Supramolecular Assembly of Peptide Amphiphiles
Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form β-sheets...
Uloženo v:
| Vydáno v: | Accounts of chemical research Ročník 50; číslo 10; s. 2440 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
17.10.2017
|
| Témata: | |
| ISSN: | 1520-4898, 1520-4898 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form β-sheets among the amino acids near the alkyl tail, while the residues farthest from the tail are charged to promote solubility and in some cases contain a bioactive sequence. In water, β-sheet formation and hydrophobic collapse of the aliphatic tails induce assembly of the molecules into supramolecular one-dimensional nanostructures, commonly high-aspect-ratio cylindrical or ribbonlike nanofibers. These nanostructures hold significant promise for biomedical functions due to their ability to display a high density of biological signals on their surface for targeting or to activate pathways, as well as for biocompatibility and biodegradable nature. Recent studies have shown that supramolecular systems, such as PAs, often become kinetically trapped in local minima along their self-assembly reaction coordinate, not unlike the pathways associated with protein folding. Furthermore, the assembly pathway can influence the shape, internal structure, and dimension of nanostructures and thereby affect their bioactivity. We discuss methods to map the energy landscape of a PA structure as a function of thermal energy and ionic strength and vary these parameters to convert between kinetically trapped and thermodynamically favorable states. We also demonstrate that the pathway-dependent morphology of the PA assembly can determine biological cell adhesion and survival rates. The dynamics associated with the nanostructures are also critical to their function, and techniques are now available to probe the internal dynamics of these nanostructures. For example, by conjugating radical electron spin labels to PAs, electron paramagnetic resonance spectroscopy can be used to study the rotational diffusion rates within the fiber, showing a liquidlike to solidlike transition through the cross section of the nanofiber. PAs can also be labeled with fluorescent dyes, allowing the use of super-resolution microscopy techniques to study the molecular exchange dynamics between PA fibers. For a weak hydrogen-bonding PA, individual PA molecules or clusters exchange between fibers in time scales as short as minutes. The amount of hydrogen bonding within PAs that dictates the dynamics also plays an important role in biological function. In one case, weak hydrogen bonding within a PA resulted in cell death through disruption of lipid membranes, while in another example reduced hydrogen bonding enhanced growth factor signaling by increasing lipid raft mobility. PAs are a promising platform for designing advanced hybrid materials. We discuss a covalent polymer with a rigid aromatic imine backbone and alkylated peptide side chains that simultaneously polymerizes and interacts with a supramolecular PA structure with identical chemistry to that of the side chains. The covalent polymerization can be "catalyzed" by noncovalent polymerization of supramolecular monomers, taking advantage of the dynamic nature of supramolecular assemblies. These novel hybrid structures have potential in self-repairing materials and as reusable scaffolds for delivery of drugs or other chemicals. Finally, we highlight recent biomedical applications of PAs and related structures, ranging from bone regeneration to decreasing blood loss during internal bleeding. |
|---|---|
| AbstractList | Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form β-sheets among the amino acids near the alkyl tail, while the residues farthest from the tail are charged to promote solubility and in some cases contain a bioactive sequence. In water, β-sheet formation and hydrophobic collapse of the aliphatic tails induce assembly of the molecules into supramolecular one-dimensional nanostructures, commonly high-aspect-ratio cylindrical or ribbonlike nanofibers. These nanostructures hold significant promise for biomedical functions due to their ability to display a high density of biological signals on their surface for targeting or to activate pathways, as well as for biocompatibility and biodegradable nature. Recent studies have shown that supramolecular systems, such as PAs, often become kinetically trapped in local minima along their self-assembly reaction coordinate, not unlike the pathways associated with protein folding. Furthermore, the assembly pathway can influence the shape, internal structure, and dimension of nanostructures and thereby affect their bioactivity. We discuss methods to map the energy landscape of a PA structure as a function of thermal energy and ionic strength and vary these parameters to convert between kinetically trapped and thermodynamically favorable states. We also demonstrate that the pathway-dependent morphology of the PA assembly can determine biological cell adhesion and survival rates. The dynamics associated with the nanostructures are also critical to their function, and techniques are now available to probe the internal dynamics of these nanostructures. For example, by conjugating radical electron spin labels to PAs, electron paramagnetic resonance spectroscopy can be used to study the rotational diffusion rates within the fiber, showing a liquidlike to solidlike transition through the cross section of the nanofiber. PAs can also be labeled with fluorescent dyes, allowing the use of super-resolution microscopy techniques to study the molecular exchange dynamics between PA fibers. For a weak hydrogen-bonding PA, individual PA molecules or clusters exchange between fibers in time scales as short as minutes. The amount of hydrogen bonding within PAs that dictates the dynamics also plays an important role in biological function. In one case, weak hydrogen bonding within a PA resulted in cell death through disruption of lipid membranes, while in another example reduced hydrogen bonding enhanced growth factor signaling by increasing lipid raft mobility. PAs are a promising platform for designing advanced hybrid materials. We discuss a covalent polymer with a rigid aromatic imine backbone and alkylated peptide side chains that simultaneously polymerizes and interacts with a supramolecular PA structure with identical chemistry to that of the side chains. The covalent polymerization can be "catalyzed" by noncovalent polymerization of supramolecular monomers, taking advantage of the dynamic nature of supramolecular assemblies. These novel hybrid structures have potential in self-repairing materials and as reusable scaffolds for delivery of drugs or other chemicals. Finally, we highlight recent biomedical applications of PAs and related structures, ranging from bone regeneration to decreasing blood loss during internal bleeding. Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form β-sheets among the amino acids near the alkyl tail, while the residues farthest from the tail are charged to promote solubility and in some cases contain a bioactive sequence. In water, β-sheet formation and hydrophobic collapse of the aliphatic tails induce assembly of the molecules into supramolecular one-dimensional nanostructures, commonly high-aspect-ratio cylindrical or ribbonlike nanofibers. These nanostructures hold significant promise for biomedical functions due to their ability to display a high density of biological signals on their surface for targeting or to activate pathways, as well as for biocompatibility and biodegradable nature. Recent studies have shown that supramolecular systems, such as PAs, often become kinetically trapped in local minima along their self-assembly reaction coordinate, not unlike the pathways associated with protein folding. Furthermore, the assembly pathway can influence the shape, internal structure, and dimension of nanostructures and thereby affect their bioactivity. We discuss methods to map the energy landscape of a PA structure as a function of thermal energy and ionic strength and vary these parameters to convert between kinetically trapped and thermodynamically favorable states. We also demonstrate that the pathway-dependent morphology of the PA assembly can determine biological cell adhesion and survival rates. The dynamics associated with the nanostructures are also critical to their function, and techniques are now available to probe the internal dynamics of these nanostructures. For example, by conjugating radical electron spin labels to PAs, electron paramagnetic resonance spectroscopy can be used to study the rotational diffusion rates within the fiber, showing a liquidlike to solidlike transition through the cross section of the nanofiber. PAs can also be labeled with fluorescent dyes, allowing the use of super-resolution microscopy techniques to study the molecular exchange dynamics between PA fibers. For a weak hydrogen-bonding PA, individual PA molecules or clusters exchange between fibers in time scales as short as minutes. The amount of hydrogen bonding within PAs that dictates the dynamics also plays an important role in biological function. In one case, weak hydrogen bonding within a PA resulted in cell death through disruption of lipid membranes, while in another example reduced hydrogen bonding enhanced growth factor signaling by increasing lipid raft mobility. PAs are a promising platform for designing advanced hybrid materials. We discuss a covalent polymer with a rigid aromatic imine backbone and alkylated peptide side chains that simultaneously polymerizes and interacts with a supramolecular PA structure with identical chemistry to that of the side chains. The covalent polymerization can be "catalyzed" by noncovalent polymerization of supramolecular monomers, taking advantage of the dynamic nature of supramolecular assemblies. These novel hybrid structures have potential in self-repairing materials and as reusable scaffolds for delivery of drugs or other chemicals. Finally, we highlight recent biomedical applications of PAs and related structures, ranging from bone regeneration to decreasing blood loss during internal bleeding.Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form β-sheets among the amino acids near the alkyl tail, while the residues farthest from the tail are charged to promote solubility and in some cases contain a bioactive sequence. In water, β-sheet formation and hydrophobic collapse of the aliphatic tails induce assembly of the molecules into supramolecular one-dimensional nanostructures, commonly high-aspect-ratio cylindrical or ribbonlike nanofibers. These nanostructures hold significant promise for biomedical functions due to their ability to display a high density of biological signals on their surface for targeting or to activate pathways, as well as for biocompatibility and biodegradable nature. Recent studies have shown that supramolecular systems, such as PAs, often become kinetically trapped in local minima along their self-assembly reaction coordinate, not unlike the pathways associated with protein folding. Furthermore, the assembly pathway can influence the shape, internal structure, and dimension of nanostructures and thereby affect their bioactivity. We discuss methods to map the energy landscape of a PA structure as a function of thermal energy and ionic strength and vary these parameters to convert between kinetically trapped and thermodynamically favorable states. We also demonstrate that the pathway-dependent morphology of the PA assembly can determine biological cell adhesion and survival rates. The dynamics associated with the nanostructures are also critical to their function, and techniques are now available to probe the internal dynamics of these nanostructures. For example, by conjugating radical electron spin labels to PAs, electron paramagnetic resonance spectroscopy can be used to study the rotational diffusion rates within the fiber, showing a liquidlike to solidlike transition through the cross section of the nanofiber. PAs can also be labeled with fluorescent dyes, allowing the use of super-resolution microscopy techniques to study the molecular exchange dynamics between PA fibers. For a weak hydrogen-bonding PA, individual PA molecules or clusters exchange between fibers in time scales as short as minutes. The amount of hydrogen bonding within PAs that dictates the dynamics also plays an important role in biological function. In one case, weak hydrogen bonding within a PA resulted in cell death through disruption of lipid membranes, while in another example reduced hydrogen bonding enhanced growth factor signaling by increasing lipid raft mobility. PAs are a promising platform for designing advanced hybrid materials. We discuss a covalent polymer with a rigid aromatic imine backbone and alkylated peptide side chains that simultaneously polymerizes and interacts with a supramolecular PA structure with identical chemistry to that of the side chains. The covalent polymerization can be "catalyzed" by noncovalent polymerization of supramolecular monomers, taking advantage of the dynamic nature of supramolecular assemblies. These novel hybrid structures have potential in self-repairing materials and as reusable scaffolds for delivery of drugs or other chemicals. Finally, we highlight recent biomedical applications of PAs and related structures, ranging from bone regeneration to decreasing blood loss during internal bleeding. |
| Author | Stupp, Samuel I Hendricks, Mark P Sato, Kohei Palmer, Liam C |
| Author_xml | – sequence: 1 givenname: Mark P orcidid: 0000-0003-1295-9879 surname: Hendricks fullname: Hendricks, Mark P organization: Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois 60611, United States – sequence: 2 givenname: Kohei orcidid: 0000-0002-8948-8537 surname: Sato fullname: Sato, Kohei organization: Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois 60611, United States – sequence: 3 givenname: Liam C orcidid: 0000-0003-0804-1168 surname: Palmer fullname: Palmer, Liam C organization: Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States – sequence: 4 givenname: Samuel I orcidid: 0000-0002-5491-7442 surname: Stupp fullname: Stupp, Samuel I organization: Department of Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28876055$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj8lKxEAURQtpsQf9A5Es3SS-V0lNy9A4QYOCug6VGjBSGUwli_57A7YgXDh3cbhwt2TV9Z0j5BohQ6B4p03MtDH93E0xEzUAVeKMbJBRSAup5OpfX5NtjF-wOAUXF2RNpRQcGNuQ7G0eRt32wZk56DEpY3RtHY5J75NXN0yNdUnZDp_NkuDiJTn3OkR3deKOfDzcv--f0sPL4_O-PKSaST6lVhceEI3xhnpWCMkMWJmbGqURSoFi2gLmIJXiknssBII1dZF7J3P0SHfk9nd3GPvv2cWpaptoXAi6c_0cK1Q5p1zlgi7qzUmd69bZahibVo_H6u8j_QEMlVbv |
| CitedBy_id | crossref_primary_10_1007_s40005_025_00768_0 crossref_primary_10_1016_j_ccr_2019_04_001 crossref_primary_10_1016_j_nantod_2024_102247 crossref_primary_10_1021_jacs_5c04788 crossref_primary_10_1016_j_cclet_2019_10_036 crossref_primary_10_1002_anie_202420043 crossref_primary_10_1016_j_ssnmr_2024_101959 crossref_primary_10_2174_0929867330666230408203820 crossref_primary_10_1021_acs_jpcb_4c05751 crossref_primary_10_3390_cancers16193254 crossref_primary_10_1016_j_colsurfb_2024_113761 crossref_primary_10_1021_acs_chemrev_5c00047 crossref_primary_10_1038_s41467_020_20172_6 crossref_primary_10_2147_IJN_S291285 crossref_primary_10_1016_j_bone_2020_115565 crossref_primary_10_1002_smll_201704230 crossref_primary_10_1021_jacs_2c01323 crossref_primary_10_1016_j_jcis_2024_09_065 crossref_primary_10_3389_fchem_2022_1038796 crossref_primary_10_1016_j_cej_2022_141073 crossref_primary_10_1002_chir_23344 crossref_primary_10_1002_anie_202209806 crossref_primary_10_1021_jacs_1c08094 crossref_primary_10_1038_s41557_018_0049_0 crossref_primary_10_1002_smsc_202500224 crossref_primary_10_1038_s41570_023_00532_8 crossref_primary_10_1039_D3NR02738D crossref_primary_10_1016_j_biopha_2023_114376 crossref_primary_10_1016_j_cclet_2018_04_030 crossref_primary_10_1016_j_jcis_2019_12_109 crossref_primary_10_1038_s41467_021_24492_z crossref_primary_10_3389_fchem_2022_852164 crossref_primary_10_1039_D1NR01622A crossref_primary_10_1016_j_colsurfb_2021_112040 crossref_primary_10_1016_j_bpj_2024_05_021 crossref_primary_10_1002_adom_201900033 crossref_primary_10_1002_slct_201901671 crossref_primary_10_1038_s41570_022_00373_x crossref_primary_10_1088_1748_605X_ac92b5 crossref_primary_10_1002_adtp_201900010 crossref_primary_10_1007_s12274_018_2189_3 crossref_primary_10_1002_pi_6312 crossref_primary_10_1007_s10989_021_10289_7 crossref_primary_10_1039_D5SM00432B crossref_primary_10_1002_advs_202104165 crossref_primary_10_1002_ange_202315297 crossref_primary_10_1016_j_ccr_2024_216251 crossref_primary_10_1016_j_pmatsci_2025_101562 crossref_primary_10_1002_ange_202312223 crossref_primary_10_1002_chem_202100739 crossref_primary_10_1016_j_bmc_2023_117481 crossref_primary_10_1016_j_ccr_2020_213418 crossref_primary_10_1002_adfm_202517272 crossref_primary_10_1002_ange_202208681 crossref_primary_10_1002_admi_202102089 crossref_primary_10_1088_1758_5090_aac902 crossref_primary_10_1002_syst_202400094 crossref_primary_10_1002_ange_202415774 crossref_primary_10_1039_D0QM00369G crossref_primary_10_1002_smll_202410850 crossref_primary_10_1016_j_jconrel_2022_03_011 crossref_primary_10_1021_jacs_2c06321 crossref_primary_10_3390_bioengineering7040141 crossref_primary_10_1021_jacs_3c03961 crossref_primary_10_1002_ange_202201234 crossref_primary_10_1021_jacs_3c02993 crossref_primary_10_1002_anie_202218067 crossref_primary_10_1039_D2PY01072K crossref_primary_10_1021_jacs_4c02980 crossref_primary_10_1002_ange_202421536 crossref_primary_10_1002_tcr_201800149 crossref_primary_10_3390_biophysica2040030 crossref_primary_10_1021_acsnano_5c00670 crossref_primary_10_1039_C9SC00193J crossref_primary_10_3389_fbioe_2020_00326 crossref_primary_10_1021_jacs_8b07697 crossref_primary_10_1002_smm2_1021 crossref_primary_10_1038_s41467_019_10341_7 crossref_primary_10_1002_anie_202425049 crossref_primary_10_1016_j_colsurfa_2024_134331 crossref_primary_10_1002_ange_202113403 crossref_primary_10_1002_anie_201814552 crossref_primary_10_1007_s12551_021_00784_y crossref_primary_10_1007_s13726_025_01555_2 crossref_primary_10_1038_s41467_023_41907_1 crossref_primary_10_1016_j_jcis_2019_04_019 crossref_primary_10_1002_chem_202402880 crossref_primary_10_1002_jrs_6137 crossref_primary_10_1016_j_nantod_2022_101594 crossref_primary_10_1039_D0NR03218B crossref_primary_10_1039_D1PY00422K crossref_primary_10_1002_chem_202500429 crossref_primary_10_1002_pep2_24236 crossref_primary_10_1021_jacs_1c11750 crossref_primary_10_1016_j_jconrel_2018_02_041 crossref_primary_10_1039_D1SC05589E crossref_primary_10_3390_nano13192645 crossref_primary_10_1039_D0SC07050E crossref_primary_10_1002_ange_202319839 crossref_primary_10_1002_anie_201908185 crossref_primary_10_1002_ange_202425049 crossref_primary_10_1002_chem_202000995 crossref_primary_10_1038_s42004_024_01308_x crossref_primary_10_1016_j_ces_2024_120971 crossref_primary_10_1007_s40843_022_2087_3 crossref_primary_10_1002_adtp_201900107 crossref_primary_10_1021_jacs_0c03353 crossref_primary_10_1016_j_actbio_2021_10_030 crossref_primary_10_1002_EXP_20210153 crossref_primary_10_1002_smtd_202501275 crossref_primary_10_1021_acs_langmuir_5c01128 crossref_primary_10_3390_gels9100833 crossref_primary_10_1016_j_jcis_2020_09_023 crossref_primary_10_1039_C9SC05808G crossref_primary_10_1002_adma_202301300 crossref_primary_10_1002_admi_202300046 crossref_primary_10_1021_acs_chemmater_5c00666 crossref_primary_10_1021_jacs_8b08648 crossref_primary_10_1002_adfm_202422686 crossref_primary_10_1016_j_actbio_2023_12_020 crossref_primary_10_1002_ange_202207310 crossref_primary_10_1021_acsami_5c10222 crossref_primary_10_1002_adtp_202300128 crossref_primary_10_1002_anie_202113403 crossref_primary_10_1002_ejoc_202000529 crossref_primary_10_1002_adma_202416122 crossref_primary_10_1021_acs_biomac_5c01348 crossref_primary_10_1002_anie_202207310 crossref_primary_10_1016_j_nantod_2021_101198 crossref_primary_10_3390_molecules26051219 crossref_primary_10_1088_1748_605X_ac8e43 crossref_primary_10_1002_advs_202102741 crossref_primary_10_1038_s41551_021_00793_y crossref_primary_10_1016_j_cocis_2018_02_009 crossref_primary_10_1039_D0BM02049D crossref_primary_10_1016_j_ccr_2023_215600 crossref_primary_10_1016_j_matt_2025_102108 crossref_primary_10_1002_adhm_202402939 crossref_primary_10_1002_chem_201902083 crossref_primary_10_1002_cbic_202400348 crossref_primary_10_1016_j_intimp_2023_110721 crossref_primary_10_3390_molecules26154587 crossref_primary_10_1007_s11426_021_1029_x crossref_primary_10_1021_acs_biomac_4c01027 crossref_primary_10_1016_j_actbio_2020_11_009 crossref_primary_10_1002_chem_202404233 crossref_primary_10_1002_chem_202501968 crossref_primary_10_1021_jacs_3c03645 crossref_primary_10_1021_jacs_5c01445 crossref_primary_10_1002_smll_202306175 crossref_primary_10_1126_science_abn3438 crossref_primary_10_1002_ange_201908185 crossref_primary_10_1002_anie_202319839 crossref_primary_10_1038_s41467_021_26681_2 crossref_primary_10_1002_chem_202501288 crossref_primary_10_1039_C8CS00040A crossref_primary_10_1002_slct_202202234 crossref_primary_10_1002_adfm_201906205 crossref_primary_10_1039_C9QM00473D crossref_primary_10_1021_jacs_2c08425 crossref_primary_10_1021_acs_nanolett_5c01112 crossref_primary_10_3390_pharmaceutics15020482 crossref_primary_10_1002_anie_202415774 crossref_primary_10_1016_j_envres_2023_117420 crossref_primary_10_1002_anie_202421536 crossref_primary_10_1021_jacs_5c00105 crossref_primary_10_1016_j_jconrel_2022_06_037 crossref_primary_10_1021_jacs_3c07918 crossref_primary_10_1002_chem_201803026 crossref_primary_10_1002_ange_202115547 crossref_primary_10_1021_jacs_1c01076 crossref_primary_10_1093_chemle_upae017 crossref_primary_10_3389_fbioe_2023_1122456 crossref_primary_10_1021_jacs_0c08179 crossref_primary_10_1002_anie_202502629 crossref_primary_10_1002_anie_202201234 crossref_primary_10_3390_immuno4040021 crossref_primary_10_1002_marc_201800610 crossref_primary_10_1016_j_chempr_2020_06_005 crossref_primary_10_1002_chem_202104116 crossref_primary_10_1016_j_actbio_2020_03_025 crossref_primary_10_1002_advs_201802043 crossref_primary_10_1002_cplu_202500542 crossref_primary_10_1002_ange_202404703 crossref_primary_10_1016_j_colsurfa_2024_135953 crossref_primary_10_1039_D4ME00021H crossref_primary_10_1002_adfm_202420580 crossref_primary_10_1039_C9RA03099A crossref_primary_10_3389_fchem_2022_1040499 crossref_primary_10_3390_pharmaceutics12090888 crossref_primary_10_1146_annurev_bioeng_092419_061127 crossref_primary_10_1080_08927022_2018_1469754 crossref_primary_10_1002_chem_202301678 crossref_primary_10_1002_smll_202401963 crossref_primary_10_1038_s41467_019_13263_6 crossref_primary_10_3390_molecules25245858 crossref_primary_10_3389_fbioe_2020_00069 crossref_primary_10_1002_slct_202100579 crossref_primary_10_1093_chemle_upae241 crossref_primary_10_1002_anie_202208681 crossref_primary_10_1002_adfm_202203767 crossref_primary_10_1021_jacs_3c13139 crossref_primary_10_1039_C8CS00115D crossref_primary_10_1002_slct_202200757 crossref_primary_10_3390_cancers13225745 crossref_primary_10_1021_acs_analchem_5c01851 crossref_primary_10_1002_ange_201804783 crossref_primary_10_1039_C8NR07372D crossref_primary_10_1016_j_jcis_2025_138850 crossref_primary_10_1002_ange_202209806 crossref_primary_10_1039_D0NR08741F crossref_primary_10_1002_wnan_1962 crossref_primary_10_1002_chem_202303986 crossref_primary_10_1007_s13204_023_02836_z crossref_primary_10_1016_j_actbio_2022_11_008 crossref_primary_10_1002_ange_201814552 crossref_primary_10_1021_acsbiomaterials_9b00553 crossref_primary_10_1002_adhm_202202039 crossref_primary_10_1002_cnma_201900549 crossref_primary_10_1002_chem_202303194 crossref_primary_10_1002_prp2_672 crossref_primary_10_1021_jacs_2c01025 crossref_primary_10_1007_s11064_022_03638_5 crossref_primary_10_1016_j_bioactmat_2021_09_029 crossref_primary_10_1002_adfm_202314492 crossref_primary_10_1039_D4SC02545H crossref_primary_10_1016_j_dyepig_2024_112334 crossref_primary_10_1021_jacs_4c08206 crossref_primary_10_1080_10717544_2022_2058647 crossref_primary_10_1039_D5SC02935J crossref_primary_10_1002_ange_202420043 crossref_primary_10_1002_chem_202400622 crossref_primary_10_1002_chem_202403450 crossref_primary_10_1021_jacs_2c05759 crossref_primary_10_1021_jacs_2c03215 crossref_primary_10_1002_anbr_202400042 crossref_primary_10_1016_j_bios_2022_114265 crossref_primary_10_1002_ijch_201900017 crossref_primary_10_1002_anie_202003721 crossref_primary_10_1002_ange_202218067 crossref_primary_10_1002_syst_202000037 crossref_primary_10_1002_slct_202102204 crossref_primary_10_1021_acs_accounts_4c00796 crossref_primary_10_1016_j_cclet_2023_109256 crossref_primary_10_1016_j_jcis_2021_10_023 crossref_primary_10_1016_j_cocis_2023_101768 crossref_primary_10_1016_j_bioactmat_2022_03_038 crossref_primary_10_1002_anie_202315297 crossref_primary_10_1016_j_colsurfb_2025_114539 crossref_primary_10_1016_j_biomaterials_2023_122401 crossref_primary_10_1016_j_bioorg_2020_104012 crossref_primary_10_3389_fbioe_2025_1646622 crossref_primary_10_1038_s41467_020_19683_z crossref_primary_10_1002_anie_201804783 crossref_primary_10_1016_j_apmt_2020_100787 crossref_primary_10_1557_s43577_021_00141_0 crossref_primary_10_1021_jacs_1c00108 crossref_primary_10_1002_cbic_202000581 crossref_primary_10_1016_j_ejmech_2022_114557 crossref_primary_10_1021_jacs_2c00433 crossref_primary_10_5937_arhfarm73_46975 crossref_primary_10_1039_D3SC00401E crossref_primary_10_3389_fchem_2021_723473 crossref_primary_10_1039_C9BM01796H crossref_primary_10_3390_ijms21207577 crossref_primary_10_1002_open_202000017 crossref_primary_10_1002_ijch_202200008 crossref_primary_10_1016_j_jcis_2022_08_104 crossref_primary_10_1002_anie_202312223 crossref_primary_10_1038_s41467_024_51494_4 crossref_primary_10_1002_ange_202502629 crossref_primary_10_1002_chem_201804785 crossref_primary_10_1021_jacs_1c12318 crossref_primary_10_1002_anie_202115547 crossref_primary_10_1039_D5SC02678D crossref_primary_10_1002_anie_202404703 crossref_primary_10_1021_jacs_1c06435 crossref_primary_10_1039_D0SC03442H crossref_primary_10_1016_j_trechm_2025_03_002 crossref_primary_10_1007_s40843_019_9451_7 crossref_primary_10_1021_acs_jpcb_5c00737 crossref_primary_10_1039_D5TB01124H crossref_primary_10_1111_odi_15401 crossref_primary_10_1021_acs_bioconjchem_3c00454 crossref_primary_10_1021_acs_chemrev_9b00509 crossref_primary_10_1002_adfm_202400386 crossref_primary_10_1002_adma_202415643 crossref_primary_10_1016_j_chempr_2019_12_009 crossref_primary_10_1039_D2NR05756E crossref_primary_10_1002_chem_202300954 crossref_primary_10_1002_cplu_202300226 crossref_primary_10_1002_marc_202100914 crossref_primary_10_1016_j_ccr_2024_216054 crossref_primary_10_1016_j_cej_2022_135160 crossref_primary_10_1002_smll_202405698 crossref_primary_10_1007_s41745_018_0060_x crossref_primary_10_1021_jacs_8b09320 crossref_primary_10_1039_C9SC00800D crossref_primary_10_3389_fbioe_2021_782234 crossref_primary_10_1016_j_matdes_2019_108370 crossref_primary_10_1021_jacs_9b05740 crossref_primary_10_1002_cbic_202300628 crossref_primary_10_1016_j_matdes_2020_108901 crossref_primary_10_1002_ange_202003721 crossref_primary_10_1016_j_jconrel_2020_07_010 crossref_primary_10_3390_polym13223983 crossref_primary_10_1002_adma_201707083 crossref_primary_10_1007_s40843_022_2008_1 crossref_primary_10_1016_j_chempr_2020_07_002 crossref_primary_10_3390_ijms22031240 crossref_primary_10_1016_j_radphyschem_2023_111216 crossref_primary_10_3390_molecules23102481 crossref_primary_10_3390_pharmaceutics14081733 crossref_primary_10_1021_jacs_5c02930 crossref_primary_10_1016_j_actbio_2021_01_034 crossref_primary_10_1002_ijch_202200029 crossref_primary_10_4155_tde_2020_0011 crossref_primary_10_1002_adhm_202301364 crossref_primary_10_3390_molecules27134115 crossref_primary_10_1016_j_addr_2024_115327 crossref_primary_10_1016_j_actbio_2019_02_016 crossref_primary_10_1039_C8CS00121A crossref_primary_10_1063_5_0083099 crossref_primary_10_1002_EXP_20210089 crossref_primary_10_1080_17435889_2025_2544535 crossref_primary_10_1002_advs_202001264 crossref_primary_10_1002_fft2_70066 crossref_primary_10_1016_j_molliq_2021_117654 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.accounts.7b00297 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-4898 |
| ExternalDocumentID | 28876055 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: P01 HL108795 – fundername: NCI NIH HHS grantid: U54 CA151880 – fundername: NIDCR NIH HHS grantid: R01 DE015920 – fundername: NIBIB NIH HHS grantid: R01 EB003806 – fundername: NHLBI NIH HHS grantid: R01 HL116577 |
| GroupedDBID | --- -DZ -~X 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 6P2 7~N 85S AABXI ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AETEA AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CGR CS3 CUPRZ CUY CVF D0L EBS ECM ED~ EIF EJD F5P GGK GNL IH2 IH9 JG~ LG6 NPM P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 XSW YZZ ZCA ~02 7X8 |
| ID | FETCH-LOGICAL-a586t-da4f011ccfc2f54785c0d83cb18c799095ad0130899686f14710dcb43fe831f12 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 486 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413392000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-4898 |
| IngestDate | Fri Jul 11 09:44:47 EDT 2025 Mon Jul 21 06:08:07 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a586t-da4f011ccfc2f54785c0d83cb18c799095ad0130899686f14710dcb43fe831f12 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8948-8537 0000-0003-0804-1168 0000-0002-5491-7442 0000-0003-1295-9879 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5647873 |
| PMID | 28876055 |
| PQID | 1936269372 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1936269372 pubmed_primary_28876055 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-17 |
| PublicationDateYYYYMMDD | 2017-10-17 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Accounts of chemical research |
| PublicationTitleAlternate | Acc Chem Res |
| PublicationYear | 2017 |
| References | 14739465 - Science. 2004 Feb 27;303(5662):1352-5 27194204 - Nat Commun. 2016 May 19;7:11561 11721046 - Science. 2001 Nov 23;294(5547):1684-8 24859643 - Nat Mater. 2014 Aug;13(8):812-6 20091874 - Biopolymers. 2010;94(1):1-18 21808036 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13438-43 18369143 - Science. 2008 Mar 28;319(5871):1812-6 25310840 - J Am Chem Soc. 2014 Oct 22;136(42):14746-52 27070195 - Nano Lett. 2016 May 11;16(5):3042-50 24911245 - J Am Chem Soc. 2014 Jun 18;136(24):8540-3 25144245 - J Am Chem Soc. 2014 Sep 3;136(35):12461-8 25546084 - Nano Lett. 2015 Jan 14;15(1):603-9 15600335 - J Am Chem Soc. 2004 Dec 22;126(50):16344-52 26779883 - Nat Mater. 2016 Apr;15(4):469-76 19193022 - Nano Lett. 2009 Mar;9(3):945-51 22928955 - ACS Nano. 2012 Sep 25;6(9):7956-65 26700464 - ACS Nano. 2016 Jan 26;10 (1):899-909 28650443 - Nat Nanotechnol. 2017 Aug;12 (8):821-829 2920827 - FEBS Lett. 1989 Jan 16;243(1):65-9 24120048 - Biomaterials. 2014 Jan;35(1):185-95 20354185 - Cancer Res. 2010 Apr 15;70(8):3020-6 26823427 - Science. 2016 Jan 29;351(6272):497-502 20543836 - Nat Mater. 2010 Jul;9(7):594-601 20377229 - J Am Chem Soc. 2010 May 5;132(17):6041-6 11929981 - Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5133-8 24531236 - Nat Commun. 2014;5:3321 6712948 - Biochim Biophys Acta. 1984 Apr 25;772(1):10-9 26649980 - Soft Matter. 2016 Feb 7;12 (5):1401-10 |
| References_xml | – reference: 24911245 - J Am Chem Soc. 2014 Jun 18;136(24):8540-3 – reference: 28650443 - Nat Nanotechnol. 2017 Aug;12 (8):821-829 – reference: 26779883 - Nat Mater. 2016 Apr;15(4):469-76 – reference: 26823427 - Science. 2016 Jan 29;351(6272):497-502 – reference: 26649980 - Soft Matter. 2016 Feb 7;12 (5):1401-10 – reference: 20543836 - Nat Mater. 2010 Jul;9(7):594-601 – reference: 20354185 - Cancer Res. 2010 Apr 15;70(8):3020-6 – reference: 24120048 - Biomaterials. 2014 Jan;35(1):185-95 – reference: 26700464 - ACS Nano. 2016 Jan 26;10 (1):899-909 – reference: 11721046 - Science. 2001 Nov 23;294(5547):1684-8 – reference: 20377229 - J Am Chem Soc. 2010 May 5;132(17):6041-6 – reference: 20091874 - Biopolymers. 2010;94(1):1-18 – reference: 25144245 - J Am Chem Soc. 2014 Sep 3;136(35):12461-8 – reference: 27194204 - Nat Commun. 2016 May 19;7:11561 – reference: 21808036 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13438-43 – reference: 27070195 - Nano Lett. 2016 May 11;16(5):3042-50 – reference: 19193022 - Nano Lett. 2009 Mar;9(3):945-51 – reference: 18369143 - Science. 2008 Mar 28;319(5871):1812-6 – reference: 14739465 - Science. 2004 Feb 27;303(5662):1352-5 – reference: 22928955 - ACS Nano. 2012 Sep 25;6(9):7956-65 – reference: 6712948 - Biochim Biophys Acta. 1984 Apr 25;772(1):10-9 – reference: 11929981 - Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5133-8 – reference: 15600335 - J Am Chem Soc. 2004 Dec 22;126(50):16344-52 – reference: 2920827 - FEBS Lett. 1989 Jan 16;243(1):65-9 – reference: 24531236 - Nat Commun. 2014;5:3321 – reference: 24859643 - Nat Mater. 2014 Aug;13(8):812-6 – reference: 25546084 - Nano Lett. 2015 Jan 14;15(1):603-9 – reference: 25310840 - J Am Chem Soc. 2014 Oct 22;136(42):14746-52 |
| SSID | ssj0002467 |
| Score | 2.6751418 |
| Snippet | Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2440 |
| SubjectTerms | Animals Cell Adhesion - drug effects Cell Line Cell Survival - drug effects Hydrogen Bonding Macromolecular Substances - chemistry Nanofibers - chemistry Osmolar Concentration Peptides - chemistry Protein Conformation Protein Multimerization Surface-Active Agents - chemistry Thermodynamics Water - chemistry |
| Title | Supramolecular Assembly of Peptide Amphiphiles |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28876055 https://www.proquest.com/docview/1936269372 |
| Volume | 50 |
| WOSCitedRecordID | wos000413392000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UCnrx_agvInhNm91smt2TlGLxYimo0FvYJxRqUptW8N87myb0JAjCktvCZmZ35pud2fkAHhDRushwFWrjm2r7h2iKEBFKYVMhGEJ6yyqyiXQ04pOJGNcXbmVdVtnYxMpQm0L7O_IuAg3E3uhM6eP8M_SsUT67WlNobEMrRijjd3U62XQLp6xikEUXFYWMC948naOkK3WJC674GMpOqioOp99BZuVshof_XeYRHNQwM-iv98UxbNn8BPYGDbvbKXReV_OF_GjIcQOf_P1Qs--gcMHYV7oYG_RR01McM1uewfvw6W3wHNbcCaFMeG8ZGskcHl2tnabO9-xKNKok1opwjUpAYCWNT1piuNXjPUfQR0VGKxY7y2PiCD2HnbzI7SUEkXIYZUkjlO9VlMYqEZpLRhw1CsGhbsN9I4oMf8InHGRui1WZbYTRhou1PLP5uolGRtG6YSiVXP1h9jXsU-9NfSFJegMthyfT3sKu_lpOy8VdpXT8jsYvP9U1thw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Assembly+of+Peptide+Amphiphiles&rft.jtitle=Accounts+of+chemical+research&rft.au=Hendricks%2C+Mark+P&rft.au=Sato%2C+Kohei&rft.au=Palmer%2C+Liam+C&rft.au=Stupp%2C+Samuel+I&rft.date=2017-10-17&rft.eissn=1520-4898&rft.volume=50&rft.issue=10&rft.spage=2440&rft_id=info:doi/10.1021%2Facs.accounts.7b00297&rft_id=info%3Apmid%2F28876055&rft_id=info%3Apmid%2F28876055&rft.externalDocID=28876055 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon |