Generalized Contraction and Invariant Approximation Results on Nonconvex Subsets of Normed Spaces
Wardowski (2012) introduced a new type of contractive mapping and proved a fixed point result in complete metric spaces as a generalization of Banach contraction principle. In this paper, we introduce a notion of generalized F-contraction mappings which is used to prove a fixed point result for gene...
Uloženo v:
| Vydáno v: | Abstract and Applied Analysis Ročník 2014; číslo 2014; s. 479 - 483-558 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cairo, Egypt
Hindawi Limiteds
01.01.2014
Hindawi Publishing Corporation John Wiley & Sons, Inc Wiley |
| Témata: | |
| ISSN: | 1085-3375, 1687-0409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Wardowski (2012) introduced a new type of contractive mapping and proved a fixed point result in complete metric spaces as a generalization of Banach contraction principle. In this paper, we introduce a notion of generalized F-contraction mappings which is used to prove a fixed point result for generalized nonexpansive mappings on star-shaped subsets of normed linear spaces. Some theorems on invariant approximations in normed linear spaces are also deduced. Our results extend, unify, and generalize comparable results in the literature. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1085-3375 1687-0409 |
| DOI: | 10.1155/2014/391952 |