Supramolecular Assembly of Peptide Amphiphiles

Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form β-sheets...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Accounts of chemical research Ročník 50; číslo 10; s. 2440
Hlavní autoři: Hendricks, Mark P, Sato, Kohei, Palmer, Liam C, Stupp, Samuel I
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 17.10.2017
Témata:
ISSN:1520-4898, 1520-4898
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form β-sheets among the amino acids near the alkyl tail, while the residues farthest from the tail are charged to promote solubility and in some cases contain a bioactive sequence. In water, β-sheet formation and hydrophobic collapse of the aliphatic tails induce assembly of the molecules into supramolecular one-dimensional nanostructures, commonly high-aspect-ratio cylindrical or ribbonlike nanofibers. These nanostructures hold significant promise for biomedical functions due to their ability to display a high density of biological signals on their surface for targeting or to activate pathways, as well as for biocompatibility and biodegradable nature. Recent studies have shown that supramolecular systems, such as PAs, often become kinetically trapped in local minima along their self-assembly reaction coordinate, not unlike the pathways associated with protein folding. Furthermore, the assembly pathway can influence the shape, internal structure, and dimension of nanostructures and thereby affect their bioactivity. We discuss methods to map the energy landscape of a PA structure as a function of thermal energy and ionic strength and vary these parameters to convert between kinetically trapped and thermodynamically favorable states. We also demonstrate that the pathway-dependent morphology of the PA assembly can determine biological cell adhesion and survival rates. The dynamics associated with the nanostructures are also critical to their function, and techniques are now available to probe the internal dynamics of these nanostructures. For example, by conjugating radical electron spin labels to PAs, electron paramagnetic resonance spectroscopy can be used to study the rotational diffusion rates within the fiber, showing a liquidlike to solidlike transition through the cross section of the nanofiber. PAs can also be labeled with fluorescent dyes, allowing the use of super-resolution microscopy techniques to study the molecular exchange dynamics between PA fibers. For a weak hydrogen-bonding PA, individual PA molecules or clusters exchange between fibers in time scales as short as minutes. The amount of hydrogen bonding within PAs that dictates the dynamics also plays an important role in biological function. In one case, weak hydrogen bonding within a PA resulted in cell death through disruption of lipid membranes, while in another example reduced hydrogen bonding enhanced growth factor signaling by increasing lipid raft mobility. PAs are a promising platform for designing advanced hybrid materials. We discuss a covalent polymer with a rigid aromatic imine backbone and alkylated peptide side chains that simultaneously polymerizes and interacts with a supramolecular PA structure with identical chemistry to that of the side chains. The covalent polymerization can be "catalyzed" by noncovalent polymerization of supramolecular monomers, taking advantage of the dynamic nature of supramolecular assemblies. These novel hybrid structures have potential in self-repairing materials and as reusable scaffolds for delivery of drugs or other chemicals. Finally, we highlight recent biomedical applications of PAs and related structures, ranging from bone regeneration to decreasing blood loss during internal bleeding.
AbstractList Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form β-sheets among the amino acids near the alkyl tail, while the residues farthest from the tail are charged to promote solubility and in some cases contain a bioactive sequence. In water, β-sheet formation and hydrophobic collapse of the aliphatic tails induce assembly of the molecules into supramolecular one-dimensional nanostructures, commonly high-aspect-ratio cylindrical or ribbonlike nanofibers. These nanostructures hold significant promise for biomedical functions due to their ability to display a high density of biological signals on their surface for targeting or to activate pathways, as well as for biocompatibility and biodegradable nature. Recent studies have shown that supramolecular systems, such as PAs, often become kinetically trapped in local minima along their self-assembly reaction coordinate, not unlike the pathways associated with protein folding. Furthermore, the assembly pathway can influence the shape, internal structure, and dimension of nanostructures and thereby affect their bioactivity. We discuss methods to map the energy landscape of a PA structure as a function of thermal energy and ionic strength and vary these parameters to convert between kinetically trapped and thermodynamically favorable states. We also demonstrate that the pathway-dependent morphology of the PA assembly can determine biological cell adhesion and survival rates. The dynamics associated with the nanostructures are also critical to their function, and techniques are now available to probe the internal dynamics of these nanostructures. For example, by conjugating radical electron spin labels to PAs, electron paramagnetic resonance spectroscopy can be used to study the rotational diffusion rates within the fiber, showing a liquidlike to solidlike transition through the cross section of the nanofiber. PAs can also be labeled with fluorescent dyes, allowing the use of super-resolution microscopy techniques to study the molecular exchange dynamics between PA fibers. For a weak hydrogen-bonding PA, individual PA molecules or clusters exchange between fibers in time scales as short as minutes. The amount of hydrogen bonding within PAs that dictates the dynamics also plays an important role in biological function. In one case, weak hydrogen bonding within a PA resulted in cell death through disruption of lipid membranes, while in another example reduced hydrogen bonding enhanced growth factor signaling by increasing lipid raft mobility. PAs are a promising platform for designing advanced hybrid materials. We discuss a covalent polymer with a rigid aromatic imine backbone and alkylated peptide side chains that simultaneously polymerizes and interacts with a supramolecular PA structure with identical chemistry to that of the side chains. The covalent polymerization can be "catalyzed" by noncovalent polymerization of supramolecular monomers, taking advantage of the dynamic nature of supramolecular assemblies. These novel hybrid structures have potential in self-repairing materials and as reusable scaffolds for delivery of drugs or other chemicals. Finally, we highlight recent biomedical applications of PAs and related structures, ranging from bone regeneration to decreasing blood loss during internal bleeding.
Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form β-sheets among the amino acids near the alkyl tail, while the residues farthest from the tail are charged to promote solubility and in some cases contain a bioactive sequence. In water, β-sheet formation and hydrophobic collapse of the aliphatic tails induce assembly of the molecules into supramolecular one-dimensional nanostructures, commonly high-aspect-ratio cylindrical or ribbonlike nanofibers. These nanostructures hold significant promise for biomedical functions due to their ability to display a high density of biological signals on their surface for targeting or to activate pathways, as well as for biocompatibility and biodegradable nature. Recent studies have shown that supramolecular systems, such as PAs, often become kinetically trapped in local minima along their self-assembly reaction coordinate, not unlike the pathways associated with protein folding. Furthermore, the assembly pathway can influence the shape, internal structure, and dimension of nanostructures and thereby affect their bioactivity. We discuss methods to map the energy landscape of a PA structure as a function of thermal energy and ionic strength and vary these parameters to convert between kinetically trapped and thermodynamically favorable states. We also demonstrate that the pathway-dependent morphology of the PA assembly can determine biological cell adhesion and survival rates. The dynamics associated with the nanostructures are also critical to their function, and techniques are now available to probe the internal dynamics of these nanostructures. For example, by conjugating radical electron spin labels to PAs, electron paramagnetic resonance spectroscopy can be used to study the rotational diffusion rates within the fiber, showing a liquidlike to solidlike transition through the cross section of the nanofiber. PAs can also be labeled with fluorescent dyes, allowing the use of super-resolution microscopy techniques to study the molecular exchange dynamics between PA fibers. For a weak hydrogen-bonding PA, individual PA molecules or clusters exchange between fibers in time scales as short as minutes. The amount of hydrogen bonding within PAs that dictates the dynamics also plays an important role in biological function. In one case, weak hydrogen bonding within a PA resulted in cell death through disruption of lipid membranes, while in another example reduced hydrogen bonding enhanced growth factor signaling by increasing lipid raft mobility. PAs are a promising platform for designing advanced hybrid materials. We discuss a covalent polymer with a rigid aromatic imine backbone and alkylated peptide side chains that simultaneously polymerizes and interacts with a supramolecular PA structure with identical chemistry to that of the side chains. The covalent polymerization can be "catalyzed" by noncovalent polymerization of supramolecular monomers, taking advantage of the dynamic nature of supramolecular assemblies. These novel hybrid structures have potential in self-repairing materials and as reusable scaffolds for delivery of drugs or other chemicals. Finally, we highlight recent biomedical applications of PAs and related structures, ranging from bone regeneration to decreasing blood loss during internal bleeding.Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form β-sheets among the amino acids near the alkyl tail, while the residues farthest from the tail are charged to promote solubility and in some cases contain a bioactive sequence. In water, β-sheet formation and hydrophobic collapse of the aliphatic tails induce assembly of the molecules into supramolecular one-dimensional nanostructures, commonly high-aspect-ratio cylindrical or ribbonlike nanofibers. These nanostructures hold significant promise for biomedical functions due to their ability to display a high density of biological signals on their surface for targeting or to activate pathways, as well as for biocompatibility and biodegradable nature. Recent studies have shown that supramolecular systems, such as PAs, often become kinetically trapped in local minima along their self-assembly reaction coordinate, not unlike the pathways associated with protein folding. Furthermore, the assembly pathway can influence the shape, internal structure, and dimension of nanostructures and thereby affect their bioactivity. We discuss methods to map the energy landscape of a PA structure as a function of thermal energy and ionic strength and vary these parameters to convert between kinetically trapped and thermodynamically favorable states. We also demonstrate that the pathway-dependent morphology of the PA assembly can determine biological cell adhesion and survival rates. The dynamics associated with the nanostructures are also critical to their function, and techniques are now available to probe the internal dynamics of these nanostructures. For example, by conjugating radical electron spin labels to PAs, electron paramagnetic resonance spectroscopy can be used to study the rotational diffusion rates within the fiber, showing a liquidlike to solidlike transition through the cross section of the nanofiber. PAs can also be labeled with fluorescent dyes, allowing the use of super-resolution microscopy techniques to study the molecular exchange dynamics between PA fibers. For a weak hydrogen-bonding PA, individual PA molecules or clusters exchange between fibers in time scales as short as minutes. The amount of hydrogen bonding within PAs that dictates the dynamics also plays an important role in biological function. In one case, weak hydrogen bonding within a PA resulted in cell death through disruption of lipid membranes, while in another example reduced hydrogen bonding enhanced growth factor signaling by increasing lipid raft mobility. PAs are a promising platform for designing advanced hybrid materials. We discuss a covalent polymer with a rigid aromatic imine backbone and alkylated peptide side chains that simultaneously polymerizes and interacts with a supramolecular PA structure with identical chemistry to that of the side chains. The covalent polymerization can be "catalyzed" by noncovalent polymerization of supramolecular monomers, taking advantage of the dynamic nature of supramolecular assemblies. These novel hybrid structures have potential in self-repairing materials and as reusable scaffolds for delivery of drugs or other chemicals. Finally, we highlight recent biomedical applications of PAs and related structures, ranging from bone regeneration to decreasing blood loss during internal bleeding.
Author Stupp, Samuel I
Hendricks, Mark P
Sato, Kohei
Palmer, Liam C
Author_xml – sequence: 1
  givenname: Mark P
  orcidid: 0000-0003-1295-9879
  surname: Hendricks
  fullname: Hendricks, Mark P
  organization: Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois 60611, United States
– sequence: 2
  givenname: Kohei
  orcidid: 0000-0002-8948-8537
  surname: Sato
  fullname: Sato, Kohei
  organization: Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois 60611, United States
– sequence: 3
  givenname: Liam C
  orcidid: 0000-0003-0804-1168
  surname: Palmer
  fullname: Palmer, Liam C
  organization: Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
– sequence: 4
  givenname: Samuel I
  orcidid: 0000-0002-5491-7442
  surname: Stupp
  fullname: Stupp, Samuel I
  organization: Department of Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28876055$$D View this record in MEDLINE/PubMed
BookMark eNpNj8lKxEAURQtpsQf9A5Es3SS-V0lNy9A4QYOCug6VGjBSGUwli_57A7YgXDh3cbhwt2TV9Z0j5BohQ6B4p03MtDH93E0xEzUAVeKMbJBRSAup5OpfX5NtjF-wOAUXF2RNpRQcGNuQ7G0eRt32wZk56DEpY3RtHY5J75NXN0yNdUnZDp_NkuDiJTn3OkR3deKOfDzcv--f0sPL4_O-PKSaST6lVhceEI3xhnpWCMkMWJmbGqURSoFi2gLmIJXiknssBII1dZF7J3P0SHfk9nd3GPvv2cWpaptoXAi6c_0cK1Q5p1zlgi7qzUmd69bZahibVo_H6u8j_QEMlVbv
CitedBy_id crossref_primary_10_1007_s40005_025_00768_0
crossref_primary_10_1016_j_ccr_2019_04_001
crossref_primary_10_1016_j_nantod_2024_102247
crossref_primary_10_1021_jacs_5c04788
crossref_primary_10_1016_j_cclet_2019_10_036
crossref_primary_10_1002_anie_202420043
crossref_primary_10_1016_j_ssnmr_2024_101959
crossref_primary_10_2174_0929867330666230408203820
crossref_primary_10_1021_acs_jpcb_4c05751
crossref_primary_10_3390_cancers16193254
crossref_primary_10_1016_j_colsurfb_2024_113761
crossref_primary_10_1021_acs_chemrev_5c00047
crossref_primary_10_1038_s41467_020_20172_6
crossref_primary_10_2147_IJN_S291285
crossref_primary_10_1016_j_bone_2020_115565
crossref_primary_10_1002_smll_201704230
crossref_primary_10_1021_jacs_2c01323
crossref_primary_10_1016_j_jcis_2024_09_065
crossref_primary_10_3389_fchem_2022_1038796
crossref_primary_10_1016_j_cej_2022_141073
crossref_primary_10_1002_chir_23344
crossref_primary_10_1002_anie_202209806
crossref_primary_10_1021_jacs_1c08094
crossref_primary_10_1038_s41557_018_0049_0
crossref_primary_10_1002_smsc_202500224
crossref_primary_10_1038_s41570_023_00532_8
crossref_primary_10_1039_D3NR02738D
crossref_primary_10_1016_j_biopha_2023_114376
crossref_primary_10_1016_j_cclet_2018_04_030
crossref_primary_10_1016_j_jcis_2019_12_109
crossref_primary_10_1038_s41467_021_24492_z
crossref_primary_10_3389_fchem_2022_852164
crossref_primary_10_1039_D1NR01622A
crossref_primary_10_1016_j_colsurfb_2021_112040
crossref_primary_10_1016_j_bpj_2024_05_021
crossref_primary_10_1002_adom_201900033
crossref_primary_10_1002_slct_201901671
crossref_primary_10_1038_s41570_022_00373_x
crossref_primary_10_1088_1748_605X_ac92b5
crossref_primary_10_1002_adtp_201900010
crossref_primary_10_1007_s12274_018_2189_3
crossref_primary_10_1002_pi_6312
crossref_primary_10_1007_s10989_021_10289_7
crossref_primary_10_1039_D5SM00432B
crossref_primary_10_1002_advs_202104165
crossref_primary_10_1002_ange_202315297
crossref_primary_10_1016_j_ccr_2024_216251
crossref_primary_10_1016_j_pmatsci_2025_101562
crossref_primary_10_1002_ange_202312223
crossref_primary_10_1002_chem_202100739
crossref_primary_10_1016_j_bmc_2023_117481
crossref_primary_10_1016_j_ccr_2020_213418
crossref_primary_10_1002_adfm_202517272
crossref_primary_10_1002_ange_202208681
crossref_primary_10_1002_admi_202102089
crossref_primary_10_1088_1758_5090_aac902
crossref_primary_10_1002_syst_202400094
crossref_primary_10_1002_ange_202415774
crossref_primary_10_1039_D0QM00369G
crossref_primary_10_1002_smll_202410850
crossref_primary_10_1016_j_jconrel_2022_03_011
crossref_primary_10_1021_jacs_2c06321
crossref_primary_10_3390_bioengineering7040141
crossref_primary_10_1021_jacs_3c03961
crossref_primary_10_1002_ange_202201234
crossref_primary_10_1021_jacs_3c02993
crossref_primary_10_1002_anie_202218067
crossref_primary_10_1039_D2PY01072K
crossref_primary_10_1021_jacs_4c02980
crossref_primary_10_1002_ange_202421536
crossref_primary_10_1002_tcr_201800149
crossref_primary_10_3390_biophysica2040030
crossref_primary_10_1021_acsnano_5c00670
crossref_primary_10_1039_C9SC00193J
crossref_primary_10_3389_fbioe_2020_00326
crossref_primary_10_1021_jacs_8b07697
crossref_primary_10_1002_smm2_1021
crossref_primary_10_1038_s41467_019_10341_7
crossref_primary_10_1002_anie_202425049
crossref_primary_10_1016_j_colsurfa_2024_134331
crossref_primary_10_1002_ange_202113403
crossref_primary_10_1002_anie_201814552
crossref_primary_10_1007_s12551_021_00784_y
crossref_primary_10_1007_s13726_025_01555_2
crossref_primary_10_1038_s41467_023_41907_1
crossref_primary_10_1016_j_jcis_2019_04_019
crossref_primary_10_1002_chem_202402880
crossref_primary_10_1002_jrs_6137
crossref_primary_10_1016_j_nantod_2022_101594
crossref_primary_10_1039_D0NR03218B
crossref_primary_10_1039_D1PY00422K
crossref_primary_10_1002_chem_202500429
crossref_primary_10_1002_pep2_24236
crossref_primary_10_1021_jacs_1c11750
crossref_primary_10_1016_j_jconrel_2018_02_041
crossref_primary_10_1039_D1SC05589E
crossref_primary_10_3390_nano13192645
crossref_primary_10_1039_D0SC07050E
crossref_primary_10_1002_ange_202319839
crossref_primary_10_1002_anie_201908185
crossref_primary_10_1002_ange_202425049
crossref_primary_10_1002_chem_202000995
crossref_primary_10_1038_s42004_024_01308_x
crossref_primary_10_1016_j_ces_2024_120971
crossref_primary_10_1007_s40843_022_2087_3
crossref_primary_10_1002_adtp_201900107
crossref_primary_10_1021_jacs_0c03353
crossref_primary_10_1016_j_actbio_2021_10_030
crossref_primary_10_1002_EXP_20210153
crossref_primary_10_1002_smtd_202501275
crossref_primary_10_1021_acs_langmuir_5c01128
crossref_primary_10_3390_gels9100833
crossref_primary_10_1016_j_jcis_2020_09_023
crossref_primary_10_1039_C9SC05808G
crossref_primary_10_1002_adma_202301300
crossref_primary_10_1002_admi_202300046
crossref_primary_10_1021_acs_chemmater_5c00666
crossref_primary_10_1021_jacs_8b08648
crossref_primary_10_1002_adfm_202422686
crossref_primary_10_1016_j_actbio_2023_12_020
crossref_primary_10_1002_ange_202207310
crossref_primary_10_1021_acsami_5c10222
crossref_primary_10_1002_adtp_202300128
crossref_primary_10_1002_anie_202113403
crossref_primary_10_1002_ejoc_202000529
crossref_primary_10_1002_adma_202416122
crossref_primary_10_1021_acs_biomac_5c01348
crossref_primary_10_1002_anie_202207310
crossref_primary_10_1016_j_nantod_2021_101198
crossref_primary_10_3390_molecules26051219
crossref_primary_10_1088_1748_605X_ac8e43
crossref_primary_10_1002_advs_202102741
crossref_primary_10_1038_s41551_021_00793_y
crossref_primary_10_1016_j_cocis_2018_02_009
crossref_primary_10_1039_D0BM02049D
crossref_primary_10_1016_j_ccr_2023_215600
crossref_primary_10_1016_j_matt_2025_102108
crossref_primary_10_1002_adhm_202402939
crossref_primary_10_1002_chem_201902083
crossref_primary_10_1002_cbic_202400348
crossref_primary_10_1016_j_intimp_2023_110721
crossref_primary_10_3390_molecules26154587
crossref_primary_10_1007_s11426_021_1029_x
crossref_primary_10_1021_acs_biomac_4c01027
crossref_primary_10_1016_j_actbio_2020_11_009
crossref_primary_10_1002_chem_202404233
crossref_primary_10_1002_chem_202501968
crossref_primary_10_1021_jacs_3c03645
crossref_primary_10_1021_jacs_5c01445
crossref_primary_10_1002_smll_202306175
crossref_primary_10_1126_science_abn3438
crossref_primary_10_1002_ange_201908185
crossref_primary_10_1002_anie_202319839
crossref_primary_10_1038_s41467_021_26681_2
crossref_primary_10_1002_chem_202501288
crossref_primary_10_1039_C8CS00040A
crossref_primary_10_1002_slct_202202234
crossref_primary_10_1002_adfm_201906205
crossref_primary_10_1039_C9QM00473D
crossref_primary_10_1021_jacs_2c08425
crossref_primary_10_1021_acs_nanolett_5c01112
crossref_primary_10_3390_pharmaceutics15020482
crossref_primary_10_1002_anie_202415774
crossref_primary_10_1016_j_envres_2023_117420
crossref_primary_10_1002_anie_202421536
crossref_primary_10_1021_jacs_5c00105
crossref_primary_10_1016_j_jconrel_2022_06_037
crossref_primary_10_1021_jacs_3c07918
crossref_primary_10_1002_chem_201803026
crossref_primary_10_1002_ange_202115547
crossref_primary_10_1021_jacs_1c01076
crossref_primary_10_1093_chemle_upae017
crossref_primary_10_3389_fbioe_2023_1122456
crossref_primary_10_1021_jacs_0c08179
crossref_primary_10_1002_anie_202502629
crossref_primary_10_1002_anie_202201234
crossref_primary_10_3390_immuno4040021
crossref_primary_10_1002_marc_201800610
crossref_primary_10_1016_j_chempr_2020_06_005
crossref_primary_10_1002_chem_202104116
crossref_primary_10_1016_j_actbio_2020_03_025
crossref_primary_10_1002_advs_201802043
crossref_primary_10_1002_cplu_202500542
crossref_primary_10_1002_ange_202404703
crossref_primary_10_1016_j_colsurfa_2024_135953
crossref_primary_10_1039_D4ME00021H
crossref_primary_10_1002_adfm_202420580
crossref_primary_10_1039_C9RA03099A
crossref_primary_10_3389_fchem_2022_1040499
crossref_primary_10_3390_pharmaceutics12090888
crossref_primary_10_1146_annurev_bioeng_092419_061127
crossref_primary_10_1080_08927022_2018_1469754
crossref_primary_10_1002_chem_202301678
crossref_primary_10_1002_smll_202401963
crossref_primary_10_1038_s41467_019_13263_6
crossref_primary_10_3390_molecules25245858
crossref_primary_10_3389_fbioe_2020_00069
crossref_primary_10_1002_slct_202100579
crossref_primary_10_1093_chemle_upae241
crossref_primary_10_1002_anie_202208681
crossref_primary_10_1002_adfm_202203767
crossref_primary_10_1021_jacs_3c13139
crossref_primary_10_1039_C8CS00115D
crossref_primary_10_1002_slct_202200757
crossref_primary_10_3390_cancers13225745
crossref_primary_10_1021_acs_analchem_5c01851
crossref_primary_10_1002_ange_201804783
crossref_primary_10_1039_C8NR07372D
crossref_primary_10_1016_j_jcis_2025_138850
crossref_primary_10_1002_ange_202209806
crossref_primary_10_1039_D0NR08741F
crossref_primary_10_1002_wnan_1962
crossref_primary_10_1002_chem_202303986
crossref_primary_10_1007_s13204_023_02836_z
crossref_primary_10_1016_j_actbio_2022_11_008
crossref_primary_10_1002_ange_201814552
crossref_primary_10_1021_acsbiomaterials_9b00553
crossref_primary_10_1002_adhm_202202039
crossref_primary_10_1002_cnma_201900549
crossref_primary_10_1002_chem_202303194
crossref_primary_10_1002_prp2_672
crossref_primary_10_1021_jacs_2c01025
crossref_primary_10_1007_s11064_022_03638_5
crossref_primary_10_1016_j_bioactmat_2021_09_029
crossref_primary_10_1002_adfm_202314492
crossref_primary_10_1039_D4SC02545H
crossref_primary_10_1016_j_dyepig_2024_112334
crossref_primary_10_1021_jacs_4c08206
crossref_primary_10_1080_10717544_2022_2058647
crossref_primary_10_1039_D5SC02935J
crossref_primary_10_1002_ange_202420043
crossref_primary_10_1002_chem_202400622
crossref_primary_10_1002_chem_202403450
crossref_primary_10_1021_jacs_2c05759
crossref_primary_10_1021_jacs_2c03215
crossref_primary_10_1002_anbr_202400042
crossref_primary_10_1016_j_bios_2022_114265
crossref_primary_10_1002_ijch_201900017
crossref_primary_10_1002_anie_202003721
crossref_primary_10_1002_ange_202218067
crossref_primary_10_1002_syst_202000037
crossref_primary_10_1002_slct_202102204
crossref_primary_10_1021_acs_accounts_4c00796
crossref_primary_10_1016_j_cclet_2023_109256
crossref_primary_10_1016_j_jcis_2021_10_023
crossref_primary_10_1016_j_cocis_2023_101768
crossref_primary_10_1016_j_bioactmat_2022_03_038
crossref_primary_10_1002_anie_202315297
crossref_primary_10_1016_j_colsurfb_2025_114539
crossref_primary_10_1016_j_biomaterials_2023_122401
crossref_primary_10_1016_j_bioorg_2020_104012
crossref_primary_10_3389_fbioe_2025_1646622
crossref_primary_10_1038_s41467_020_19683_z
crossref_primary_10_1002_anie_201804783
crossref_primary_10_1016_j_apmt_2020_100787
crossref_primary_10_1557_s43577_021_00141_0
crossref_primary_10_1021_jacs_1c00108
crossref_primary_10_1002_cbic_202000581
crossref_primary_10_1016_j_ejmech_2022_114557
crossref_primary_10_1021_jacs_2c00433
crossref_primary_10_5937_arhfarm73_46975
crossref_primary_10_1039_D3SC00401E
crossref_primary_10_3389_fchem_2021_723473
crossref_primary_10_1039_C9BM01796H
crossref_primary_10_3390_ijms21207577
crossref_primary_10_1002_open_202000017
crossref_primary_10_1002_ijch_202200008
crossref_primary_10_1016_j_jcis_2022_08_104
crossref_primary_10_1002_anie_202312223
crossref_primary_10_1038_s41467_024_51494_4
crossref_primary_10_1002_ange_202502629
crossref_primary_10_1002_chem_201804785
crossref_primary_10_1021_jacs_1c12318
crossref_primary_10_1002_anie_202115547
crossref_primary_10_1039_D5SC02678D
crossref_primary_10_1002_anie_202404703
crossref_primary_10_1021_jacs_1c06435
crossref_primary_10_1039_D0SC03442H
crossref_primary_10_1016_j_trechm_2025_03_002
crossref_primary_10_1007_s40843_019_9451_7
crossref_primary_10_1021_acs_jpcb_5c00737
crossref_primary_10_1039_D5TB01124H
crossref_primary_10_1111_odi_15401
crossref_primary_10_1021_acs_bioconjchem_3c00454
crossref_primary_10_1021_acs_chemrev_9b00509
crossref_primary_10_1002_adfm_202400386
crossref_primary_10_1002_adma_202415643
crossref_primary_10_1016_j_chempr_2019_12_009
crossref_primary_10_1039_D2NR05756E
crossref_primary_10_1002_chem_202300954
crossref_primary_10_1002_cplu_202300226
crossref_primary_10_1002_marc_202100914
crossref_primary_10_1016_j_ccr_2024_216054
crossref_primary_10_1016_j_cej_2022_135160
crossref_primary_10_1002_smll_202405698
crossref_primary_10_1007_s41745_018_0060_x
crossref_primary_10_1021_jacs_8b09320
crossref_primary_10_1039_C9SC00800D
crossref_primary_10_3389_fbioe_2021_782234
crossref_primary_10_1016_j_matdes_2019_108370
crossref_primary_10_1021_jacs_9b05740
crossref_primary_10_1002_cbic_202300628
crossref_primary_10_1016_j_matdes_2020_108901
crossref_primary_10_1002_ange_202003721
crossref_primary_10_1016_j_jconrel_2020_07_010
crossref_primary_10_3390_polym13223983
crossref_primary_10_1002_adma_201707083
crossref_primary_10_1007_s40843_022_2008_1
crossref_primary_10_1016_j_chempr_2020_07_002
crossref_primary_10_3390_ijms22031240
crossref_primary_10_1016_j_radphyschem_2023_111216
crossref_primary_10_3390_molecules23102481
crossref_primary_10_3390_pharmaceutics14081733
crossref_primary_10_1021_jacs_5c02930
crossref_primary_10_1016_j_actbio_2021_01_034
crossref_primary_10_1002_ijch_202200029
crossref_primary_10_4155_tde_2020_0011
crossref_primary_10_1002_adhm_202301364
crossref_primary_10_3390_molecules27134115
crossref_primary_10_1016_j_addr_2024_115327
crossref_primary_10_1016_j_actbio_2019_02_016
crossref_primary_10_1039_C8CS00121A
crossref_primary_10_1063_5_0083099
crossref_primary_10_1002_EXP_20210089
crossref_primary_10_1080_17435889_2025_2544535
crossref_primary_10_1002_advs_202001264
crossref_primary_10_1002_fft2_70066
crossref_primary_10_1016_j_molliq_2021_117654
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.accounts.7b00297
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
ExternalDocumentID 28876055
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: P01 HL108795
– fundername: NCI NIH HHS
  grantid: U54 CA151880
– fundername: NIDCR NIH HHS
  grantid: R01 DE015920
– fundername: NIBIB NIH HHS
  grantid: R01 EB003806
– fundername: NHLBI NIH HHS
  grantid: R01 HL116577
GroupedDBID ---
-DZ
-~X
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
6P2
7~N
85S
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AETEA
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
D0L
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH2
IH9
JG~
LG6
NPM
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
ZCA
~02
7X8
ID FETCH-LOGICAL-a586t-da4f011ccfc2f54785c0d83cb18c799095ad0130899686f14710dcb43fe831f12
IEDL.DBID 7X8
ISICitedReferencesCount 486
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413392000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-4898
IngestDate Fri Jul 11 09:44:47 EDT 2025
Mon Jul 21 06:08:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a586t-da4f011ccfc2f54785c0d83cb18c799095ad0130899686f14710dcb43fe831f12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8948-8537
0000-0003-0804-1168
0000-0002-5491-7442
0000-0003-1295-9879
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5647873
PMID 28876055
PQID 1936269372
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1936269372
pubmed_primary_28876055
PublicationCentury 2000
PublicationDate 2017-10-17
PublicationDateYYYYMMDD 2017-10-17
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc Chem Res
PublicationYear 2017
References 14739465 - Science. 2004 Feb 27;303(5662):1352-5
27194204 - Nat Commun. 2016 May 19;7:11561
11721046 - Science. 2001 Nov 23;294(5547):1684-8
24859643 - Nat Mater. 2014 Aug;13(8):812-6
20091874 - Biopolymers. 2010;94(1):1-18
21808036 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13438-43
18369143 - Science. 2008 Mar 28;319(5871):1812-6
25310840 - J Am Chem Soc. 2014 Oct 22;136(42):14746-52
27070195 - Nano Lett. 2016 May 11;16(5):3042-50
24911245 - J Am Chem Soc. 2014 Jun 18;136(24):8540-3
25144245 - J Am Chem Soc. 2014 Sep 3;136(35):12461-8
25546084 - Nano Lett. 2015 Jan 14;15(1):603-9
15600335 - J Am Chem Soc. 2004 Dec 22;126(50):16344-52
26779883 - Nat Mater. 2016 Apr;15(4):469-76
19193022 - Nano Lett. 2009 Mar;9(3):945-51
22928955 - ACS Nano. 2012 Sep 25;6(9):7956-65
26700464 - ACS Nano. 2016 Jan 26;10 (1):899-909
28650443 - Nat Nanotechnol. 2017 Aug;12 (8):821-829
2920827 - FEBS Lett. 1989 Jan 16;243(1):65-9
24120048 - Biomaterials. 2014 Jan;35(1):185-95
20354185 - Cancer Res. 2010 Apr 15;70(8):3020-6
26823427 - Science. 2016 Jan 29;351(6272):497-502
20543836 - Nat Mater. 2010 Jul;9(7):594-601
20377229 - J Am Chem Soc. 2010 May 5;132(17):6041-6
11929981 - Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5133-8
24531236 - Nat Commun. 2014;5:3321
6712948 - Biochim Biophys Acta. 1984 Apr 25;772(1):10-9
26649980 - Soft Matter. 2016 Feb 7;12 (5):1401-10
References_xml – reference: 24911245 - J Am Chem Soc. 2014 Jun 18;136(24):8540-3
– reference: 28650443 - Nat Nanotechnol. 2017 Aug;12 (8):821-829
– reference: 26779883 - Nat Mater. 2016 Apr;15(4):469-76
– reference: 26823427 - Science. 2016 Jan 29;351(6272):497-502
– reference: 26649980 - Soft Matter. 2016 Feb 7;12 (5):1401-10
– reference: 20543836 - Nat Mater. 2010 Jul;9(7):594-601
– reference: 20354185 - Cancer Res. 2010 Apr 15;70(8):3020-6
– reference: 24120048 - Biomaterials. 2014 Jan;35(1):185-95
– reference: 26700464 - ACS Nano. 2016 Jan 26;10 (1):899-909
– reference: 11721046 - Science. 2001 Nov 23;294(5547):1684-8
– reference: 20377229 - J Am Chem Soc. 2010 May 5;132(17):6041-6
– reference: 20091874 - Biopolymers. 2010;94(1):1-18
– reference: 25144245 - J Am Chem Soc. 2014 Sep 3;136(35):12461-8
– reference: 27194204 - Nat Commun. 2016 May 19;7:11561
– reference: 21808036 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13438-43
– reference: 27070195 - Nano Lett. 2016 May 11;16(5):3042-50
– reference: 19193022 - Nano Lett. 2009 Mar;9(3):945-51
– reference: 18369143 - Science. 2008 Mar 28;319(5871):1812-6
– reference: 14739465 - Science. 2004 Feb 27;303(5662):1352-5
– reference: 22928955 - ACS Nano. 2012 Sep 25;6(9):7956-65
– reference: 6712948 - Biochim Biophys Acta. 1984 Apr 25;772(1):10-9
– reference: 11929981 - Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5133-8
– reference: 15600335 - J Am Chem Soc. 2004 Dec 22;126(50):16344-52
– reference: 2920827 - FEBS Lett. 1989 Jan 16;243(1):65-9
– reference: 24531236 - Nat Commun. 2014;5:3321
– reference: 24859643 - Nat Mater. 2014 Aug;13(8):812-6
– reference: 25546084 - Nano Lett. 2015 Jan 14;15(1):603-9
– reference: 25310840 - J Am Chem Soc. 2014 Oct 22;136(42):14746-52
SSID ssj0002467
Score 2.6751418
Snippet Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2440
SubjectTerms Animals
Cell Adhesion - drug effects
Cell Line
Cell Survival - drug effects
Hydrogen Bonding
Macromolecular Substances - chemistry
Nanofibers - chemistry
Osmolar Concentration
Peptides - chemistry
Protein Conformation
Protein Multimerization
Surface-Active Agents - chemistry
Thermodynamics
Water - chemistry
Title Supramolecular Assembly of Peptide Amphiphiles
URI https://www.ncbi.nlm.nih.gov/pubmed/28876055
https://www.proquest.com/docview/1936269372
Volume 50
WOSCitedRecordID wos000413392000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UCnrx_agvInhNm91smt2TlGLxYimo0FvYJxRqUptW8N87myb0JAjCktvCZmZ35pud2fkAHhDRushwFWrjm2r7h2iKEBFKYVMhGEJ6yyqyiXQ04pOJGNcXbmVdVtnYxMpQm0L7O_IuAg3E3uhM6eP8M_SsUT67WlNobEMrRijjd3U62XQLp6xikEUXFYWMC948naOkK3WJC674GMpOqioOp99BZuVshof_XeYRHNQwM-iv98UxbNn8BPYGDbvbKXReV_OF_GjIcQOf_P1Qs--gcMHYV7oYG_RR01McM1uewfvw6W3wHNbcCaFMeG8ZGskcHl2tnabO9-xKNKok1opwjUpAYCWNT1piuNXjPUfQR0VGKxY7y2PiCD2HnbzI7SUEkXIYZUkjlO9VlMYqEZpLRhw1CsGhbsN9I4oMf8InHGRui1WZbYTRhou1PLP5uolGRtG6YSiVXP1h9jXsU-9NfSFJegMthyfT3sKu_lpOy8VdpXT8jsYvP9U1thw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Assembly+of+Peptide+Amphiphiles&rft.jtitle=Accounts+of+chemical+research&rft.au=Hendricks%2C+Mark+P&rft.au=Sato%2C+Kohei&rft.au=Palmer%2C+Liam+C&rft.au=Stupp%2C+Samuel+I&rft.date=2017-10-17&rft.eissn=1520-4898&rft.volume=50&rft.issue=10&rft.spage=2440&rft_id=info:doi/10.1021%2Facs.accounts.7b00297&rft_id=info%3Apmid%2F28876055&rft_id=info%3Apmid%2F28876055&rft.externalDocID=28876055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon