Nearest-Neighbor Methods in Learning and Vision Theory and Practice
Regression and classification methods based on similarity of the input to stored examples have not been widely used in applications involving very large sets of high-dimensional data. Recent advances in computational geometry and machine learning, however, may alleviate the problems in using these m...
Uloženo v:
| Hlavní autoři: | , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge, Mass
MIT Press
2006
The MIT Press |
| Vydání: | 1 |
| Edice: | Neural Information Processing series |
| Témata: | |
| ISBN: | 9780262195478, 026219547X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Intro -- Contents -- Series Foreword -- Preface -- 1 Introduction -- I THEORY -- 2 Nearest-Neighbor Searching and Metric Space Dimensions -- 3 Locality-Sensitive Hashing Using Stable Distributions -- II APPLICATIONS: LEARNING -- 4 New Algorithms for Efficient High-Dimensional Nonparametric Classification -- 5 Approximate Nearest Neighbor Regression in Very High Dimensions -- 6 Learning Embeddings for Fast Approximate Nearest Neighbor Retrieval -- III APPLICATIONS: VISION -- 7 Parameter-Sensitive Hashing for Fast Pose Estimation -- 8 Contour Matching Using Approximate Earth Mover's Distance -- 9 Adaptive Mean Shift Based Clustering in High Dimensions -- 10 Object Recognition using Locality Sensitive Hashing of Shape Contexts -- Contributors -- Index

