An Improved Particle Swarm Optimization for Solving Bilevel Multiobjective Programming Problem

An improved particle swarm optimization (PSO) algorithm is proposed for solving bilevel multiobjective programming problem (BLMPP). For such problems, the proposed algorithm directly simulates the decision process of bilevel programming, which is different from most traditional algorithms designed f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of Applied Mathematics Ročník 2012; číslo 2012; s. 1441 - 1453-491
Hlavní autori: Guo, Xuning, Zheng, Yue, Hu, Tiesong, Zhang, Tao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cairo, Egypt Hindawi Limiteds 01.01.2012
Hindawi Publishing Corporation
John Wiley & Sons, Inc
Wiley
Predmet:
ISSN:1110-757X, 1687-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:An improved particle swarm optimization (PSO) algorithm is proposed for solving bilevel multiobjective programming problem (BLMPP). For such problems, the proposed algorithm directly simulates the decision process of bilevel programming, which is different from most traditional algorithms designed for specific versions or based on specific assumptions. The BLMPP is transformed to solve multiobjective optimization problems in the upper level and the lower level interactively by an improved PSO. And a set of approximate Pareto optimal solutions for BLMPP is obtained using the elite strategy. This interactive procedure is repeated until the accurate Pareto optimal solutions of the original problem are found. Finally, some numerical examples are given to illustrate the feasibility of the proposed algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1110-757X
1687-0042
DOI:10.1155/2012/626717