Radial Basis Function Neural Network Based on an Improved Exponential Decreasing Inertia Weight-Particle Swarm Optimization Algorithm for AQI Prediction
This paper proposed a novel radial basis function (RBF) neural network model optimized by exponential decreasing inertia weight particle swarm optimization (EDIW-PSO). Based on the inertia weight decreasing strategy, we propose a new Exponential Decreasing Inertia Weight (EDIW) to improve the PSO al...
Uložené v:
| Vydané v: | Abstract and Applied Analysis Ročník 2014; číslo 2014; s. 399 - 407-144 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cairo, Egypt
Hindawi Limiteds
01.01.2014
Hindawi Publishing Corporation John Wiley & Sons, Inc Wiley |
| Predmet: | |
| ISSN: | 1085-3375, 1687-0409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | This paper proposed a novel radial basis function (RBF) neural network model optimized by exponential decreasing inertia weight particle swarm optimization (EDIW-PSO). Based on the inertia weight decreasing strategy, we propose a new Exponential Decreasing Inertia Weight (EDIW) to improve the PSO algorithm. We use the modified EDIW-PSO algorithm to determine the centers, widths, and connection weights of RBF neural network. To assess the performance of the proposed EDIW-PSO-RBF model, we choose the daily air quality index (AQI) of Xi’an for prediction and obtain improved results. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1085-3375 1687-0409 |
| DOI: | 10.1155/2014/178313 |