Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing

Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the National Academy of Sciences - PNAS Ročník 109; číslo 40; s. 16052
Hlavní autori: Golledge, Nicholas R, Fogwill, Christopher J, Mackintosh, Andrew N, Buckley, Kevin M
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 02.10.2012
Predmet:
ISSN:1091-6490, 1091-6490
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.
AbstractList Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.
Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from the Northern Hemisphere (NH) as northern ice sheets melted under rising atmospheric temperatures. The extent to which spatial variability in ice dynamics may have modulated the resultant pattern and timing of decay of the Antarctic ice sheet has so far received little attention, however, despite the growing recognition that dynamic effects account for a sizeable proportion of mass-balance changes observed in modern ice sheets. Here we use a 5-km resolution whole-continent numerical ice-sheet model to assess whether differences in the mechanisms governing ice sheet flow could account for discrepancies between geochronological studies in different parts of the continent. We first simulate the geometry and flow characteristics of an equilibrium LGM ice sheet, using pan-Antarctic terrestrial and marine geological data for constraint, then perturb the system with sea level and ocean heat flux increases to investigate ice-sheet vulnerability. Our results identify that fast-flowing glaciers in the eastern Weddell Sea, the Amundsen Sea, central Ross Sea, and in the Amery Trough respond most rapidly to ocean forcings, in agreement with empirical data. Most significantly, we find that although ocean warming and sea-level rise bring about mainly localized glacier acceleration, concomitant drawdown of ice from neighboring areas leads to widespread thinning of entire glacier catchments-a discovery that has important ramifications for the dynamic changes presently being observed in modern ice sheets.
Author Mackintosh, Andrew N
Golledge, Nicholas R
Fogwill, Christopher J
Buckley, Kevin M
Author_xml – sequence: 1
  givenname: Nicholas R
  surname: Golledge
  fullname: Golledge, Nicholas R
  email: nick.golledge@vuw.ac.nz
  organization: Antarctic Research Centre, Victoria University of Wellington, Wellington 6140, New Zealand. nick.golledge@vuw.ac.nz
– sequence: 2
  givenname: Christopher J
  surname: Fogwill
  fullname: Fogwill, Christopher J
– sequence: 3
  givenname: Andrew N
  surname: Mackintosh
  fullname: Mackintosh, Andrew N
– sequence: 4
  givenname: Kevin M
  surname: Buckley
  fullname: Buckley, Kevin M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22988078$$D View this record in MEDLINE/PubMed
BookMark eNpNUD1PwzAUtFAR_YCZDXlkSXl24tQeq_IpVWKBhSV6cV5ao8QpsSPRf08kisRyd8PdSXdzNvGdJ8auBSwFrNK7g8ewFBJUqpUAc8ZmI4okzwxM_ukpm4fwCQBGabhgUymN1rDSM_Zxf_TYOht4V_O4J95giHzXoHXY8Ba_XTu0fO0j9jY6y52lJOyJIkdfcRcD7ykcOh-Ix453ltDzuuut87tLdl5jE-jqxAv2_vjwtnlOtq9PL5v1NkGl85hYU9ZZWuXCCKxTY0BWVmXWWJFmFdVImJW5RkohtZWQJGsYgyWME0CRRLlgt7-9h777GijEonXBUtOgp24IhQAtM1BK6tF6c7IOZUtVcehdi_2x-PtD_gBX12TX
CitedBy_id crossref_primary_10_1073_pnas_1418970111
crossref_primary_10_1016_j_quascirev_2018_07_004
crossref_primary_10_1002_jqs_2683
crossref_primary_10_1029_2024TC008464
crossref_primary_10_1002_2016JF004121
crossref_primary_10_1093_astrogeo_att122
crossref_primary_10_1073_pnas_1609132113
crossref_primary_10_1029_2020PA003981
crossref_primary_10_5194_bg_18_1629_2021
crossref_primary_10_5194_tc_12_2741_2018
crossref_primary_10_1093_jrsssc_qlad078
crossref_primary_10_1029_2019GC008749
crossref_primary_10_1038_s41467_023_38240_y
crossref_primary_10_1029_2023JF007588
crossref_primary_10_1016_j_quascirev_2020_106166
crossref_primary_10_1016_j_sedgeo_2024_106742
crossref_primary_10_3389_fmars_2023_1183516
crossref_primary_10_1029_2018GL078253
crossref_primary_10_1038_nature13397
crossref_primary_10_5194_cp_20_1559_2024
crossref_primary_10_5194_tc_17_1497_2023
crossref_primary_10_1038_s41467_025_58304_5
crossref_primary_10_1016_j_quascirev_2012_11_017
crossref_primary_10_1016_j_margeo_2017_08_005
crossref_primary_10_1029_2019PA003644
crossref_primary_10_1017_S095410202000036X
crossref_primary_10_1002_esp_5865
crossref_primary_10_1016_j_geomorph_2018_05_020
crossref_primary_10_1017_S0954102014000340
crossref_primary_10_1016_j_quascirev_2015_07_016
crossref_primary_10_1029_2019RG000663
crossref_primary_10_1029_2023GL106958
crossref_primary_10_1038_s41467_018_05625_3
crossref_primary_10_1016_j_quaint_2013_08_005
crossref_primary_10_1016_j_quascirev_2013_08_011
crossref_primary_10_3189_2015JoG14J198
crossref_primary_10_1111_ecog_04951
crossref_primary_10_1002_2016GL070278
crossref_primary_10_1017_S0954102014000613
crossref_primary_10_5194_esurf_9_1363_2021
crossref_primary_10_1175_JCLI_D_15_0908_1
crossref_primary_10_1016_j_quascirev_2013_10_028
crossref_primary_10_1002_2017GL074216
crossref_primary_10_1029_2021JF006442
crossref_primary_10_1016_j_quascirev_2013_07_024
crossref_primary_10_5194_tc_15_4929_2021
crossref_primary_10_5194_tc_14_633_2020
crossref_primary_10_1073_pnas_2410759121
crossref_primary_10_1002_2015JD023900
crossref_primary_10_1016_j_quascirev_2013_07_020
crossref_primary_10_1038_ncomms15425
crossref_primary_10_1016_j_dsr_2021_103606
crossref_primary_10_5194_tc_9_881_2015
crossref_primary_10_5194_tc_13_1959_2019
crossref_primary_10_1016_j_quascirev_2022_107680
crossref_primary_10_1002_2015GL066476
crossref_primary_10_5194_tc_19_919_2025
crossref_primary_10_5194_tc_8_1347_2014
crossref_primary_10_1038_s41467_021_27053_6
crossref_primary_10_1002_2016GL068436
crossref_primary_10_1016_j_quascirev_2022_107401
crossref_primary_10_1016_j_quascirev_2013_12_001
crossref_primary_10_1016_j_quascirev_2020_106305
crossref_primary_10_1016_j_quascirev_2022_107800
crossref_primary_10_1016_j_gloplacha_2016_04_009
crossref_primary_10_1016_j_quascirev_2020_106540
crossref_primary_10_1029_2018GL079168
crossref_primary_10_1016_j_quascirev_2016_12_007
crossref_primary_10_1016_j_quascirev_2018_03_013
crossref_primary_10_1130_B37613_1
crossref_primary_10_1017_aog_2016_26
crossref_primary_10_1111_gcb_15940
crossref_primary_10_1139_cjes_2022_0004
crossref_primary_10_1002_2015EF000306
crossref_primary_10_1016_j_gloplacha_2022_103901
crossref_primary_10_1016_j_quascirev_2017_10_016
crossref_primary_10_1016_j_quascirev_2020_106636
crossref_primary_10_1038_s41598_017_01329_8
crossref_primary_10_1016_j_quascirev_2021_107299
crossref_primary_10_1016_j_sedgeo_2018_04_009
crossref_primary_10_5194_tc_13_2615_2019
crossref_primary_10_1144_M56_2022_13
crossref_primary_10_14770_jgsk_2024_036
crossref_primary_10_1038_ncomms6107
crossref_primary_10_1016_j_palaeo_2021_110505
crossref_primary_10_1016_j_quascirev_2018_12_024
crossref_primary_10_5194_cp_14_455_2018
crossref_primary_10_1029_2018JC013982
crossref_primary_10_1016_j_quascirev_2014_06_023
crossref_primary_10_1073_pnas_1516130113
crossref_primary_10_1016_j_quascirev_2014_06_025
crossref_primary_10_5194_tc_14_3917_2020
crossref_primary_10_1038_s41586_020_1931_7
crossref_primary_10_1038_nature15706
crossref_primary_10_5194_tc_15_215_2021
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1205385109
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 22988078
Genre Historical Article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Antarctic Regions
GeographicLocations_xml – name: Antarctic Regions
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-a586t-c9bf43d6191af39902dc54c9c134defaea4b68ae303cd12e2f0a58b029805e2a2
IEDL.DBID 7X8
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309611400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Thu Oct 02 11:17:40 EDT 2025
Thu Apr 03 06:59:55 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a586t-c9bf43d6191af39902dc54c9c134defaea4b68ae303cd12e2f0a58b029805e2a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/109/40/16052.full.pdf
PMID 22988078
PQID 1082405528
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1082405528
pubmed_primary_22988078
PublicationCentury 2000
PublicationDate 2012-10-02
PublicationDateYYYYMMDD 2012-10-02
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
References 17332377 - Science. 2007 Mar 30;315(5820):1838-41
22144623 - Science. 2011 Dec 2;334(6060):1265-9
19295608 - Nature. 2009 Mar 19;458(7236):329-32
21808034 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13415-9
12511648 - Science. 2003 Jan 3;299(5603):99-102
19295607 - Nature. 2009 Mar 19;458(7236):322-8
19884496 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20590-5
22419155 - Nature. 2012 Mar 22;483(7390):453-6
21852457 - Science. 2011 Sep 9;333(6048):1427-30
19776741 - Nature. 2009 Oct 15;461(7266):971-5
References_xml – reference: 19776741 - Nature. 2009 Oct 15;461(7266):971-5
– reference: 19295608 - Nature. 2009 Mar 19;458(7236):329-32
– reference: 22144623 - Science. 2011 Dec 2;334(6060):1265-9
– reference: 21808034 - Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13415-9
– reference: 12511648 - Science. 2003 Jan 3;299(5603):99-102
– reference: 22419155 - Nature. 2012 Mar 22;483(7390):453-6
– reference: 19295607 - Nature. 2009 Mar 19;458(7236):322-8
– reference: 19884496 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20590-5
– reference: 21852457 - Science. 2011 Sep 9;333(6048):1427-30
– reference: 17332377 - Science. 2007 Mar 30;315(5820):1838-41
SSID ssj0009580
Score 2.4196596
Snippet Retreat of the Last Glacial Maximum (LGM) Antarctic ice sheet is thought to have been initiated by changes in ocean heat and eustatic sea level propagated from...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 16052
SubjectTerms Antarctic Regions
Computer Simulation
Global Warming
History, Ancient
Ice Cover - chemistry
Models, Theoretical
Oceans and Seas
Water Movements
Title Dynamics of the last glacial maximum Antarctic ice-sheet and its response to ocean forcing
URI https://www.ncbi.nlm.nih.gov/pubmed/22988078
https://www.proquest.com/docview/1082405528
Volume 109
WOSCitedRecordID wos000309611400028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWAMrAA5VleMhIDDAHHiRN7QgioGKDqAFLFEjm2IzrUKXWK-Hyuk1QwISSWbE6i-zrH9tW5CJ3FzOhEQX6zQsMGRXMSyFgbKIZSGyVUyFXt6cd0MOCjkRi2B26ubatc1MS6UOtS-TNyyG4O4MMY5dfT98BPjfK3q-0IjWXUiYDK-KhOR_yH6C5v1AhEGCSxIAtpnzS6mlrpLkMKIQiUg_zCL2uc6W_89w830XrLMPFNExJdtGTsFuq2OezweSs0fbGNXu-acfQOlwUGIoiBSVcY-LQ_RscT-TmezCf4xlaQDPAyDDUlcG_GVFhajceVw7Omw9bgqsQAhNJi4MAK0HAHvfTvn28fgnbWQiAZT6pAibyIIw3bqVAWYElCtWKxd1YEriukkXGecGkA8ZQOqaEFgYW5F3AnzFBJd9GKLa3ZR5hQ8H0o4kIzgEidC0mEMilL0yQPk5z10OnCfhnEsr-gkNaUc5d9W7CH9honZNNGdCOj8CWvjX_wh9WHaA14Da177ugR6hSQyeYYraqPauxmJ3WQwHMwfPoC5HfHPA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+the+last+glacial+maximum+Antarctic+ice-sheet+and+its+response+to+ocean+forcing&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Golledge%2C+Nicholas+R&rft.au=Fogwill%2C+Christopher+J&rft.au=Mackintosh%2C+Andrew+N&rft.au=Buckley%2C+Kevin+M&rft.date=2012-10-02&rft.eissn=1091-6490&rft.volume=109&rft.issue=40&rft.spage=16052&rft_id=info:doi/10.1073%2Fpnas.1205385109&rft_id=info%3Apmid%2F22988078&rft_id=info%3Apmid%2F22988078&rft.externalDocID=22988078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon