Algorithmics of matching under preferences

Matching problems with preferences are all around us: they arise when agents seek to be allocated to one another on the basis of ranked preferences over potential outcomes. Efficient algorithms are needed for producing matchings that optimise the satisfaction of the agents according to their prefere...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Manlove, David
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Singapore World Scientific Publishing Co. Pte. Ltd 2013
World Scientific Publishing Company
WORLD SCIENTIFIC
WSPC
Vydání:1
Edice:Series on theoretical computer science
Témata:
ISBN:9789814425247, 9814425249
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Matching problems with preferences are all around us: they arise when agents seek to be allocated to one another on the basis of ranked preferences over potential outcomes. Efficient algorithms are needed for producing matchings that optimise the satisfaction of the agents according to their preference lists. In recent years there has been a sharp increase in the study of algorithmic aspects of matching problems with preferences, partly reflecting the growing number of applications of these problems worldwide. The importance of the research area was recognised in 2012 through the award of the Nobel Prize in Economic Sciences to Alvin Roth and Lloyd Shapley.
AbstractList Matching problems with preferences are all around us: they arise when agents seek to be allocated to one another on the basis of ranked preferences over potential outcomes. Efficient algorithms are needed for producing matchings that optimise the satisfaction of the agents according to their preference lists.In recent years there has been a sharp increase in the study of algorithmic aspects of matching problems with preferences, partly reflecting the growing number of applications of these problems worldwide. The importance of the research area was recognised in 2012 through the award of the Nobel Prize in Economic Sciences to Alvin Roth and Lloyd Shapley.This book describes the most important results in this area, providing a timely update to The Stable Marriage Problem: Structure and Algorithms (D Gusfield and R W Irving, MIT Press, 1989) in connection with stable matching problems, whilst also broadening the scope to include matching problems with preferences under a range of alternative optimality criteria.Sample Chapter(s)Foreword (46 KB)Chapter 1: Preliminary Definitions, Results and Motivation (430 KB)Contents:Preliminary Definitions, Results and MotivationStable Matching Problems:The Stable Marriage Problem: An UpdateSM and HR with IndifferenceThe Stable Roommates ProblemFurther Stable Matching ProblemsOther Optimal Matching Problems:Pareto Optimal MatchingsPopular MatchingsProfile-Based Optimal MatchingsReadership: Students and Professionals interested in algorithms, especially in the study of algorithmic aspects of matching problems with preferences.
Matching problems with preferences are all around us: they arise when agents seek to be allocated to one another on the basis of ranked preferences over potential outcomes. Efficient algorithms are needed for producing matchings that optimise the satisfaction of the agents according to their preference lists. In recent years there has been a sharp increase in the study of algorithmic aspects of matching problems with preferences, partly reflecting the growing number of applications of these problems worldwide. The importance of the research area was recognised in 2012 through the award of the Nobel Prize in Economic Sciences to Alvin Roth and Lloyd Shapley.
Matching problems with preferences are all around us: they arise when agents seek to be allocated to one another on the basis of ranked preferences over potential outcomes. Efficient algorithms are needed for producing matchings that optimise the satisfaction of the agents according to their preference lists. In recent years there has been a sharp increase in the study of algorithmic aspects of matching problems with preferences, partly reflecting the growing number of applications of these problems worldwide. The importance of the research area was recognised in 2012 through the award of the Nobel Prize in Economic Sciences to Alvin Roth and Lloyd Shapley. This book describes the most important results in this area, providing a timely update to The Stable Marriage Problem: Structure and Algorithms (D Gusfield and R W Irving, MIT Press, 1989) in connection with stable matching problems, whilst also broadening the scope to include matching problems with preferences under a range of alternative optimality criteria.
Author Manlove, David F
Author_xml – sequence: 1
  fullname: Manlove, David
BackLink https://cir.nii.ac.jp/crid/1130282271634546048$$DView record in CiNii
BookMark eNpV0NtKAzEQBuCIB7Tad-iF4AGqmWyOl1rqAQQFRS9DNsm20e1uTbaKb2_qCmIuEob5MjD_AG01beMROgB8BkDJuWQKNtBQCakkUEoYYXTzX03FNhoQDIQxqpjYQXuSYpoBF7tomNIrzkdhjpXYQ6cX9ayNoZsvgk2jthotTGfnoZmNVo3zcbSMvvLRN9anA7RdmTr54e-7j56vpk-Tm_Hd_fXt5OJubJhSAo9daWnJwHpRlSXlkhhbCeMclgZUbiripOCcUsMFMJUXctJZ52whWFESV-yjk36wSW_-M83bukv6o_Zl274l_W_zP_vZxtolG3zThSpY3WPAep2aXqeW7VFvl7F9X_nU6Z-RNn-JptbTywkAlyB4loe9bELQNqxvgAITSYgAXlBGOaYys-OehdlyVdYhrYPTyxgWJn7pl8eHyWWOugABxTfFqn6G
ContentType eBook
Book
DBID WMAQA
RYH
DEWEY 511.66
DOI 10.1142/8591
DatabaseName World Scientific
CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9789814425254
9814425257
9789814425261
9814425265
Edition 1
ExternalDocumentID 9789814425254
10.1142/8591
EBC1168176
BB12550258
WSPCB0003171
GroupedDBID -VQ
-VX
089
20A
38.
5O.
9WS
A4J
AABBV
AATMT
ABARN
ABCYV
ABIAV
ABMRC
ABQPQ
ACLGV
ACZWY
ADVEM
AERYV
AFOJC
AHWGJ
AIXPE
AJFER
ALMA_UNASSIGNED_HOLDINGS
ALUEM
AMYDA
AWPWH
AZZ
BBABE
CZZ
DUGUG
EBSCA
ECOWB
EFU
GEOUK
J-X
MYL
PD6
PQQKQ
PYZUL
WMAQA
XI1
RYH
ID FETCH-LOGICAL-a59970-dbc4b51ce7fbb4682acf7add08a19dbc92d876644a67159859d8dcddc3753b2d3
ISBN 9789814425247
9814425249
ISICitedReferencesCount 213
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000657015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Sun Nov 30 03:43:30 EST 2025
Sat Mar 08 08:56:15 EST 2025
Wed Nov 26 04:12:05 EST 2025
Fri Jun 27 00:58:19 EDT 2025
Mon Apr 07 05:00:57 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords House Allocation Problem
Algorithms
Stable Marriage Problem
Stable Roomates Problem
Hospitals / Residents Problem
Preferences
Matching Problems
LCCN 2012554957
LCCallNum QA164
LCCallNum_Ident QA164
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a59970-dbc4b51ce7fbb4682acf7add08a19dbc92d876644a67159859d8dcddc3753b2d3
Notes Includes bibliographical references (p. 417-460) and index
OCLC 840497867
PQID EBC1168176
PageCount 524
ParticipantIDs igpublishing_primary_WSPCB0003171
nii_cinii_1130282271634546048
proquest_ebookcentral_EBC1168176
worldscientific_books_10_1142_8591
askewsholts_vlebooks_9789814425254
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2013.
WorldScientific,c2013
2013
20130400
2013-03-20
PublicationDateYYYYMMDD 2013-01-01
2013-04-01
2013-03-20
PublicationDate_xml – year: 2013
  text: 2013.
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationSeriesTitle Series on theoretical computer science
PublicationYear 2013
Publisher World Scientific Publishing Co. Pte. Ltd
World Scientific Publishing Company
WORLD SCIENTIFIC
WSPC
Publisher_xml – name: World Scientific Publishing Co. Pte. Ltd
– name: World Scientific Publishing Company
– name: WORLD SCIENTIFIC
– name: WSPC
SSID ssj0000906097
ssib025410157
Score 2.4104102
Snippet Matching problems with preferences are all around us: they arise when agents seek to be allocated to one another on the basis of ranked preferences over...
SourceID askewsholts
worldscientific
proquest
nii
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Computer algorithms
Econometrics
Formal Specification (Software Engineering, Mathematical Logic)
Game Theory
Matching theory
Mathematical Economics
SubjectTermsDisplay Matching theory
TableOfContents Algorithmics of matching under preferences -- Preface -- Foreword -- Acknowledgments -- List of Figures -- List of Tables -- List of Algorithms -- Chapter 1: Preliminary Definitions, Results and Motivation -- Part 1: Stable Matching Problems -- Chapter 2: The Stable Marriage problem: An update -- Chapter 3: The Stable Marriage and Hospitals/Residents Problems with Indifference -- Chapter 4: The Stable Roommates Problem -- Chapter 5: Further Stable Matching Problems -- Part 2: Other Optimal Matching Problems -- Chapter 6: Pareto Optimal Matchings -- Chapter 7: Popular Matchings -- Chapter 8: Profile-Based Optimal Matchings -- Bibliography -- Glossary of Symbols -- Index.
1.5.4 Maximum utility matchings -- 1.5.5 Popular matchings -- 1.5.6 Profile-based optimal matchings -- 1.5.7 Extensions of ha -- 1.5.8 Motivation -- Stable Matching Problems -- 2. The Stable Marriage problem: An update -- 2.1 Introduction -- 2.2 The 12 open problems of Gusfield and Irving -- 2.2.1 Introduction -- 2.2.2 1. Maximum number of stable matchings -- 2.2.3 2. The "divorce digraph" -- 2.2.4 3. Parallel algorithms for stable marriage -- 2.2.5 4. Batch stability testing -- 2.2.6 5. Structure of stable marriage with ties -- 2.2.7 6. Sex-equal matching -- 2.2.8 7. Lying and egalitarian matchings -- 2.2.9 10. Succinct certificates -- 2.2.10 11. Algorithmic improvements -- 2.3 The Subramanian and Feder papers -- 2.3.1 Subramanian: sri and network stability -- 2.3.2 Feder: sri and 2-sat -- 2.3.3 Other fixed-point approaches -- 2.4 Linear programming approaches -- 2.5 Constraint programming approaches -- 2.5.1 Introduction -- 2.5.2 Preliminaries -- 2.5.3 Overview of the csp model -- 2.5.4 Arc consistency in the csp model -- 2.6 Paths to stability -- 2.6.1 Introduction -- 2.6.2 The Roth-Vande Vate Mechanism -- 2.6.3 The Random Order Mechanism -- 2.6.4 Other decentralised algorithms -- 2.7 Median stable matchings -- 2.8 Size versus stability -- 2.9 Strategic issues -- 2.10 Further results -- 2.10.1 Stable Marriage problem with Forbidden pairs -- 2.10.2 Balanced stable matchings -- 2.10.3 Rationalizing matchings -- 2.10.4 Dinitz conjecture and stable marriage theory -- 2.10.5 The marriage graph -- 2.10.6 Sampling and counting -- 2.10.7 Online algorithms -- 2.10.8 Finding "good" stable matchings: unified approach -- 2.10.9 Locally stable matchings -- 2.10.10 Miscellaneous results -- 2.11 Conclusions and open problems -- 3. SM and HR with indifference -- 3.1 Introduction -- 3.2 Weak stability -- 3.2.1 Existence of a weakly stable matching
7.2.6 Popular matchings in hat
5.6 3D stable matching problems -- 5.6.1 3D variants of sm -- 5.6.1.1 Strictly-ordered preferences over pairs -- 5.6.1.2 Preferences over pairs with ties -- 5.6.1.3 Lexicographic preferences over pairs of agents -- 5.6.1.4 Preferences over individual agents -- 5.6.2 3D variants of sr -- 5.6.2.1 Strictly-ordered preferences over pairs -- 5.6.2.2 Preference lists over pairs with ties -- 5.6.2.3 Preferences over individual agents -- 5.6.2.4 Three-Way Kidney Transplant -- 5.6.2.5 Geometric 3dsr -- 5.7 Exchange-stable matching problems -- 5.7.1 Exchange-stability as a solution concept -- 5.7.2 Exchange-blocking coalitions -- 5.7.3 Stable matchings that are exchange-stable -- 5.8 Two additional stable matching problems -- 5.8.1 Bistable matching problems -- 5.8.2 The Cycle Stable Roommates problem -- 5.9 Conclusions and open problems -- Other Optimal Matching Problems -- 6. Pareto optimal matchings -- 6.1 Introduction -- 6.2 House Allocation problem -- 6.2.1 Strictly-ordered preferences -- 6.2.1.1 Testing for Pareto optimality -- 6.2.1.2 Maximum Pareto optimal matchings -- 6.2.1.3 Other results for Pareto optimal matchings -- 6.2.1.4 Matchings in the cor -- 6.2.2 Preference lists with ties -- 6.2.2.1 Characterisation of Pareto optimal matchings -- 6.2.2.2 Matchings in the core -- 6.3 Capacitated House Allocation problem -- 6.4 Hospitals / Residents problem -- 6.5 Stable Roommates problem -- 6.5.1 Introduction -- 6.5.2 Preliminary observations -- 6.5.3 Characterising Pareto optimal matchings -- 6.5.4 Maximum Pareto optimal matchings -- 6.5.5 Coalition formation games -- 6.6 Conclusions and open problems -- 7. Popular matchings -- 7.1 Introduction -- 7.2 House Allocation problem -- 7.2.1 Introduction -- 7.2.2 Characterising popular matchings -- 7.2.3 Finding a popular matching -- 7.2.4 Maximum popular matchings -- 7.2.5 Structure of popular matchings
4.5.4 Super-stable matchings -- 4.6 "Almost stable" matchings -- 4.6.1 Introduction -- 4.6.2 Hardness results -- 4.6.3 Matchings with a constant no. of blocking pairs -- 4.6.4 Bounded length preference lists -- 4.6.5 Open problems -- 4.7 Globally-ranked pairs -- 4.7.1 Definitions and motivation for the srti-grp model -- 4.7.2 Globally acyclic preferences -- 4.7.3 Weakly / strongly stable matchings in srti-grp -- 4.7.4 Related work -- 4.8 Other extensions of sr -- 4.8.1 Introduction -- 4.8.2 Stable Roommates problem with Forbidden Pairs -- 4.8.3 Stable Crews problem -- 4.8.4 Stable Fixtures problem -- 4.8.5 Stable Multiple Activities problem -- 4.8.6 Stable Allocation problem -- 4.8.7 Stable Roommates problem with Choice Functions -- 4.8.8 Coalition Formation Games -- 4.9 Conclusions and open problems -- 5. Further stable matching problems -- 5.1 Introduction -- 5.2 hr with lower and common quotas -- 5.2.1 Introduction -- 5.2.2 hr with lower quotas (model 1) -- 5.2.3 hr with lower quotas (model 2) -- 5.2.4 hr with common quotas -- 5.2.5 Classified stable matching -- 5.3 hr with couples -- 5.3.1 Introduction -- 5.3.2 Problem definition and preliminary results -- 5.3.3 Algorithmic results -- 5.3.4 Consistent couples -- 5.3.5 Inseparable couples -- 5.4 Many-many stable matching -- 5.4.1 Introduction -- 5.4.2 Definition of the basic wf model -- 5.4.3 wf-1: preferences over individuals -- 5.4.4 wf-2: group preferences -- 5.5 The Student-Project Allocation Problem -- 5.5.1 Introduction -- 5.5.2 Lecturer preferences over students: spa-s -- 5.5.2.1 Introduction -- 5.5.2.2 Overview of Algorithm spa-s-student -- 5.5.2.3 Properties of stable matchings in an instance of spa-s -- 5.5.2.4 Lecturer-oriented algorithm -- 5.5.2.5 Open problems -- 5.5.3 Lecturer preferences over projects -- 5.5.4 Lecturer preferences over student-project pairs
Intro -- Contents -- Preface -- Foreword -- Acknowledgments -- List of Figures -- List of Tables -- List of Algorithms -- 1. Preliminary definitions, results and motivation -- 1.1 Introduction -- 1.1.1 Remit of this book -- 1.1.1.1 Matching under preferences -- 1.1.1.2 Free-for-all markets -- 1.1.1.3 Centralised matching schemes -- 1.1.2 The matching problems under consideration -- 1.1.2.1 Classification of matching problems -- 1.1.2.2 Bipartite matching problems with two-sided preferences -- 1.1.2.3 Bipartite matching problems with one-sided preferences -- 1.1.2.4 Non-bipartite matching problems with preferences -- 1.1.2.5 Further problem variants -- 1.1.3 Existing literature on matching problems -- 1.1.3.1 Algorithms and complexity literature -- 1.1.3.2 Game theory and economics literature -- 1.1.3.3 Algorithmic mechanism design literature -- 1.1.4 Contribution of this book -- 1.1.4.1 General overview -- 1.1.4.2 Chapter outline -- 1.1.4.3 What the book does not contribute -- 1.1.5 Outline of this chapter -- 1.2 Matchings in graphs -- 1.3 The Hospitals / Residents problem (hr) -- 1.3.1 Introduction -- 1.3.2 Key definitions -- 1.3.3 Key results (up to 1989) -- 1.3.4 Stable Marriage problem (sm) -- 1.3.4.1 Key definitions -- 1.3.4.2 Key results (up to 1989) -- 1.3.4.3 Rotations -- 1.3.5 Hospitals / Residents problem with indifference -- 1.3.6 Other variants of hr -- 1.3.6.1 Couples -- 1.3.6.2 Many-many stable matchings -- 1.3.6.3 Master lists -- 1.3.7 Motivation -- 1.4 The Stable Roommates problem (sr) -- 1.4.1 Introduction -- 1.4.2 Key definitions -- 1.4.3 Key results (up to 1989) -- 1.4.4 Rotations -- 1.4.5 Stable Roommates problem with indifference -- 1.4.6 Motivation -- 1.5 The House Allocation problem (ha) and its variants -- 1.5.1 Introduction -- 1.5.2 Formal definition of ha and hm -- 1.5.3 Pareto optimal matchings
3.2.2 Absence of a lattice structure -- 3.2.3 Sizes of weakly stable matchings -- 3.2.4 NP-hardness of max smti -- 3.2.5 Parameterized complexity of max smti -- 3.2.6 Approximability of max smti and max hrt -- 3.2.6.1 Overview of approximability results for max smti -- 3.2.6.2 Kiraly's approximation algorithm -- 3.2.6.3 Comparison of approximation algorithms for max smti -- 3.2.6.4 Heuristics for max hrt -- 3.2.6.5 "Cloning" hospitals -- 3.2.7 Other problems involving weak stability -- 3.3 Strong stability -- 3.3.1 Existence of a strongly stable matching -- 3.3.2 Rural Hospitals Theorem for hrt -- 3.3.3 Strongly stable matchings form a lattice -- 3.3.4 Finding a strongly stable matching -- 3.4 Super-stability -- 3.4.1 Existence of a super-stable matching -- 3.4.2 Rural Hospitals Theorem for hrt -- 3.4.3 Super-stable matchings form a lattice -- 3.4.4 Finding a super-stable matching -- 3.4.5 Optimal super-stable matchings -- 3.5 Other results -- 3.5.1 Semi-strong stability -- 3.5.2 Many-many strongly stable matchings -- 3.5.3 Partially-ordered preference lists -- 3.6 Conclusions and open problems -- 4. The Stable Roommates problem -- 4.1 Introduction -- 4.2 Updates to open problems 8-12 from Gusfield &amp -- Irving -- 4.2.1 8: Solvable Roommates Instances -- 4.2.2 9: Roommates to Marriage -- 4.2.3 10: Succinct Certificates -- 4.2.4 11: Algorithmic Improvements -- 4.2.5 12: Optimal Roommates -- 4.2.6 12.1: Linear Programming for Roommates -- 4.3 Stable partitions -- 4.3.1 Introduction -- 4.3.2 Definition and structure of stable partitions -- 4.3.3 Algorithms for finding a stable partition -- 4.3.4 Maximum stable matchings -- 4.3.5 Stable half-matchings -- 4.3.6 P-stable matchings and absorbing sets -- 4.4 Mirror posets and median graphs -- 4.5 Indifference -- 4.5.1 Introduction -- 4.5.2 Weakly stable matchings -- 4.5.3 Strongly stable matchings
Title Algorithmics of matching under preferences
URI http://portal.igpublish.com/iglibrary/search/WSPCB0003171.html
https://cir.nii.ac.jp/crid/1130282271634546048
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=1168176
https://www.worldscientific.com/doi/10.1142/8591
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9789814425254&uid=none
Volume 2
WOSCitedRecordID wos0000657015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6xghBF4scAUWAoIJ6QIuIkju3XVgUk2JjEgL1ZdpyMipFWTZn253OXuF42HhAPvFhNKvXSu-juvvPdZ4BXVMwvuGVxLbIszgvnYpPUMua1Q_AhMowxHWX-R3FwII-P1aEf9mu74wRE08jzc7X6r6bGe2hsGp39B3OHH8Ub-BmNjiuaHdcrGXG49P3GpydLhPrffxLxMm2bo5ft6ks0J7YmNgA_2xfS6H3TUAvn5d52XwKg4xhCCWCLBJVEZJTytKev_NMv5sSzSlx1F34_dONNp5jlcEx-5A7sIPwYwfV3809fPoRaVaKSIukZFIeSEOSGC3UTbntBb0jMGMam_YF-Gn34piUe2JNVqKthHG8Wi0s5_Z2OILYfAqUeqUGQP7oHIxr8uA_XqmYX7m6Pu4i899uF8X6guG0fwOuhuqNlHW3VHXXqjgbqfghf386PZu9jf_BEbLhSIomdLXPLWVmJ2tq8kKkpa4GRIJGGKfxSpQ6jCKaSphCYD-IfdtKVzpUZoj-buuwRjJplUz2GqMBoktWZEVWS55bgnC0xXXDcKpumxkzg5UBR-uy02yRv9UDTPJ_Ai6H-9KpnItHfPh_OpgRrmWAT2EOl6nJBK6P9aMz9EA1nOc8L9NMTiLbq1p0M3_2r59MZY4VkosBnuWIG3T9MP72earLsk7_IeQq3Lt7RZzDarH9Ve3CjPNss2vVz_2r9Bv3oPGg
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Algorithmics+of+matching+under+preferences&rft.au=Manlove%2C+David&rft.date=2013-01-01&rft.isbn=9789814425247&rft_id=info:doi/10.1142%2F8591&rft.externalDocID=BB12550258
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97898144%2F9789814425254.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FWSPCB0003171_null_0_320.png
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.worldscientific.com%2Faction%2FshowCoverImage%3Fdoi%3D10.1142%2F8591