Painlevé Differential Equations in the Complex Plane
This book is the first comprehensive treatment of Painlevé differential equations in the complex plane. Starting with a rigorous presentation for the meromorphic nature of their solutions, the Nevanlinna theory will be applied to offer a detailed exposition of growth aspects and value distribution o...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Format: | E-Book Buch |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
De Gruyter
2008
Walter de Gruyter Walter de Gruyter GmbH |
| Ausgabe: | 1 |
| Schriftenreihe: | De Gruyter Studies in Mathematics |
| Schlagworte: | |
| ISBN: | 3110198096, 9783110198096, 9783110173796, 3110173794 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Inhaltsangabe:
- 35 Rational and classical transcendental solutions of (P3) when γδ ≠ 0 -- 8 The fifth Painlevé equation (P5) -- 36 Preliminary observations -- 37 The behavior of solutions near z = 0 and z = ∞ -- 38 The special case δ = 0, γ ≠ 0 -- 39 The Bäcklund transformations of (P5) -- 40 Rational and one-parameter families of solutions -- 41 Connection between (P3) and (P5) revisited -- 9 The sixth Painlevé equation (P6) -- 42 General properties of solutions -- 43 Pairs of differential equations equivalent to (P6) -- 44 A Riccati differential equation related to (P6) -- 45 A first order algebraic differential equation related to (P6) -- 46 Singular points of solutions of (P6) -- 47 Connection formulae between solutions of (P6) -- 48 Elementary solutions of (P6) -- 10 Applications of Painlevé equations -- 49 Partial differential equations related to Painlevé equations -- 50 Discrete Painlevé equations -- Appendix A Local existence and uniqueness of solutions of complex differential equations -- Appendix B Basic notations and facts in the Nevanlinna theory -- Bibliography -- Index
- Intro -- Introduction -- 1 Meromorphic nature of solutions -- 1 The first Painlevé equation (P1) -- 2 The second Painlevé equation (P2) -- 3 The third Painlevé equation (P3) -- 4 The fourth Painlevé equation (P4) -- 5 The fifth Painlevé equation (P5) -- 6 The sixth Painlevé equation (Pe) -- 2 Growth of Painlevé transcendents -- 7 Growth of first Painlevé transcendents -- 8 Growth of second and fourth Painlevé transcendents -- 9 Growth of third and fifth Painlevé transcendents -- 3 Value distribution of Painlevé transcendents -- 10 Deficiencies and ramification indices -- 11 The second main theorem for Painlevé transcendents -- 12 Value distribution with respect to small target functions -- 4 The first Painlevé equation (P1) -- 13 Nonexistence of the first integrals -- 14 Representation of solutions as quotient of entire functions -- 15 Special expansions of solutions -- 16 Higher order analogues of (P1) -- 5 The second Painlevé equation (P2) -- 17 Canonical representation of solutions -- 18 Poles of second Painlevé transcendents -- 19 The Bäcklund transformations of (P2) -- 20 Rational solutions of (P2) -- 21 The Airy solutions of (P2) -- 22 Higher order analogues of (P2) -- 6 The fourth Painlevé equation (P4) -- 23 Preliminary remarks -- 24 Poles of fourth Painlevé transcendents -- 25 Connection formulae between solutions of (P4) -- 26 Rational solutions of (P4) -- 27 The complementary error function hierarchy -- 28 A half-integer hierarchy of solutions -- 7 The third Painlevé equation (P3) -- 29 Preliminary remarks -- 30 Behavior of solutions around z = 0 and z = ∞ -- 31 Poles of third Painlevé transcendents -- 32 Canonical representation of solutions -- 33 The special case γ = 0, αδ ≠ 0 -- 34 Connection between solutions of (P3) and (P5)
- Chapter 5. The second Painlevé equation (P2) --
- Contents --
- Chapter 2. Growth of Painlevé transcendents --
- Chapter 3. Value distribution of Painlevé transcendents --
- Chapter 1. Meromorphic nature of solutions --
- Chapter 6. The fourth Painlevé equation (P4) --
- Chapter 10. Applications of Painlevé equations --
- Appendix B. Basic notations and facts in the Nevanlinna theory --
- Appendix A. Local existence and uniqueness of solutions of complex differential equations --
- Chapter 8. The fifth Painlevé equation (P5) --
- Backmatter
- Chapter 4. The first Painlevé equation (P1) --
- Chapter 7. The third Painlevé equation (P3) --
- Frontmatter --
- Chapter 9. The sixth Painlevé equation (P6) --

