Is the Faber-Krahn inequality true for the Stokes operator?

The goal of this paper is to investigate the minimisation of the first eigenvalue of the (vectorial) incompressible Dirichlet-Stokes operator. After providing an existence result, we investigate optimality conditions and we prove the following surprising result: while the ball satisfies first and se...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Calculus of variations and partial differential equations
Hlavní autori: Henrot, Antoine, Mazari, Idriss, Privat, Yannick
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Springer Verlag 18.01.2024
Predmet:
ISSN:0944-2669, 1432-0835
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The goal of this paper is to investigate the minimisation of the first eigenvalue of the (vectorial) incompressible Dirichlet-Stokes operator. After providing an existence result, we investigate optimality conditions and we prove the following surprising result: while the ball satisfies first and second-order optimality conditions in dimension 2, it does not in dimension 3, so that the Faber-Krahn inequality for the Stokes operator is probably true in $\mathbb{R}^2$ , but does not hold in $\mathbb{R}^3$. The multiplicity of the first eigenvalue of the Dirichlet-Stokes operator in the ball in $\mathbb{R}^3$ plays a crucial role in the proof of that claim.
ISSN:0944-2669
1432-0835
DOI:10.48550/arXiv.2401.09801