Invariant algebras and geometric reasoning

The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics — among them, Grassmann–Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Li, Hongbo
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: New Jersey World Scientific Publishing Co. Pte. Ltd 2008
World Scientific
World Scientific Publishing Company
WORLD SCIENTIFIC
WSPC
Vydanie:1
Predmet:
ISBN:9789812708083, 9812708081, 9812770119, 9789812770110
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics — among them, Grassmann–Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries.
AbstractList The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics — among them, Grassmann–Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries.
The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries.This book contains the author and his collaborators' most recent, original development of Grassmann-Cayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras - Cayley bracket algebra, conformal geometric algebra, and null bracket algebra - for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide.Sample Chapter(s)Chapter 1: Introduction (252 KB)Contents:Projective Space, Bracket Algebra and Grassmann-Cayley AlgebraProjective Incidence Geometry with Cayley Bracket AlgebraProjective Conic Geometry with Bracket Algebra and Quadratic Grassmann-Cayley AlgebraInner-product Bracket Algebra and Clifford AlgebraGeometric AlgebraEuclidean Geometry and Conformal Grassmann-Cayley AlgebraConformal Clifford Algebra and Classical GeometriesReadership: Graduate students in discrete and computational geometry, and computer mathematics; mathematicians and computer scientists.
The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics - among them, Grassmann-Cayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of Grassmann-Cayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras - Cayley bracket algebra, conformal geometric algebra, and null bracket algebra - for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide.
Author Li, Hongbo
Author_xml – sequence: 1
  fullname: Li, Hongbo
BackLink https://cir.nii.ac.jp/crid/1130000796257657728$$DView record in CiNii
BookMark eNpFkdtq3DAQhhWalOawT9CbvSjkAJtqJOt02Sw5QaCFlPZSyPbYUeNIW8m7IW8fO96QuZhhmG9-mH8OyG6IAQk5AnoOULDvUkCxQw6MBqYUBTCfyMwo_dZTTTX_TPa1MpSJQosvZJbzPzoEaA4F7JOz27BxybvQz13XYplcnrtQz1uMT9gnX80TuhyDD-0R2Wtcl3G2rYfkz9Xl7-XN4u7n9e3yx93CCc2YXEiFHKmSnLOCy5JiKZq6YLU2qHVZa-Go0VUhSmMMMm4qEFhXjWIGEVxT80NyOgm7_IjP-SF2fbabDssYH7N9P248ln6wzzF1da48ht43vrITDNSOLtnRpYE9nthViv_XmHv7JlkNK8l19vJiCVKDBDmQX7ckpg7buFXTheFm1Pk2TYP3tvJjBuCjq8pIJpQUSjE9YCcT5tvVuux8fhhMtKvkn1x6sX_vfy0vxkdwofgr2_aD4w
ContentType eBook
Book
DBID WMAQA
RYH
YSPEL
DEWEY 512/.57
DOI 10.1142/6514
DatabaseName World Scientific
CiNii Complete
Perlego
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9812770119
9789812770110
9789814474887
9814474886
Edition 1
ExternalDocumentID 9789812770110
10.1142/6514
EBC1681616
849394
BA85537300
WSPCB0001357
Genre Electronic books
GroupedDBID -VQ
-VX
089
20A
38.
9WS
A4I
A4J
AABBV
AATMT
ABARN
ABCYV
ABIAV
ABMRC
ABQPQ
ACBYE
ACLGV
ACZWY
ADVEM
AERYV
AFOJC
AHWGJ
AIXPE
AJFER
AKHYG
ALMA_UNASSIGNED_HOLDINGS
ALUEM
AMYDA
AZZ
BBABE
CZZ
DUGUG
EBSCA
ECOWB
GEOUK
HF4
IWG
J-X
JJU
MYL
PE2
PQQKQ
PVBBV
WMAQA
XI1
YSPEL
RYH
AVGCG
ID FETCH-LOGICAL-a58226-67e3e076332436b0eb5fd42d89e88bd85a098c45b999e239c15edcf729ee1afd3
ISBN 9789812708083
9812708081
9812770119
9789812770110
IngestDate Sun Nov 30 03:40:36 EST 2025
Sat Mar 29 05:12:25 EDT 2025
Wed Nov 26 05:21:59 EST 2025
Tue Dec 02 17:46:50 EST 2025
Thu Jun 26 23:11:55 EDT 2025
Mon Apr 07 05:00:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Bracket Algebra
Invariant Theory
Automated Theorem Proving
Geometric Algebra
Geometric Invariance
Computational Geometry
Discrete Geometry
Projective Geometry
Geometric Reasoning
Grassmann-Cayley Algebra
LCCallNum QA199
LCCallNum_Ident QA199
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a58226-67e3e076332436b0eb5fd42d89e88bd85a098c45b999e239c15edcf729ee1afd3
Notes Includes bibliographical references and index
OCLC 879025485
PQID EBC1681616
PageCount 533
ParticipantIDs nii_cinii_1130000796257657728
perlego_books_849394
askewsholts_vlebooks_9789812770110
proquest_ebookcentral_EBC1681616
worldscientific_books_10_1142_6514
igpublishing_primary_WSPCB0001357
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2008.
c2008
2008
20080300
2008-03-04
PublicationDateYYYYMMDD 2008-01-01
2008-03-01
2008-03-04
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationPlace New Jersey
PublicationPlace_xml – name: New Jersey
– name: Singapore
PublicationYear 2008
Publisher World Scientific Publishing Co. Pte. Ltd
World Scientific
World Scientific Publishing Company
WORLD SCIENTIFIC
WSPC
Publisher_xml – name: World Scientific Publishing Co. Pte. Ltd
– name: World Scientific
– name: World Scientific Publishing Company
– name: WORLD SCIENTIFIC
– name: WSPC
SSID ssj0000183141
Score 2.2062597
Snippet The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics —...
The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics -...
SourceID askewsholts
worldscientific
proquest
perlego
nii
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Artificial Intelligence (Machine Learning, Neural Networks, Fuzzy Logic)
Clifford algebras
Conformal geometry
Invariants
Pure Mathematics
SCIENCE
Symmetry (Mathematics)
SubjectTermsDisplay Clifford algebras
Invariants
Symmetry (Mathematics)
TableOfContents Invariant algebras and geometric reasoning -- Foreword -- Preface -- Contents -- Chapter 1: Introduction -- Chapter 2: Projective Space, Bracket Algebra and Grassmann-Cayley Algebra -- Chapter 3: Projective Incidence Geometry with Cayley Bracket Algebra -- Chapter 4: Projective Conic Geometry with Bracket Algebra and Quadratic Grassmann-Cayley Algebra -- Chapter 5: Inner-product Bracket Algebra and Clifford Algebra -- Chapter 6: Geometric Algebra -- Chapter 7: Euclidean Geometry and Conformal Grassmann-Cayley Algebra -- Chapter 8: Conformal Clifford Algebra and Classical Geometries -- Appendix A: Cayley Expansion Theory for 2D and 3D Projective Geometries -- Bibliography -- Index
Intro -- Contents -- Foreword -- Preface -- 1. Introduction -- 1.1 Leibniz's dream -- 1.2 Development of geometric algebras -- 1.3 Conformal geometric algebra -- 1.4 Geometric computing with invariant algebras -- 1.5 From basic invariants to advanced invariants -- 1.6 Geometric reasoning with advanced invariant algebras -- 1.7 Highlights of the chapters -- 2. Projective Space, Bracket Algebra and Grassmann-Cayley Algebra -- 2.1 Projective space and classical invariants -- 2.2 Brackets from the symbolic point of view -- 2.3 Covariants, duality and Grassmann-Cayley algebra -- 2.4 Grassmann coalgebra -- 2.5 Cayley expansion -- 2.5.1 Basic Cayley expansions -- 2.5.2 Cayley expansion theory -- 2.5.3 General Cayley expansions -- 2.6 Grassmann factorization -- 2.7 Advanced invariants and Cayley bracket algebra -- 3. Projective Incidence Geometry with Cayley Bracket Algebra -- 3.1 Symbolic methods for projective incidence geometry -- 3.2 Factorization techniques in bracket algebra -- 3.2.1 Factorization based on GP relations -- 3.2.2 Factorization based on collinearity constraints -- 3.2.3 Factorization based on concurrency constraints -- 3.3 Contraction techniques in bracket computing -- 3.3.1 Contraction -- 3.3.2 Level contraction -- 3.3.3 Strong contraction -- 3.4 Exact division and pseudodivision -- 3.4.1 Exact division by brackets without common vectors -- 3.4.2 Pseudodivision by brackets with common vectors -- 3.5 Rational invariants -- 3.5.1 Antisymmetrization of rational invariants -- 3.5.2 Symmetrization of rational invariants -- 3.6 Automated theorem proving -- 3.6.1 Construction sequence and elimination sequence -- 3.6.2 Geometric constructions and nondegeneracy conditions -- 3.6.3 Theorem proving algorithm and practice -- 3.7 Erdos' consistent 5-tuples -- 3.7.1 Derivation of the fundamental equations -- 3.7.2 Proof of Theorem 3.40
8.6.2 The conformal model of double-hyperbolic geometry -- 8.6.3 Poincar e's disk model and half-space model -- 8.7 Unified algebraic framework for classical geometries -- Appendix A Cayley Expansion Theory for 2D and 3D Projective Geometries -- A.1 Cayley expansions of pII -- A.2 Cayley expansions of pIII -- A.3 Cayley expansions of pIV -- A.4 Cayley expansions of qI -- qII and qIII -- A.5 Cayley expansions of rI and rII -- Bibliography -- Index
3.7.3 Proof of Theorem 3.39 -- 4. Projective Conic Geometry with Bracket Algebra and Quadratic Grassmann-Cayley Algebra -- 4.1 Conics with bracket algebra -- 4.1.1 Conics determined by points -- 4.1.2 Conics determined by tangents and points -- 4.2 Bracket-oriented representation -- 4.2.1 Representations of geometric constructions -- 4.2.2 Representations of geometric conclusions -- 4.3 Simplification techniques in conic computing -- 4.3.1 Conic transformation -- 4.3.2 Pseudoconic transformation -- 4.3.3 Conic contraction -- 4.4 Factorization techniques in conic computing -- 4.4.1 Bracket unification -- 4.4.2 Conic Cayley factorization -- 4.5 Automated theorem proving -- 4.5.1 Almost incidence geometry -- 4.5.2 Tangency and polarity -- 4.5.3 Intersection -- 4.6 Conics with quadratic Grassmann-Cayley algebra -- 4.6.1 Quadratic Grassmann space and quadratic bracket algebra -- 4.6.2 Extension and Intersection -- 5. Inner-product Bracket Algebra and Clifford Algebra -- 5.1 Inner-product bracket algebra -- 5.1.1 Inner-product space -- 5.1.2 Inner-product Grassmann algebra -- 5.1.3 Algebras of basic invariants and advanced invariants -- 5.2 Clifford algebra -- 5.3 Representations of Clifford algebras -- 5.3.1 Clifford numbers -- 5.3.2 Matrix-formed Clifford algebras -- 5.3.3 Groups in Clifford algebra -- 5.4 Clifford expansion theory -- 5.4.1 Expansion of the geometric product of vectors -- 5.4.2 Expansion of square bracket -- 5.4.3 Expansion of the geometric product of blades -- 6. Geometric Algebra -- 6.1 Major techniques in Geometric Algebra -- 6.1.1 Symmetry -- 6.1.2 Commutation -- 6.1.3 Ungrading -- 6.2 Versor compression -- 6.2.1 4-tuple compression -- 6.2.2 5-tuple compression -- 6.2.3 m-tuple compression -- 6.3 Obstructions to versor compression -- 6.3.1 Almost null space -- 6.3.2 Parabolic rotors -- 6.3.3 Hyperbolic rotors
6.3.4 Maximal grade conjectures -- 6.4 Clifford coalgebra, Clifford summation and factorization -- 6.4.1 One Clifford monomial -- 6.4.2 Two Clifford monomials -- 6.4.3 Three Clifford monomials -- 6.4.4 Clifford coproduct of blades -- 6.5 Clifford bracket algebra -- 7. Euclidean Geometry and Conformal Grassmann-Cayley Algebra -- 7.1 Homogeneous coordinates and Cartesian coordinates -- 7.1.1 Affne space and affine Grassmann-Cayley algebra -- 7.1.2 The Cartesian model of Euclidean space -- 7.2 The conformal model and the homogeneous model -- 7.2.1 The conformal model -- 7.2.2 Vectors of different signatures -- 7.2.3 The homogeneous model -- 7.3 Positive-vector representations of spheres and hyperplanes -- 7.3.1 Pencils of spheres and hyperplanes -- 7.3.2 Positive-vector representation -- 7.4 Conformal Grassmann-Cayley algebra -- 7.4.1 Geometry of Minkowski blades -- 7.4.2 Inner product of Minkowski blades -- 7.4.3 Meet product of Minkowski blades -- 7.5 The Lie model of oriented spheres and hyperplanes -- 7.5.1 Inner product of Lie spheres -- 7.5.2 Lie pencils, positive vectors and negative vectors -- 7.6 Apollonian contact problem -- 7.6.1 1D contact problem -- 7.6.2 2D contact problem -- 7.6.3 nD contact problem -- 8. Conformal Clifford Algebra and Classical Geometries -- 8.1 The geometry of positive monomials -- 8.1.1 Versors for conformal transformations -- 8.1.2 Geometric product of Minkowski blades -- 8.2 Cayley transform and exterior exponential -- 8.3 Twisted Vahlen matrices and Vahlen matrices -- 8.4 Affne geometry with dual Clifford algebra -- 8.5 Spherical geometry and its conformal model -- 8.5.1 The classical model of spherical geometry -- 8.5.2 The conformal model of spherical geometry -- 8.6 Hyperbolic geometry and its conformal model -- 8.6.1 Poincar e's hyperboloid model of hyperbolic geometry
Title Invariant algebras and geometric reasoning
URI http://portal.igpublish.com/iglibrary/search/WSPCB0001357.html
https://cir.nii.ac.jp/crid/1130000796257657728
https://www.perlego.com/book/849394/invariant-algebras-and-geometric-reasoning-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=1681616
https://www.worldscientific.com/doi/10.1142/6514
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9789812770110&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6xghBFQsCGCDAUEE9IEUljO_YjrTqQEGMSA_YW2bETVeuSqinVfj7nOPXa8oD2wIvVRGou_c66fp99vgN4p4ht3yPiyGRERDgpdKQkCleVCq0pT2LNVNdsIjs95RcX4qxvWtJ27QSyuubX12LxX12N99DZ9ujsLdztH4o38DM6HUd0O457jNhfbrLR1yh8pc0Zn1d2P9iVX65Mc2XbZtlSzbLtVl99Fo5rWd3UlWp25D_fk_8u5aaLA11u0Y48FNzuK_PYtYr5O1gSW3yVUXeKc6_s9PgjpzS11ewP4AA1yQDufpp--_HFL2DFGAwSkrgiRjeWUPn6i-Q-POwNfbBmhjCU7SUGbwzsq9YWh60WfrEN_9zr2QxlyMIs56Zqdij_o65-bOt_5hYHOH8MA3su5AncMfVTGH715W7bQ3jvoQ830IcIfeihDz30R_DzZHo--Rz1TSgiSZE8sYhlJjUxhmGknilTsVG01GSkuTCcK82pjAUvCFVItc0oFUVCjS5KFC3GJLLU6TMY1E1tnkOoWKELI7Qq8QtpLFHqUqRIGSOFLGliAni7hU--nncb5m2-ATizZC2AN9uw5QtXlST_9f1sMu4oPc0COEYs82Jmx8TuWCIVFMyKS4pyigdw2KOcOwuciFSQAMIN5Hlnuk8QzqfjScI4igOGr7jniv4J7oD7KLd-fvEP8y_hwc1UfgWD1fK3OYZ7xXo1a5ev-4n2By-LSEE
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Invariant+algebras+and+geometric+reasoning&rft.au=Li%2C+Hongbo&rft.date=2008-01-01&rft.pub=World+Scientific&rft.isbn=9789812708083&rft_id=info:doi/10.1142%2F6514&rft.externalDocID=BA85537300
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fworld_scientific_pub_rlpceeul%2F9789812770110.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97898127%2F9789812770110.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FWSPCB0001357_null_0_320.png
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.worldscientific.com%2Faction%2FshowCoverImage%3Fdoi%3D10.1142%2F6514