Is the Faber-Krahn inequality true for the Stokes operator?
The goal of this paper is to investigate the minimisation of the first eigenvalue of the (vectorial) incompressible Dirichlet-Stokes operator. After providing an existence result, we investigate optimality conditions and we prove the following surprising result: while the ball satisfies first and se...
Uložené v:
| Vydané v: | Calculus of variations and partial differential equations |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Springer Verlag
18.01.2024
|
| Predmet: | |
| ISSN: | 0944-2669, 1432-0835 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The goal of this paper is to investigate the minimisation of the first eigenvalue of the (vectorial) incompressible Dirichlet-Stokes operator. After providing an existence result, we investigate optimality conditions and we prove the following surprising result: while the ball satisfies first and second-order optimality conditions in dimension 2, it does not in dimension 3, so that the Faber-Krahn inequality for the Stokes operator is probably true in $\mathbb{R}^2$ , but does not hold in $\mathbb{R}^3$. The multiplicity of the first eigenvalue of the Dirichlet-Stokes operator in the ball in $\mathbb{R}^3$ plays a crucial role in the proof of that claim. |
|---|---|
| ISSN: | 0944-2669 1432-0835 |
| DOI: | 10.48550/arXiv.2401.09801 |