Data mining for the social sciences an introduction

We live in a world of big data: the amount of information collected on human behavior each day is staggering, and exponentially greater than at any time in the past. Additionally, powerful algorithms are capable of churning through seas of data to uncover patterns. Providing a simple and accessible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Attewell, Paul, Monaghan, David
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Oakland, Calif University of California Press 2015
Ausgabe:1
Schlagworte:
ISBN:9780520280984, 9780520960596, 0520960599, 9780520280977, 0520280989, 0520280970
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We live in a world of big data: the amount of information collected on human behavior each day is staggering, and exponentially greater than at any time in the past. Additionally, powerful algorithms are capable of churning through seas of data to uncover patterns. Providing a simple and accessible introduction to data mining, Paul Attewell and David B. Monaghan discuss how data mining substantially differs from conventional statistical modeling familiar to most social scientists. The authors also empower social scientists to tap into these new resources and incorporate data mining methodologies in their analytical toolkits. Data Mining for the Social Sciences demystifies the process by describing the diverse set of techniques available, discussing the strengths and weaknesses of various approaches, and giving practical demonstrations of how to carry out analyses using tools in various statistical software packages.
AbstractList We live in a world of big data: the amount of information collected on human behavior each day is staggering, and exponentially greater than at any time in the past. Additionally, powerful algorithms are capable of churning through seas of data to uncover patterns. Providing a simple and accessible introduction to data mining, Paul Attewell and David B. Monaghan discuss how data mining substantially differs from conventional statistical modeling familiar to most social scientists. The authors also empower social scientists to tap into these new resources and incorporate data mining methodologies in their analytical toolkits. Data Mining for the Social Sciences demystifies the process by describing the diverse set of techniques available, discussing the strengths and weaknesses of various approaches, and giving practical demonstrations of how to carry out analyses using tools in various statistical software packages.
We live in a world of big data: the amount of information collected on human behavior each day is staggering, and exponentially greater than at any time in the past. Additionally, powerful algorithms are capable of churning through seas of data to uncover patterns. Providing a simple and accessible introduction to data mining, Paul Attewell and David B. Monaghan discuss how data mining substantially differs from conventional statistical modeling familiar to most social scientists. The authors also empower social scientists to tap into these new resources and incorporate data mining methodologies in their analytical toolkits.Data Mining for the Social Sciencesdemystifies the process by describing the diverse set of techniques available, discussing the strengths and weaknesses of various approaches, and giving practical demonstrations of how to carry out analyses using tools in various statistical software packages.
Author Monaghan, David
Attewell, Paul
Author_xml – sequence: 1
  fullname: Attewell, Paul
– sequence: 2
  fullname: Monaghan, David
BackLink https://cir.nii.ac.jp/crid/1130000795785968256$$DView record in CiNii
BookMark eNplkc1PVDEUxUsUIoOzdMWCl2BiWIz2-2MpI4oJiS6AbdN2-t50eLyObQfkv7fjm0iIm7Y355dz7r2dgNdDHDwA7xD8iBhmn5SQkGGoOGSK74HJv0K9AtOdiCVUku6DCYaIQsKw4AfgUFUJI07RGzDNeQVhFYkQCh2C0y-mmOY-DGHomjampix9k6MLpm-yC35wPr8F-63ps5_u7iNw-_Xien45u_rx7fv889XMMCkxnjFpxcIj6hZeOCWls5ZZ2jpCWmg4tpxaYZCgWCqlMDFctFRwSVupLKNckSNwNhqbfOcf8zL2JeuH3tsY77J-Mf8z-2j64tPCd2nzVB_63iT3H_thZNcp_tr4XPRfS-eHkkyvL87nqA4AJazk8Y70qfdd1GM0Y5grWdX3ozqEoF3YngiRuk4oFBOyRknMtnEnI7bKJaadxUq7UhD5jTrXPTcUuvXG9iEv6_r1OoXa_JO-mf883_4R4ZT8AR9QjrQ
ContentType eBook
Book
Copyright 2015 David B. Monaghan
2015 Paul Attewell
Copyright_xml – notice: 2015 Paul Attewell
– notice: 2015 David B. Monaghan
DBID E05
RYH
YSPEL
DEWEY 006.3/12
DOI 10.1525/9780520960596
DatabaseName University of California Press eBooks
CiNii Complete
Perlego
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
Political Science
Computer Science
EISBN 0520960599
9780520960596
Edition 1
ExternalDocumentID 9780520960596
EBC1882080
552698
BB18721160
10.1525/j.ctt13x1gcg
UCPB0001364
Genre Electronic books
GroupedDBID -VQ
-VX
AABBV
AAZEP
ABARN
ABCYY
ABGYK
ABMRC
ABQPQ
ABYBY
ACBVX
ACBYE
ACLGV
ACNAM
ACTWL
ACYTI
ADHSM
ADVEM
ADWAQ
AERYV
AFAWW
AFTSL
AHWGJ
AILDO
AIXPE
AJFER
ALMA_UNASSIGNED_HOLDINGS
ALUEM
AMYDA
AQQNK
AVGCG
AXFPL
AZZ
BBABE
BPBUR
CZZ
DHNOV
DUGUG
E05
EBSCA
EBZNK
ECOWB
GHDSN
HELXT
J-X
JJU
JLPMJ
KBOFU
MYL
NK1
NK2
PQQKQ
PYZUL
QD8
SUPCW
XI1
YSPEL
~I6
RYH
ID FETCH-LOGICAL-a58822-58b7de14cde7c988cbb5b4fc33f0a62b64b7a1742899923a67f47684f89b54693
ISBN 9780520280984
9780520960596
0520960599
9780520280977
0520280989
0520280970
IngestDate Thu Sep 11 08:26:12 EDT 2025
Fri Nov 21 19:37:54 EST 2025
Wed Dec 10 11:06:17 EST 2025
Tue Dec 02 17:24:38 EST 2025
Thu Jun 26 22:25:24 EDT 2025
Mon Sep 22 07:06:41 EDT 2025
Thu Sep 11 08:22:35 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords confusion matrix
data scholarship
software for data mining
data mining
social scientists
weka
analyzing data
chaid
data science
naive bayes
studying data
hardware for data mining
partition trees
statistical modeling
text mining
big data
bayesian networks
vif regression
data analysis
data processing
permutation tests
scholarly data
business analytics
social science
bootstrapping
heteroscedasticity
classification and regression trees
statistical methods
classification trees
LCCN 2014035276
LCCallNum H61.3A88 2015
LCCallNum_Ident H61.3 -- .A88 2015eb
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a58822-58b7de14cde7c988cbb5b4fc33f0a62b64b7a1742899923a67f47684f89b54693
Notes Bibliography: p. 239-244
Includes index
OCLC 905221641
PQID EBC1882080
PageCount 265
ParticipantIDs askewsholts_vlebooks_9780520960596
walterdegruyter_marc_9780520960596
proquest_ebookcentral_EBC1882080
perlego_books_552698
nii_cinii_1130000795785968256
jstor_books_j_ctt13x1gcg
igpublishing_primary_UCPB0001364
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2015.
20150504
c2015
2015
[2015]
2015-04-30
PublicationDateYYYYMMDD 2015-01-01
2015-05-04
2015-04-30
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationPlace Oakland, Calif
PublicationPlace_xml – name: Oakland, Calif
– name: Berkeley
– name: Berkeley, CA
PublicationYear 2015
Publisher University of California Press
Publisher_xml – name: University of California Press
RestrictionsOnAccess restricted access
SSID ssj0001437791
Score 2.3206434
Snippet We live in a world of big data: the amount of information collected on human behavior each day is staggering, and exponentially greater than at any time in the...
SourceID askewsholts
walterdegruyter
proquest
perlego
nii
jstor
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms analyzing data
bayesian networks
big data
bootstrapping
business analytics
chaid
classification and regression trees
classification trees
confusion matrix
data analysis
Data mining
Data processing
data scholarship
data science
Demography
hardware for data mining
heteroscedasticity
naive bayes
partition trees
permutation tests
Political Science
POLITICAL SCIENCE / General
POLITICAL SCIENCE / Political Economy
Population Studies
scholarly data
SOCIAL SCIENCE
SOCIAL SCIENCE / Demography
Social sciences
Social sciences -- Data processing
Social sciences -- Statistical methods
social scientists
software for data mining
Statistical methods
statistical modeling
studying data
text mining
vif regression
weka
SubjectTermsDisplay Demography
Social Science
Subtitle an introduction
TableOfContents Data mining for the social sciences : an introduction -- Contents -- Acknowledgments -- Part 1: Concepts -- 1. What Is Data Mining? -- 2. Contrasts with the Conventional Statistical Approach -- 3. Some General Strategies Used in Data Mining -- 4. Important Stages in a Data Mining Project -- Part 2: Worked Examples -- 5. Preparing Training and Test Datasets -- 6. Variable Selection Tools -- 7. Creating New Variables Using Binning and Trees -- 8. Extracting Variables -- 9. Classifiers -- 10. Classification Trees -- 11. Neural Networks -- 12. Clustering -- 13. Latent Class Analysis and Mixture Models -- 14. Association Rules -- Conclusion -- Bibliography -- Notes -- Index.
Front Matter Table of Contents ACKNOWLEDGMENTS 1: WHAT IS DATA MINING? 2: CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH 3: SOME GENERAL STRATEGIES USED IN DATA MINING 4: IMPORTANT STAGES IN A DATA MINING PROJECT 5: PREPARING TRAINING AND TEST DATASETS 6: VARIABLE SELECTION TOOLS 7: Creating New Variables Using Binning and Trees 8: EXTRACTING VARIABLES 9: CLASSIFIERS 10: CLASSIFICATION TREES 11: NEURAL NETWORKS 12: CLUSTERING 13: LATENT CLASS ANALYSIS AND MIXTURE MODELS 14: ASSOCIATION RULES CONCLUSION BIBLIOGRAPHY NOTES INDEX
Boosted Trees and Random Forests -- 11. Neural Networks -- 12. Clustering -- Hierarchical Clustering -- K-Means Clustering -- Normal Mixtures -- Self-Organized Maps -- 13. Latent Class Analysis and Mixture Models -- Latent Class Analysis -- Latent Class Regression -- Mixture Models -- 14. Association Rules -- Conclusion -- Bibliography -- Notes -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- R -- S -- T -- U -- V -- W -- X -- Y -- Z
Cover -- Title -- Copyright -- Contents -- Acknowledgments -- PART 1. CONCEPTS -- 1. What Is Data Mining? -- The Goals of This Book -- Software and Hardware for Data Mining -- Basic Terminology -- 2. Contrasts with the Conventional Statistical Approach -- Predictive Power in Conventional Statistical Modeling -- Hypothesis Testing in the Conventional Approach -- Heteroscedasticity as a Threat to Validity in Conventional Modeling -- The Challenge of Complex and Nonrandom Samples -- Bootstrapping and Permutation Tests -- Nonlinearity in Conventional Predictive Models -- Statistical Interactions in Conventional Models -- Conclusion -- 3. Some General Strategies Used in Data Mining -- Cross-Validation -- Overfitting -- Boosting -- Calibrating -- Measuring Fit: The Confusion Matrix and ROC Curves -- Identifying Statistical Interactions and Effect Heterogeneity in Data Mining -- Bagging and Random Forests -- The Limits of Prediction -- Big Data Is Never Big Enough -- 4. Important Stages in a Data Mining Project -- When to Sample Big Data -- Building a Rich Array of Features -- Feature Selection -- Feature Extraction -- Constructing a Model -- PART 2. WORKED EXAMPLES -- 5. Preparing Training and Test Datasets -- The Logic of Cross-Validation -- Cross-Validation Methods: An Overview -- 6. Variable Selection Tools -- Stepwise Regression -- The LASSO -- VIF Regression -- 7. Creating New Variables Using Binning and Trees -- Discretizing a Continuous Predictor -- Continuous Outcomes and Continuous Predictors -- Binning Categorical Predictors -- Using Partition Trees to Study Interactions -- 8. Extracting Variables -- Principal Component Analysis -- Independent Component Analysis -- 9. Classifiers -- K-Nearest Neighbors -- Naive Bayes -- Support Vector Machines -- Optimizing Prediction across Multiple Classifiers -- 10. Classification Trees -- Partition Trees
ACKNOWLEDGMENTS --
14. ASSOCIATION RULES --
8. EXTRACTING VARIABLES --
4. IMPORTANT STAGES IN A DATA MINING PROJECT --
9. CLASSIFIERS --
3. SOME GENERAL STRATEGIES USED IN DATA MINING --
PART 2 WORKED EXAMPLES --
CONTENTS --
5. PREPARING TRAINING AND TEST DATASETS --
CONCLUSION. Where Next? --
10. CLASSIFICATION TREES --
NOTES --
PART 1 CONCEPTS --
1. WHAT IS DATA MINING? --
7. CREATING NEW VARIABLES --
12. CLUSTERING --
BIBLIOGRAPHY --
Frontmatter --
2. CONTRASTS WITH THE CONVENTIONAL STATISTICAL APPROACH --
6. VARIABLE SELECTION TOOLS --
INDEX
11. NEURAL NETWORKS --
13. LATENT CLASS ANALYSIS AND MIXTURE MODELS --
Title Data mining for the social sciences
URI http://portal.igpublish.com/iglibrary/search/UCPB0001364.html
https://www.jstor.org/stable/10.1525/j.ctt13x1gcg
https://cir.nii.ac.jp/crid/1130000795785968256
https://www.perlego.com/book/552698/data-mining-for-the-social-sciences-an-introduction-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=1882080
https://www.degruyterbrill.com/isbn/9780520960596
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780520960596&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFH6ClQM7IGCgZWMoAg4gFJGQOHGOrBvsANUkBtrNsh07FKasarJR_nueHSdtAkhw4GK1kd1Y76uT9-N77wE8EzrUqBejkUOIDhISy4AXhAdZLjgNU0l1ZBOF32ezGT0_z09dV9bathPIqoquVvniv0KN1xBskzr7D3D3P4oX8DOCjiPCjuNII-6_togf8Ya__GAbPvTkQZd9605wrz-_aRrV0aEH3EDUy8svrU90zXZ3ToGIjJwCf8zy2uR1tCak5cGkpgnPbx-obXekX-YNC1ePXig9zW-w7CZMTJQXDeTJu5Ojj7O1JywxRQ8jVwAVb_hqsG4btnn9DZ_4-DZoalNRtlz0HrqORYqaQTWfow2zUMsLVV4O7IU73y3zoFDl8upH00W6rQJxdhcmymSV3IMbqroPXguL38HiP3fVv1_swFMDo9_C6KM8fYTRH81_AJ_fHp9NTwLXySLgBE0YPAlUZIWKElmoTOaUSiGISLSMYx3y9LVIE5FxNA6N-YsqN08znZgQqaa5IEmaxw9hq7qs1C74RR5LzgmeMGpquFIhtNJhluJ8JbOQevBkQ17s-sJG3Ws2EKoH_qYY2aItbcI-TU8PrVmQJh7sWtGydvlXJpsmildRKUsPDlDaTM7NGJmAKGqauSmblKcUdWgPdhwObjExfexxZ34HCrObcvxjdnw4jVBMaLzg5kdgMVPSZbj5vb-ZtA-31wfjEWw1yyt1ALfkdTOvl4_df_AnnYtsFA
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Data+Mining+for+the+Social+Sciences&rft.au=Attewell%2C+Paul&rft.au=Monaghan%2C+David&rft.date=2015-01-01&rft.pub=University+of+California+Press&rft.isbn=9780520960596&rft_id=info:doi/10.1525%2F9780520960596&rft.externalDBID=n%2Fa&rft.externalDocID=9780520960596
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fingram_csplus_gexhsuob%2F9780520960596.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.degruyterbrill.com%2Fdocument%2Fcover%2Fisbn%2F9780520960596%2Foriginal
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97805209%2F9780520960596.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FUCPB0001364_null_0_320.png