Radial Basis Function Neural Network Based on an Improved Exponential Decreasing Inertia Weight-Particle Swarm Optimization Algorithm for AQI Prediction
This paper proposed a novel radial basis function (RBF) neural network model optimized by exponential decreasing inertia weight particle swarm optimization (EDIW-PSO). Based on the inertia weight decreasing strategy, we propose a new Exponential Decreasing Inertia Weight (EDIW) to improve the PSO al...
Gespeichert in:
| Veröffentlicht in: | Abstract and Applied Analysis Jg. 2014; H. 2014; S. 399 - 407-144 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cairo, Egypt
Hindawi Limiteds
01.01.2014
Hindawi Publishing Corporation John Wiley & Sons, Inc Wiley |
| Schlagworte: | |
| ISSN: | 1085-3375, 1687-0409 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper proposed a novel radial basis function (RBF) neural network model optimized by exponential decreasing inertia weight particle swarm optimization (EDIW-PSO). Based on the inertia weight decreasing strategy, we propose a new Exponential Decreasing Inertia Weight (EDIW) to improve the PSO algorithm. We use the modified EDIW-PSO algorithm to determine the centers, widths, and connection weights of RBF neural network. To assess the performance of the proposed EDIW-PSO-RBF model, we choose the daily air quality index (AQI) of Xi’an for prediction and obtain improved results. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1085-3375 1687-0409 |
| DOI: | 10.1155/2014/178313 |