Nearest-Neighbor Methods in Learning and Vision Theory and Practice

Regression and classification methods based on similarity of the input to stored examples have not been widely used in applications involving very large sets of high-dimensional data. Recent advances in computational geometry and machine learning, however, may alleviate the problems in using these m...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Shakhnarovich, Gregory, Darrell, Trevor, Indyk, Piotr
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Cambridge, Mass MIT Press 2006
The MIT Press
Vydání:1
Edice:Neural Information Processing series
Témata:
ISBN:9780262195478, 026219547X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • Intro -- Contents -- Series Foreword -- Preface -- 1 Introduction -- I THEORY -- 2 Nearest-Neighbor Searching and Metric Space Dimensions -- 3 Locality-Sensitive Hashing Using Stable Distributions -- II APPLICATIONS: LEARNING -- 4 New Algorithms for Efficient High-Dimensional Nonparametric Classification -- 5 Approximate Nearest Neighbor Regression in Very High Dimensions -- 6 Learning Embeddings for Fast Approximate Nearest Neighbor Retrieval -- III APPLICATIONS: VISION -- 7 Parameter-Sensitive Hashing for Fast Pose Estimation -- 8 Contour Matching Using Approximate Earth Mover's Distance -- 9 Adaptive Mean Shift Based Clustering in High Dimensions -- 10 Object Recognition using Locality Sensitive Hashing of Shape Contexts -- Contributors -- Index