Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing
Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in...
Uložené v:
| Vydané v: | Proceedings of the National Academy of Sciences - PNAS Ročník 109; číslo 40; s. 16052 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
02.10.2012
|
| Predmet: | |
| ISSN: | 1091-6490, 1091-6490 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets. |
|---|---|
| AbstractList | Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets. Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets. |
| Author | Mackintosh, Andrew N Golledge, Nicholas R Fogwill, Christopher J Buckley, Kevin M |
| Author_xml | – sequence: 1 givenname: Nicholas R surname: Golledge fullname: Golledge, Nicholas R email: nick.golledge@vuw.ac.nz organization: Antarctic Research Centre, Victoria University of Wellington, Wellington 6140, New Zealand. nick.golledge@vuw.ac.nz – sequence: 2 givenname: Christopher J surname: Fogwill fullname: Fogwill, Christopher J – sequence: 3 givenname: Andrew N surname: Mackintosh fullname: Mackintosh, Andrew N – sequence: 4 givenname: Kevin M surname: Buckley fullname: Buckley, Kevin M |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22988078$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUD1PwzAUtFAR_YCZDXlkSXl24tQeq_IpVWKBhSV6cV5ao8QpsSPRf08kisRyd8PdSXdzNvGdJ8auBSwFrNK7g8ewFBJUqpUAc8ZmI4okzwxM_ukpm4fwCQBGabhgUymN1rDSM_Zxf_TYOht4V_O4J95giHzXoHXY8Ba_XTu0fO0j9jY6y52lJOyJIkdfcRcD7ykcOh-Ix453ltDzuuut87tLdl5jE-jqxAv2_vjwtnlOtq9PL5v1NkGl85hYU9ZZWuXCCKxTY0BWVmXWWJFmFdVImJW5RkohtZWQJGsYgyWME0CRRLlgt7-9h777GijEonXBUtOgp24IhQAtM1BK6tF6c7IOZUtVcehdi_2x-PtD_gBX12TX |
| CitedBy_id | crossref_primary_10_1073_pnas_1418970111 crossref_primary_10_1016_j_quascirev_2018_07_004 crossref_primary_10_1002_jqs_2683 crossref_primary_10_1029_2024TC008464 crossref_primary_10_1002_2016JF004121 crossref_primary_10_1093_astrogeo_att122 crossref_primary_10_1073_pnas_1609132113 crossref_primary_10_1029_2020PA003981 crossref_primary_10_5194_bg_18_1629_2021 crossref_primary_10_5194_tc_12_2741_2018 crossref_primary_10_1093_jrsssc_qlad078 crossref_primary_10_1029_2019GC008749 crossref_primary_10_1038_s41467_023_38240_y crossref_primary_10_1029_2023JF007588 crossref_primary_10_1016_j_quascirev_2020_106166 crossref_primary_10_1016_j_sedgeo_2024_106742 crossref_primary_10_3389_fmars_2023_1183516 crossref_primary_10_1029_2018GL078253 crossref_primary_10_1038_nature13397 crossref_primary_10_5194_cp_20_1559_2024 crossref_primary_10_5194_tc_17_1497_2023 crossref_primary_10_1038_s41467_025_58304_5 crossref_primary_10_1016_j_quascirev_2012_11_017 crossref_primary_10_1016_j_margeo_2017_08_005 crossref_primary_10_1029_2019PA003644 crossref_primary_10_1017_S095410202000036X crossref_primary_10_1002_esp_5865 crossref_primary_10_1016_j_geomorph_2018_05_020 crossref_primary_10_1017_S0954102014000340 crossref_primary_10_1016_j_quascirev_2015_07_016 crossref_primary_10_1029_2019RG000663 crossref_primary_10_1029_2023GL106958 crossref_primary_10_1038_s41467_018_05625_3 crossref_primary_10_1016_j_quaint_2013_08_005 crossref_primary_10_1016_j_quascirev_2013_08_011 crossref_primary_10_3189_2015JoG14J198 crossref_primary_10_1111_ecog_04951 crossref_primary_10_1002_2016GL070278 crossref_primary_10_1017_S0954102014000613 crossref_primary_10_5194_esurf_9_1363_2021 crossref_primary_10_1175_JCLI_D_15_0908_1 crossref_primary_10_1016_j_quascirev_2013_10_028 crossref_primary_10_1002_2017GL074216 crossref_primary_10_1029_2021JF006442 crossref_primary_10_1016_j_quascirev_2013_07_024 crossref_primary_10_5194_tc_15_4929_2021 crossref_primary_10_5194_tc_14_633_2020 crossref_primary_10_1073_pnas_2410759121 crossref_primary_10_1002_2015JD023900 crossref_primary_10_1016_j_quascirev_2013_07_020 crossref_primary_10_1038_ncomms15425 crossref_primary_10_1016_j_dsr_2021_103606 crossref_primary_10_5194_tc_9_881_2015 crossref_primary_10_5194_tc_13_1959_2019 crossref_primary_10_1016_j_quascirev_2022_107680 crossref_primary_10_1002_2015GL066476 crossref_primary_10_5194_tc_19_919_2025 crossref_primary_10_5194_tc_8_1347_2014 crossref_primary_10_1038_s41467_021_27053_6 crossref_primary_10_1002_2016GL068436 crossref_primary_10_1016_j_quascirev_2022_107401 crossref_primary_10_1016_j_quascirev_2013_12_001 crossref_primary_10_1016_j_quascirev_2020_106305 crossref_primary_10_1016_j_quascirev_2022_107800 crossref_primary_10_1016_j_gloplacha_2016_04_009 crossref_primary_10_1016_j_quascirev_2020_106540 crossref_primary_10_1029_2018GL079168 crossref_primary_10_1016_j_quascirev_2016_12_007 crossref_primary_10_1016_j_quascirev_2018_03_013 crossref_primary_10_1130_B37613_1 crossref_primary_10_1017_aog_2016_26 crossref_primary_10_1111_gcb_15940 crossref_primary_10_1139_cjes_2022_0004 crossref_primary_10_1002_2015EF000306 crossref_primary_10_1016_j_gloplacha_2022_103901 crossref_primary_10_1016_j_quascirev_2017_10_016 crossref_primary_10_1016_j_quascirev_2020_106636 crossref_primary_10_1038_s41598_017_01329_8 crossref_primary_10_1016_j_quascirev_2021_107299 crossref_primary_10_1016_j_sedgeo_2018_04_009 crossref_primary_10_5194_tc_13_2615_2019 crossref_primary_10_1144_M56_2022_13 crossref_primary_10_14770_jgsk_2024_036 crossref_primary_10_1038_ncomms6107 crossref_primary_10_1016_j_palaeo_2021_110505 crossref_primary_10_1016_j_quascirev_2018_12_024 crossref_primary_10_5194_cp_14_455_2018 crossref_primary_10_1029_2018JC013982 crossref_primary_10_1016_j_quascirev_2014_06_023 crossref_primary_10_1073_pnas_1516130113 crossref_primary_10_1016_j_quascirev_2014_06_025 crossref_primary_10_5194_tc_14_3917_2020 crossref_primary_10_1038_s41586_020_1931_7 crossref_primary_10_1038_nature15706 crossref_primary_10_5194_tc_15_215_2021 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1205385109 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 22988078 |
| Genre | Historical Article Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Antarctic Regions |
| GeographicLocations_xml | – name: Antarctic Regions |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-a586t-c9bf43d6191af39902dc54c9c134defaea4b68ae303cd12e2f0a58b029805e2a2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 104 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309611400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Thu Oct 02 11:17:40 EDT 2025 Thu Apr 03 06:59:55 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 40 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a586t-c9bf43d6191af39902dc54c9c134defaea4b68ae303cd12e2f0a58b029805e2a2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/109/40/16052.full.pdf |
| PMID | 22988078 |
| PQID | 1082405528 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1082405528 pubmed_primary_22988078 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-10-02 |
| PublicationDateYYYYMMDD | 2012-10-02 |
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2012 |
| References | 17332377 - Science. 2007 Mar 30;315(5820):1838-41 22144623 - Science. 2011 Dec 2;334(6060):1265-9 19295608 - Nature. 2009 Mar 19;458(7236):329-32 21808034 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13415-9 12511648 - Science. 2003 Jan 3;299(5603):99-102 19295607 - Nature. 2009 Mar 19;458(7236):322-8 19884496 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20590-5 22419155 - Nature. 2012 Mar 22;483(7390):453-6 21852457 - Science. 2011 Sep 9;333(6048):1427-30 19776741 - Nature. 2009 Oct 15;461(7266):971-5 |
| References_xml | – reference: 19776741 - Nature. 2009 Oct 15;461(7266):971-5 – reference: 19295608 - Nature. 2009 Mar 19;458(7236):329-32 – reference: 22144623 - Science. 2011 Dec 2;334(6060):1265-9 – reference: 21808034 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13415-9 – reference: 12511648 - Science. 2003 Jan 3;299(5603):99-102 – reference: 22419155 - Nature. 2012 Mar 22;483(7390):453-6 – reference: 19295607 - Nature. 2009 Mar 19;458(7236):322-8 – reference: 19884496 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20590-5 – reference: 21852457 - Science. 2011 Sep 9;333(6048):1427-30 – reference: 17332377 - Science. 2007 Mar 30;315(5820):1838-41 |
| SSID | ssj0009580 |
| Score | 2.4196596 |
| Snippet | Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 16052 |
| SubjectTerms | Antarctic Regions Computer Simulation Global Warming History, Ancient Ice Cover - chemistry Models, Theoretical Oceans and Seas Water Movements |
| Title | Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22988078 https://www.proquest.com/docview/1082405528 |
| Volume | 109 |
| WOSCitedRecordID | wos000309611400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWAMrAA5VleMhIDDAHHiRN7QgioGKDqAFLFEjm2IzrUKXWK-Hyuk1QwISSWbE6i-zrH9tW5CJ3FzOhEQX6zQsMGRXMSyFgbKIZSGyVUyFXt6cd0MOCjkRi2B26ubatc1MS6UOtS-TNyyG4O4MMY5dfT98BPjfK3q-0IjWXUiYDK-KhOR_yH6C5v1AhEGCSxIAtpnzS6mlrpLkMKIQiUg_zCL2uc6W_89w830XrLMPFNExJdtGTsFuq2OezweSs0fbGNXu-acfQOlwUGIoiBSVcY-LQ_RscT-TmezCf4xlaQDPAyDDUlcG_GVFhajceVw7Omw9bgqsQAhNJi4MAK0HAHvfTvn28fgnbWQiAZT6pAibyIIw3bqVAWYElCtWKxd1YEriukkXGecGkA8ZQOqaEFgYW5F3AnzFBJd9GKLa3ZR5hQ8H0o4kIzgEidC0mEMilL0yQPk5z10OnCfhnEsr-gkNaUc5d9W7CH9honZNNGdCOj8CWvjX_wh9WHaA14Da177ugR6hSQyeYYraqPauxmJ3WQwHMwfPoC5HfHPA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+the+last+glacial+maximum+Antarctic+ice-sheet+and+its+response+to+ocean+forcing&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Golledge%2C+Nicholas+R&rft.au=Fogwill%2C+Christopher+J&rft.au=Mackintosh%2C+Andrew+N&rft.au=Buckley%2C+Kevin+M&rft.date=2012-10-02&rft.eissn=1091-6490&rft.volume=109&rft.issue=40&rft.spage=16052&rft_id=info:doi/10.1073%2Fpnas.1205385109&rft_id=info%3Apmid%2F22988078&rft_id=info%3Apmid%2F22988078&rft.externalDocID=22988078 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |