Optimal Control of Medical Drug in a Nonlocal Model of Solid Tumor Growth

This paper presents a mathematical framework for optimizing drug delivery in cancer treatment using a nonlocal model of solid tumor growth. We present a coupled system of partial differential equations that incorporate long-range cellular interactions through integral terms and drug-induced cell dea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications
Hlavní autoři: Bouhamidi, Abderrahman, Imad, El Harraki, Melouani, Yassine
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier 12.03.2025
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents a mathematical framework for optimizing drug delivery in cancer treatment using a nonlocal model of solid tumor growth. We present a coupled system of partial differential equations that incorporate long-range cellular interactions through integral terms and drug-induced cell death. The model accounts for spatial heterogeneity in both tumor cell density and drug concentration while capturing the complex dynamics of drug resistance development. We first establish the well-posedness of the coupled system by proving the existence and uniqueness of a solution under appropriate regularity conditions. The optimal control problem is then formulated to minimize tumor size while accounting for drug toxicity constraints. Using variational methods, we derive the necessary optimality conditions and characterize the optimal control through an adjoint system. Theoretical results can help to design effective chemotherapy schedules that balance treatment efficacy with adverse effects.
ISSN:0022-247X
1096-0813
DOI:10.48550/arXiv.2503.09208