouters, Depoorter MA, Bamber JL, Lenaerts JTM, van de Berg WJ, van den Broeke MR, E van Meijgaard. 2014. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology 60(222):761-770.
Hurkmans RTWL, Bamber JL, Sørensen LS, Joughin IR, Davis CH, Krabill WB. 2012. Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbræ, Greenland. Journal of Geophysical Research 117(F3): F03001.
Pattyn Frank, Derauw Dominique. 2002. Ice-dynamic conditions of Shirase Glacier, Antarctica, inferred from ERS SAR interferometry. Journal of Glaciology 48(163):559-565.
Zammit-Mangion A, Rougier JC, Bamber JL, Schoen NW. 2014. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework. Environmetrics 25: 245-264.
Riva REM, Gunter BC, Urban TJ, Vermeersen BLA, Lindenbergh RC, Helsen MM, Bamber JL, van de Wal RSW, van den Broeke MR, Schutz BE. 2009. Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth and Planetary Science Letters 288: 516-523.
Richardson C, Aarholt E, Hamran SE, Holmlund Per, Isaksson Elisabeth. 1997. Spatial distribution of snow in Western Dronning Maud Land, East Antarctica, mapped by a ground-based snow radar. Journal of Geophysical Research: Solid Earth 102(B9): 20343-20353.
Bastos LS, O'Hagan A. 2009. Diagnostics for Gaussian process emulators. Technometrics 51(4):425-438.
Ivins ER, James TS. 2005. Antarctic glacial isostatic adjustment: a new assessment. Antarctic Science 17(04):541-553.
Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7:375-393.
Rignot E, Bamber JL, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience 1(2):106-110.
Ivins ER, James TS, Wahr J, Schrama O, Ernst J, Landerer FW, Simon KM. 2013. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. Journal of Geophysical Research: Solid Earth 118(6):3126-3141.
Neal RM. 2003. Slice sampling. Annals of statistics 31(3):705-741.
Rignot E, Velicogna I, Van den Broeke MR, Monaghan A, Lenaerts JTM. 2011b. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38(5):L05503.
Vaughan DG, Adalgeirsdóttir G, Agosta C, Bamber JL, Barletta V, Durand G, Edwards TL, X Fettweis, Gagliardini O, Hellmer HH, Holland PB, Howard T, Payne AJ, Ridley J, Smeets P, G Spada, Timmermann R, Trouvilliez A, van den Broeke M. 2013. From Ice To High Seas: Sea-level Rise and European Coastlines, Ford EAK (ed.).: The ice2sea Consortium, Cambridge, United Kingdom.
Gonthier G. 2008. Formal proof-the four-color theorem. Notices of the AMS 55(11):1382-1393.
Rue H, Martino S. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society B 71: 319-392.
Ng F, Conway H. 2004. Fast-flow signature in the stagnated Kamb Ice Stream, West Antarctica. Geology 32(6):481-484.
Velicogna I, Wahr J. 2013. Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophysical Research Letters 12: 3055-3063.
McMillan M, Shepherd A, Sundal A, Briggs K, Muir A, Ridout A, Hogg A, Wingham D. 2014. Increased ice losses from Antarctica detected by CryoSat-2. Geophysical Research Letters 41(11):3899-3905.
Rasmussen CE, Williams CKI. 2006. Gaussian Processes for Machine Learning. MIT Press: Cambridge, MA.
Stroud JR, Müller P, Sanso B. 2001. Dynamic models for spatiotemporal data. Journal of the Royal Statistical Society B 63: 673-689.
Choi J, Reich BJ, Fuentes M, Davis JM. 2009. Multivariate spatial-temporal modeling and prediction of speciated fine particles. Journal of Statistical Theory and Practice 3(2):407-418.
Cressie N, Shi T, Kang EL. 2010. Fixed rank filtering for spatio-temporal data. Journal of Computational and Graphical Statistics 19(3):724-745.
Kernighan BW, Lin S. 1970. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal 49(2):291-307.
Berliner LM, Cressie N, Jezek K, Kim Y, Lam CQ, van der Veen CJ. 2008. Equilibrium dynamics of ice streams: a Bayesian statistical analysis. Statistical Methods and Applications 17(2):145-165.
Wikle CK, Milliff RF, Nychka D, Berliner LM. 2001. Spatiotemporal hierarchical Bayesian modeling tropical ocean surface winds. Journal of the American Statistical Association 96(454):382-397.
Katzfuss M, Cressie N. 2011. Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets. Journal of Time Series Analysis 32(4):430-446.
2010; 19
2014; 25
2013; 7
2008; 1
2011; 16
2014; 60
2004; 32
1997; 102
2002; 48
2013; 59
2009; 51
2011a; 333
2000; 13
2013; 12
2013; 118
2011; 73
2009; 288
2000; 287
2014; 8
2012; 23
2012; 338
2006; 364
2001; 96
2007; 19
2011
2008; 17
2002; 2
2011; 32
2006
1994
2005
2008; 55
2012; 39
2002
2014; 41
2011; 5
2003; 31
1994; 40
2001; 63
2012; 109
2011; 106
2011b; 38
2009; 71
2007; 230
2013
2009; 3
2005; 17
2012; 117
1970; 49
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
Rasmussen CE (e_1_2_7_36_1) 2006
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Cressie N (e_1_2_7_9_1) 2011
Vaughan DG (e_1_2_7_50_1) 2013
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_38_1
Gonthier G (e_1_2_7_13_1) 2008; 55
20407598 - J Stat Theory Pract. 2009 Jun 1;3(2):407-418
21494410 - J Stat Softw. 2007 Apr;19(4):1-24
10678828 - Science. 2000 Feb 18;287(5456):1248-50
22802667 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12414-9
25505370 - Environmetrics. 2014 Jun;25(4):245-264
23197528 - Science. 2012 Nov 30;338(6111):1183-9
16782604 - Philos Trans A Math Phys Eng Sci. 2006 Jul 15;364(1844):1637-55
21852457 - Science. 2011 Sep 9;333(6048):1427-30
References_xml – reference: Finley AO, Banerjee S, Carlin BP. 2007. spBayes: an R package for univariate and multivariate hierarchical point-referenced spatial models. Journal of Statistical Software 19(4):1-24.
– reference: Cressie N, Wikle CK. 2011. Statistics for Spatio-Temporal Data. Wiley: Hoboken, NJ.
– reference: van Wessem JM, Reijmer CH, Morlighem M, Mouginot J, Rignot E, Medley B, Joughin I, B Wouters, Depoorter MA, Bamber JL, Lenaerts JTM, van de Berg WJ, van den Broeke MR, E van Meijgaard. 2014. Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. Journal of Glaciology 60(222):761-770.
– reference: Neal RM. 2003. Slice sampling. Annals of statistics 31(3):705-741.
– reference: Cressie N, Shi T, Kang EL. 2010. Fixed rank filtering for spatio-temporal data. Journal of Computational and Graphical Statistics 19(3):724-745.
– reference: Ivins ER, James TS, Wahr J, Schrama O, Ernst J, Landerer FW, Simon KM. 2013. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. Journal of Geophysical Research: Solid Earth 118(6):3126-3141.
– reference: Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7:375-393.
– reference: Katzfuss M, Cressie N. 2011. Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets. Journal of Time Series Analysis 32(4):430-446.
– reference: Berliner LM, Wikle CK, Cressie N. 2000. Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. Journal of Climate 13(22):3953-3968.
– reference: Velicogna I, Wahr J. 2013. Time-variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data. Geophysical Research Letters 12: 3055-3063.
– reference: Rue H, Held L. 2005. Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC Press: Boca Raton, FL.
– reference: Ng F, Conway H. 2004. Fast-flow signature in the stagnated Kamb Ice Stream, West Antarctica. Geology 32(6):481-484.
– reference: Vaughan DG, Adalgeirsdóttir G, Agosta C, Bamber JL, Barletta V, Durand G, Edwards TL, X Fettweis, Gagliardini O, Hellmer HH, Holland PB, Howard T, Payne AJ, Ridley J, Smeets P, G Spada, Timmermann R, Trouvilliez A, van den Broeke M. 2013. From Ice To High Seas: Sea-level Rise and European Coastlines, Ford EAK (ed.).: The ice2sea Consortium, Cambridge, United Kingdom.
– reference: Rignot E, Velicogna I, Van den Broeke MR, Monaghan A, Lenaerts JTM. 2011b. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38(5):L05503.
– reference: Riva REM, Gunter BC, Urban TJ, Vermeersen BLA, Lindenbergh RC, Helsen MM, Bamber JL, van de Wal RSW, van den Broeke MR, Schutz BE. 2009. Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data. Earth and Planetary Science Letters 288: 516-523.
– reference: Shepherd A, Ivins ER, Geruo A, Barletta VR, Bentley MJ, Bettadpur S, Briggs KH, Bromwich DH, Forsberg R, Galin N, Horwath M, Jacobs S, Joughin I, King MA, Lenaerts JTM, Li J, SRM Ligtenberg, Luckman A, Luthcke SB, McMillan M, Meister R, Milne G, Mouginot J, Muir A, JP Nicolas, Paden J, Payne AJ, Pritchard H, Rignot E, Rott H, Srensen LS, Scambos TA, Scheuchl B, Schrama EJO, Smith B, Sundal AV, van Angelen JH, van de Berg WJ, van den Broeke MR, DG Vaughan, Velicogna I, Wahr J, Whitehouse PL, Wingham DJ, Yi D, Young D, Zwally HJ. 2012. A reconciled estimate of ice-sheet mass balance. Science 338(6111):1183-1189.
– reference: Gonthier G. 2008. Formal proof-the four-color theorem. Notices of the AMS 55(11):1382-1393.
– reference: Kang EL, Cressie N. 2011. Bayesian inference for the spatial random effects model. Journal of the American Statistical Association 106(495):972-983.
– reference: Storvik G, Frigessi A, Hirst D. 2002. Stationary space-time Gaussian fields and their time autoregressive representation. Statistical Modelling 2: 139-161.
– reference: Isaksson E, Karlen W. 1994. Spatial and temporal patterns in snow accumulation, Western Dronning Maud Land, Antarctica. Journal of Glaciology 40(135):399-409.
– reference: Lindgren F, Rue H, Lindström J. 2011. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society B 73(4):423-498.
– reference: Calder CA, Berrett C, Shi T, Xiao N, Munroe DK. 2011. Modeling space-time dynamics of aerosols using satellite data and atmospheric transport model output. Journal of Agricultural, Biological, and Environmental Statistics 16(4):495-512.
– reference: Katzfuss M, Cressie N. 2012. Bayesian hierarchical spatio-temporal smoothing for very large datasets. Environmetrics 23(1):94-107.
– reference: Ivins ER, James TS. 2005. Antarctic glacial isostatic adjustment: a new assessment. Antarctic Science 17(04):541-553.
– reference: Rasmussen CE, Williams CKI. 2006. Gaussian Processes for Machine Learning. MIT Press: Cambridge, MA.
– reference: Hamilton JD. 1994. Time Series Analysis. Princeton University Press: Princeton.
– reference: Choi J, Reich BJ, Fuentes M, Davis JM. 2009. Multivariate spatial-temporal modeling and prediction of speciated fine particles. Journal of Statistical Theory and Practice 3(2):407-418.
– reference: Luthcke SB, Sabaka TJ, Loomis BD, Arendt A, McCarthy JJ, Camp J. 2013. Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology 59(216):613-631.
– reference: Rignot E, Bamber JL, van den Broeke MR, Davis C, Li Y, van de Berg WJ, van Meijgaard E. 2008. Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geoscience 1(2):106-110.
– reference: Rue H, Martino S. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society B 71: 319-392.
– reference: Rignot E. 2006. Changes in ice dynamics and mass balance of the Antarctic ice sheet. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364(1844):1637-1655.
– reference: Wikle CK, Milliff RF, Nychka D, Berliner LM. 2001. Spatiotemporal hierarchical Bayesian modeling tropical ocean surface winds. Journal of the American Statistical Association 96(454):382-397.
– reference: Rignot E, Mouginot J, Scheuchl B. 2011a. Ice flow of the Antarctic ice sheet. Science 333(6048):1427-1430.
– reference: Zammit-Mangion A, Rougier JC, Bamber JL, Schoen NW. 2014. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework. Environmetrics 25: 245-264.
– reference: Pattyn Frank, Derauw Dominique. 2002. Ice-dynamic conditions of Shirase Glacier, Antarctica, inferred from ERS SAR interferometry. Journal of Glaciology 48(163):559-565.
– reference: Lenaerts JTM, Van den Broeke MR, van de Berg WJ, van Meijgaard E, Munneke PK. 2012. A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling. Geophysical Research Letters 39(4):L04501.
– reference: Bamber JL, Vaughan DG, Joughin I. 2000. Widespread complex flow in the interior of the Antarctic ice sheet. Science 287(5456):1248-1250.
– reference: Hurkmans RTWL, Bamber JL, Sørensen LS, Joughin IR, Davis CH, Krabill WB. 2012. Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbræ, Greenland. Journal of Geophysical Research 117(F3): F03001.
– reference: McMillan M, Shepherd A, Sundal A, Briggs K, Muir A, Ridout A, Hogg A, Wingham D. 2014. Increased ice losses from Antarctica detected by CryoSat-2. Geophysical Research Letters 41(11):3899-3905.
– reference: Richardson C, Aarholt E, Hamran SE, Holmlund Per, Isaksson Elisabeth. 1997. Spatial distribution of snow in Western Dronning Maud Land, East Antarctica, mapped by a ground-based snow radar. Journal of Geophysical Research: Solid Earth 102(B9): 20343-20353.
– reference: Bastos LS, O'Hagan A. 2009. Diagnostics for Gaussian process emulators. Technometrics 51(4):425-438.
– reference: Berliner LM, Cressie N, Jezek K, Kim Y, Lam CQ, van der Veen CJ. 2008. Equilibrium dynamics of ice streams: a Bayesian statistical analysis. Statistical Methods and Applications 17(2):145-165.
– reference: Wikle CK, Berliner LM. 2007. A Bayesian tutorial for data assimilation. Physica D: Nonlinear Phenomena 230(1-2): 1-16.
– reference: Stroud JR, Müller P, Sanso B. 2001. Dynamic models for spatiotemporal data. Journal of the Royal Statistical Society B 63: 673-689.
– reference: Scott JBT, Gudmundsson GH, Smith AM, Bingham RG, Pritchard HD, Vaughan DG. 2009. Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress. The Cryosphere 3: 125-131.
– reference: Molloy M, Reed B. 2002. Graph Colouring and the Probabilistic Method, Algorithms and Combinatorics, vol. 23. Springer: Berlin.
– reference: Zammit-Mangion A, Dewar M, Kadirkamanathan V, Sanguinetti G. 2012. Point process modelling of the Afghan War Diary. Proceedings of the National Academy of Sciences 109(31):12414-12419.
– reference: Kernighan BW, Lin S. 1970. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal 49(2):291-307.
– reference: Ligtenberg SRM, Helsen MM, van den Broeke MR. 2011. An improved semi-empirical model for the densification of Antarctic firn. The Cryosphere 5(4):809-819.
– reference: Gunter BC, Didova O, Riva REM, Ligtenberg SRM, Lenaerts JTM, King MA, van den Broeke MR, Urban T. 2014. Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change. The Cryosphere 8:743-760.
– year: 2011
– volume: 364
  start-page: 1637
  issue: 1844
  year: 2006
  end-page: 1655
  article-title: Changes in ice dynamics and mass balance of the Antarctic ice sheet
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 51
  start-page: 425
  issue: 4
  year: 2009
  end-page: 438
  article-title: Diagnostics for Gaussian process emulators
  publication-title: Technometrics
– volume: 49
  start-page: 291
  issue: 2
  year: 1970
  end-page: 307
  article-title: An efficient heuristic procedure for partitioning graphs
  publication-title: The Bell System Technical Journal
– year: 2005
– volume: 17
  start-page: 145
  issue: 2
  year: 2008
  end-page: 165
  article-title: Equilibrium dynamics of ice streams: a Bayesian statistical analysis
  publication-title: Statistical Methods and Applications
– volume: 60
  start-page: 761
  issue: 222
  year: 2014
  end-page: 770
  article-title: Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model
  publication-title: Journal of Glaciology
– volume: 19
  start-page: 1
  issue: 4
  year: 2007
  end-page: 24
  article-title: spBayes: an R package for univariate and multivariate hierarchical point‐referenced spatial models
  publication-title: Journal of Statistical Software
– year: 2011
  article-title: SPARSEINV: a MATLAB toolbox for computing the sparse inverse subset using the Takahashi equations
– volume: 25
  start-page: 245
  year: 2014
  end-page: 264
  article-title: Resolving the Antarctic contribution to sea‐level rise: a hierarchical modelling framework
  publication-title: Environmetrics
– volume: 13
  start-page: 3953
  issue: 22
  year: 2000
  end-page: 3968
  article-title: Long‐lead prediction of Pacific SSTs via Bayesian dynamic modeling
  publication-title: Journal of Climate
– volume: 19
  start-page: 724
  issue: 3
  year: 2010
  end-page: 745
  article-title: Fixed rank filtering for spatio‐temporal data
  publication-title: Journal of Computational and Graphical Statistics
– year: 1994
– volume: 48
  start-page: 559
  issue: 163
  year: 2002
  end-page: 565
  article-title: Ice‐dynamic conditions of Shirase Glacier, Antarctica, inferred from ERS SAR interferometry
  publication-title: Journal of Glaciology
– volume: 71
  start-page: 319
  year: 2009
  end-page: 392
  article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
  publication-title: Journal of the Royal Statistical Society B
– volume: 118
  start-page: 3126
  issue: 6
  year: 2013
  end-page: 3141
  article-title: Antarctic contribution to sea level rise observed by GRACE with improved GIA correction
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 288
  start-page: 516
  year: 2009
  end-page: 523
  article-title: Glacial isostatic adjustment over Antarctica from combined ICESat and GRACE satellite data
  publication-title: Earth and Planetary Science Letters
– volume: 16
  start-page: 495
  issue: 4
  year: 2011
  end-page: 512
  article-title: Modeling space–time dynamics of aerosols using satellite data and atmospheric transport model output
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
– volume: 8
  start-page: 743
  year: 2014
  end-page: 760
  article-title: Empirical estimation of present‐day Antarctic glacial isostatic adjustment and ice mass change
  publication-title: The Cryosphere
– volume: 12
  start-page: 3055
  year: 2013
  end-page: 3063
  article-title: Time‐variable gravity observations of ice sheet mass balance: precision and limitations of the GRACE satellite data
  publication-title: Geophysical Research Letters
– volume: 73
  start-page: 423
  issue: 4
  year: 2011
  end-page: 498
  article-title: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach
  publication-title: Journal of the Royal Statistical Society B
– volume: 230
  start-page: 1
  issue: 1–2
  year: 2007
  end-page: 16
  article-title: A Bayesian tutorial for data assimilation
  publication-title: Physica D: Nonlinear Phenomena
– volume: 287
  start-page: 1248
  issue: 5456
  year: 2000
  end-page: 1250
  article-title: Widespread complex flow in the interior of the Antarctic ice sheet
  publication-title: Science
– volume: 32
  start-page: 481
  issue: 6
  year: 2004
  end-page: 484
  article-title: Fast‐flow signature in the stagnated Kamb Ice Stream, West Antarctica
  publication-title: Geology
– volume: 106
  start-page: 972
  issue: 495
  year: 2011
  end-page: 983
  article-title: Bayesian inference for the spatial random effects model
  publication-title: Journal of the American Statistical Association
– volume: 41
  start-page: 3899
  issue: 11
  year: 2014
  end-page: 3905
  article-title: Increased ice losses from Antarctica detected by CryoSat‐2
  publication-title: Geophysical Research Letters
– volume: 109
  start-page: 12414
  issue: 31
  year: 2012
  end-page: 12419
  article-title: Point process modelling of the Afghan War Diary
  publication-title: Proceedings of the National Academy of Sciences
– volume: 31
  start-page: 705
  issue: 3
  year: 2003
  end-page: 741
  article-title: Slice sampling
  publication-title: Annals of statistics
– volume: 39
  start-page: L04501
  issue: 4
  year: 2012
  article-title: A new, high‐resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling
  publication-title: Geophysical Research Letters
– start-page: 324
  year: 2011
  end-page: 332
– volume: 40
  start-page: 399
  issue: 135
  year: 1994
  end-page: 409
  article-title: Spatial and temporal patterns in snow accumulation, Western Dronning Maud Land, Antarctica
  publication-title: Journal of Glaciology
– volume: 117
  start-page: F03001
  issue: F3
  year: 2012
  article-title: Spatiotemporal interpolation of elevation changes derived from satellite altimetry for Jakobshavn Isbræ, Greenland
  publication-title: Journal of Geophysical Research
– volume: 23
  start-page: 94
  issue: 1
  year: 2012
  end-page: 107
  article-title: Bayesian hierarchical spatio‐temporal smoothing for very large datasets
  publication-title: Environmetrics
– volume: 5
  start-page: 809
  issue: 4
  year: 2011
  end-page: 819
  article-title: An improved semi‐empirical model for the densification of Antarctic firn
  publication-title: The Cryosphere
– article-title: MODIS mosaic of Antarctica (MOA) image map
– volume: 7
  start-page: 375
  year: 2013
  end-page: 393
  article-title: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica
  publication-title: The Cryosphere
– volume: 102
  start-page: 20343
  issue: B9
  year: 1997
  end-page: 20353
  article-title: Spatial distribution of snow in Western Dronning Maud Land, East Antarctica, mapped by a ground‐based snow radar
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 96
  start-page: 382
  issue: 454
  year: 2001
  end-page: 397
  article-title: Spatiotemporal hierarchical Bayesian modeling tropical ocean surface winds
  publication-title: Journal of the American Statistical Association
– volume: 38
  start-page: L05503
  issue: 5
  year: 2011b
  article-title: Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise
  publication-title: Geophysical Research Letters
– volume: 59
  start-page: 613
  issue: 216
  year: 2013
  end-page: 631
  article-title: Antarctica, Greenland and Gulf of Alaska land‐ice evolution from an iterated GRACE global mascon solution
  publication-title: Journal of Glaciology
– year: 2002
– year: 2006
– volume: 3
  start-page: 125
  year: 2009
  end-page: 131
  article-title: Increased rate of acceleration on Pine Island Glacier strongly coupled to changes in gravitational driving stress
  publication-title: The Cryosphere
– volume: 17
  start-page: 541
  issue: 04
  year: 2005
  end-page: 553
  article-title: Antarctic glacial isostatic adjustment: a new assessment
  publication-title: Antarctic Science
– volume: 63
  start-page: 673
  year: 2001
  end-page: 689
  article-title: Dynamic models for spatiotemporal data
  publication-title: Journal of the Royal Statistical Society B
– article-title: Graph bisection in R
– volume: 333
  start-page: 1427
  issue: 6048
  year: 2011a
  end-page: 1430
  article-title: Ice flow of the Antarctic ice sheet
  publication-title: Science
– volume: 32
  start-page: 430
  issue: 4
  year: 2011
  end-page: 446
  article-title: Spatio‐temporal smoothing and EM estimation for massive remote‐sensing data sets
  publication-title: Journal of Time Series Analysis
– volume: 55
  start-page: 1382
  issue: 11
  year: 2008
  end-page: 1393
  article-title: Formal proof–the four‐color theorem
  publication-title: Notices of the AMS
– volume: 2
  start-page: 139
  year: 2002
  end-page: 161
  article-title: Stationary space‐time Gaussian fields and their time autoregressive representation
  publication-title: Statistical Modelling
– volume: 338
  start-page: 1183
  issue: 6111
  year: 2012
  end-page: 1189
  article-title: A reconciled estimate of ice‐sheet mass balance
  publication-title: Science
– volume: 3
  start-page: 407
  issue: 2
  year: 2009
  end-page: 418
  article-title: Multivariate spatial‐temporal modeling and prediction of speciated fine particles
  publication-title: Journal of Statistical Theory and Practice
– volume: 1
  start-page: 106
  issue: 2
  year: 2008
  end-page: 110
  article-title: Recent Antarctic ice mass loss from radar interferometry and regional climate modelling
  publication-title: Nature Geoscience
– year: 2013
– ident: e_1_2_7_22_1
  doi: 10.1198/jasa.2011.tm09680
– ident: e_1_2_7_43_1
  doi: 10.1201/9780203492024
– ident: e_1_2_7_16_1
  doi: 10.1515/9780691218632
– ident: e_1_2_7_27_1
  doi: 10.1029/2011GL050713
– ident: e_1_2_7_30_1
  doi: 10.3189/2013JoG12J147
– ident: e_1_2_7_32_1
  doi: 10.1007/978-3-642-04016-0
– ident: e_1_2_7_3_1
  doi: 10.1198/TECH.2009.08019
– ident: e_1_2_7_41_1
  doi: 10.1029/2011GL046583
– ident: e_1_2_7_6_1
  doi: 10.1007/s13253-011-0068-4
– ident: e_1_2_7_19_1
  doi: 10.1017/S0022143000007486
– ident: e_1_2_7_38_1
  doi: 10.1038/ngeo102
– ident: e_1_2_7_12_1
  doi: 10.5194/tc-7-375-2013
– ident: e_1_2_7_17_1
– ident: e_1_2_7_34_1
  doi: 10.1130/G20317.1
– ident: e_1_2_7_28_1
  doi: 10.5194/tc-5-809-2011
– ident: e_1_2_7_10_1
– ident: e_1_2_7_2_1
  doi: 10.1126/science.287.5456.1248
– ident: e_1_2_7_42_1
  doi: 10.1016/j.epsl.2009.10.013
– volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: e_1_2_7_36_1
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1467-9868.2011.00777.x
– ident: e_1_2_7_39_1
  doi: 10.1126/science.1208336
– ident: e_1_2_7_46_1
  doi: 10.1126/science.1228102
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1467-9868.2008.00700.x
– ident: e_1_2_7_53_1
  doi: 10.1198/016214501753168109
– ident: e_1_2_7_55_1
  doi: 10.1073/pnas.1203177109
– ident: e_1_2_7_20_1
  doi: 10.1017/S0954102005002968
– ident: e_1_2_7_45_1
  doi: 10.5194/tc-3-125-2009
– ident: e_1_2_7_8_1
  doi: 10.1198/jcgs.2010.09051
– ident: e_1_2_7_47_1
  doi: 10.1191/1471082x02st029oa
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1467-9892.2011.00732.x
– volume: 55
  start-page: 1382
  issue: 11
  year: 2008
  ident: e_1_2_7_13_1
  article-title: Formal proof–the four‐color theorem
  publication-title: Notices of the AMS
– ident: e_1_2_7_37_1
  doi: 10.1029/97JB01441
– ident: e_1_2_7_48_1
  doi: 10.1111/1467-9868.00305
– ident: e_1_2_7_54_1
  doi: 10.1002/env.2247
– ident: e_1_2_7_14_1
– volume-title: Statistics for Spatio‐Temporal Data
  year: 2011
  ident: e_1_2_7_9_1
– ident: e_1_2_7_40_1
  doi: 10.1098/rsta.2006.1793
– ident: e_1_2_7_52_1
  doi: 10.1016/j.physd.2006.09.017
– ident: e_1_2_7_15_1
  doi: 10.5194/tc-8-743-2014
– volume-title: From Ice To High Seas: Sea‐level Rise and European Coastlines
  year: 2013
  ident: e_1_2_7_50_1
– ident: e_1_2_7_4_1
  doi: 10.1007/s10260-007-0077-1
– ident: e_1_2_7_33_1
  doi: 10.1214/aos/1056562461
– ident: e_1_2_7_35_1
  doi: 10.3189/172756502781831115
– ident: e_1_2_7_25_1
  doi: 10.1002/j.1538-7305.1970.tb01770.x
– ident: e_1_2_7_51_1
  doi: 10.1002/grl.50527
– ident: e_1_2_7_18_1
  doi: 10.1029/2011JF002072
– ident: e_1_2_7_21_1
  doi: 10.1002/jgrb.50208
– ident: e_1_2_7_24_1
  doi: 10.1002/env.1147
– ident: e_1_2_7_31_1
  doi: 10.1002/2014GL060111
– ident: e_1_2_7_11_1
  doi: 10.18637/jss.v019.i04
– ident: e_1_2_7_26_1
– ident: e_1_2_7_5_1
  doi: 10.1175/1520-0442(2001)013<3953:LLPOPS>2.0.CO;2
– ident: e_1_2_7_7_1
  doi: 10.1080/15598608.2009.10411933
– ident: e_1_2_7_49_1
  doi: 10.3189/2014JoG14J051
– reference: 22802667 - Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12414-9
– reference: 25505370 - Environmetrics. 2014 Jun;25(4):245-264
– reference: 16782604 - Philos Trans A Math Phys Eng Sci. 2006 Jul 15;364(1844):1637-55
– reference: 10678828 - Science. 2000 Feb 18;287(5456):1248-50
– reference: 21494410 - J Stat Softw. 2007 Apr;19(4):1-24
– reference: 23197528 - Science. 2012 Nov 30;338(6111):1183-9
– reference: 21852457 - Science. 2011 Sep 9;333(6048):1427-30
– reference: 20407598 - J Stat Theory Pract. 2009 Jun 1;3(2):407-418
SSID ssj0009657
Score 2.2203236
Snippet Antarctica is the world's largest fresh‐water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea‐level rise (SLR)...
Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60 m. An ice sheet contributes to sea-level rise (SLR)...
Antarctica is the world's largest fresh-water reservoir, with the potential to raise sea levels by about 60m. An ice sheet contributes to sea-level rise (SLR)...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 159
SubjectTerms Antarctica
Assessments
Coastal
Geophysics
Ice sheets
Markov models
Mathematical models
Monte Carlo methods
Multivariate modelling
parallel MCMC
Sampling
sea-level rise
spatio-temporal statistics
stochastic partial differential equations
Title Multivariate spatio-temporal modelling for assessing Antarctica's present-day contribution to sea-level rise
URI https://api.istex.fr/ark:/67375/WNG-MQP6Q3CX-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fenv.2323
https://www.ncbi.nlm.nih.gov/pubmed/25937792
https://www.proquest.com/docview/1676352383
https://www.proquest.com/docview/1685778180
https://www.proquest.com/docview/1826621820
https://pubmed.ncbi.nlm.nih.gov/PMC4413369
Volume 26
WOSCitedRecordID wos000352574900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-095X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009657
  issn: 1180-4009
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagy4EL_4UtUBkJ0dPSxE78c6zKLhzKaoto2VtkO45ascpWyXZVbjwCz8iTMONks6woFRKXRJEnUezM2N_EM98Q8rrZCwInB-BxMUiMBZMSuRvEKtdWGu9YoF08PZLjsZpO9aSNqsRcmIYfovvhhpYR5ms0cGPr_TVpqC-XbwEO8NukF8dcokazZLIm3BVpU1hFReAjRXpFPBux_dWdG0tRD0f16jqc-We45O8wNqxDo_v_04MH5F6LPulBoy4PyS1fPiLbw3WyGzS21l4_JlXIzl2CNw2AlNYh9vrn9x8tm9WMhio6mM5OAflSE7aP8eoAnlNh7pXZq-lFk98E9-XmGw2R8W2JLbqYUzA0aJlh5BKF6cY_ISej4efDD4O2RsPACJgdBroQzHLllOWcRYXW0mkT2cTGNvHM5UYaLZRLXQFIJWHGAkD0NnKgC4lA6p1tslXOS_-MUFhETWG18Oh1JmmuAUzyXLI0F7FTWvXJ3upzZa4lMMc6GrOsoV5mYOjLDAe0T151khcNacc1Mm_CF-8ETPUVg9xkmn0Zv88-Hk_EMT-cZjE8bKUSGZge7qeY0s8v6ywWyOYHmIffJKNSKTGh_gYZcPFEYNLvk6eNqnVvBd4pUkKyPpEbStgJID34Zkt5fhZowgHoci40dDQo4V9HIhuOT_G886-Cz8ldgI1pE_b5gmwtqkv_ktxxy8V5Xe0GM4SjnKpd0nv3aXRy9Avg9j37
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VXSS4UF6F5VGMhOgpbZ5OLE5V2aWIbdSituzNsh1HVKyyVbJdwY2fwG_sL2HsPLYrSoXEKYo8iWJnxv7GnvkG4E19FoRODsLj3AmFRJOimXK8JGMyFlr5lnbxdBynaTKZsMM1eNfmwtT8EN2Gm7EMO18bAzcb0jtL1lBdLLYRDwS3oB-iFkU96L__PDoZLzl3aVTXVklcdJNc1nLPuv5O--zKatQ3A_v9Oqj5Z8TkVSRrl6LR-n914j7caxAo2a1V5gGs6eIhbAyXCW_Y2Fh89QhKm6G7QI8aQSmpbPz15c9fDaPVlNhKOialnSD6JcIeIZu7XXxPafKvxFZFzuscJ3wuEz-IjY5vymyR-YygsWHL1EQvEZxy9GM4GQ2P9_adpk6DIyjOEA7LqS-DRCUyCHw3ZyxWTLgylJ4Mta8yEQtGExWpHNFK6AuJIFFLV6E-hNTQ72xAr5gV-ikQXEhFLhnVxvMMo4whoAyy2I8y6qmEJQPYav8XVw2JuamlMeU1_bKPxr7gZkAH8LqTPK-JO66ReWt_eScgym8m0C2O-Jf0Az84OqRHwd6Ee_iyVic4mp85UxGFnl1U3KOG0Q9xT3CTTBLFsUmqv0EG3Txq2fQH8KTWte6r0EM1tJD-AOIVLewEDEX4aktx9tVShSPYDQLKsKNWC_86EnyYnprrs38VfAV39o8Pxnz8Mf30HO4ijIzqMNAX0JuXF_ol3FaL-VlVbjZW-RvQt0Dw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiEuvAvL00iInkLzdGJxqsouIMpqK0HZm2U7jqhYZVfJdgU3fgK_kV_CjPNYVpQKiVMUeWwlzoz9TTzzDcCz5iwInRyEx4UXK40mxXPjBVkudKqsCR3t4slROh5n06mYbMHLLhem4Yfof7iRZbj1mgzcLvJif80aasvVC8QD0SXYiRNcYonWOZ6sGXd50lRWyXx0knzRMc_64X7Xc2Mv2qFp_Xoe0PwzXvJ3HOs2otH1_3qFG3CtxZ_soFGYm7Bly1uwO1ynu2Fja-_1bahcfu4K_WmEpKx20dc_v_9o-axmzNXRoYR2htiXKXeATHcHOE5F2Vdqr2aLJsMJ--XqG3Ox8W2RLbacMzQ1bJlR7BLDBcfegY-j4YfDN15bpcFTHNcHTxQ81FFmMh1FoV8IkRqhfB3rQMc2NLlKleCZSUyBWCUOlUaIaLVvUBtiTuQ7u7Bdzkt7Dxhuo6rQglvyO-MkFwgnozwNk5wHJhPZAPa67yVNS2FOlTRmsiFfDtHUV5ImdABPe8lFQ9txjsxz98l7AVV9oTC3NJGfxq_l--MJP44OpzLAwTqdkGh8dKKiSjs_q2XAic8PUU90kUyWpCml1F8gg04ed1z6A7jb6Fr_VOifEilkOIB0Qwt7ASII32wpTz87onCEulHEBb6o08K_zoQcjk_oev9fBZ_AlcmrkTx6O373AK4ihkyaGNCHsL2szuwjuGxWy9O6euxM8hdr_z7Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+spatio-temporal+modelling+for+assessing+Antarctica%27s+present-day+contribution+to+sea-level+rise&rft.jtitle=Environmetrics+%28London%2C+Ont.%29&rft.au=Zammit-Mangion%2C+Andrew&rft.au=Rougier%2C+Jonathan&rft.au=Sch%C3%B6n%2C+Nana&rft.au=Lindgren%2C+Finn&rft.date=2015-05-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1180-4009&rft.eissn=1099-095X&rft.volume=26&rft.issue=3&rft.spage=159&rft.epage=177&rft_id=info:doi/10.1002%2Fenv.2323&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_MQP6Q3CX_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1180-4009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1180-4009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1180-4009&client=summon