The p-adic Simpson Correspondence (AM-193)

The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra—namely Higgs bundles. This book undertakes a systematic development of the theory f...

Full description

Saved in:
Bibliographic Details
Main Authors: Abbes, Ahmed, Gros, Michel, Tsuji, Takeshi
Format: eBook Book
Language:English
Published: United States Princeton University Press 2016
Edition:1
Series:Annals of Mathematics Studies
Subjects:
ISBN:1400881234, 9781400881239, 0691170282, 9780691170282, 0691170290, 9780691170299
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Front Matter Table of Contents Foreword CHAPTER I: Representations of the fundamental group and the torsor of deformations. CHAPTER II: Representations of the fundamental group and the torsor of deformations. CHAPTER III: Representations of the fundamental group and the torsor of deformations. CHAPTER IV: Cohomology of Higgs isocrystals CHAPTER V: Almost étale coverings CHAPTER VI: Covanishing topos and generalizations Facsimile : Bibliography Indexes
  • IV.5 Representations of the fundamental group -- IV.6 Comparison with Faltings cohomology -- Chapter V. Almost étale coverings -- V.1 Introduction -- V.2 Almost isomorphisms -- V.3 Almost finitely generated projective modules -- V.4 Trace -- V.5 Rank and determinant -- V.6 Almost flat modules and almost faithfully flat modules -- V.7 Almost étale coverings -- V.8 Almost faithfully flat descent I -- V.9 Almost faithfully flat descent II -- V.10 Liftings -- V.11 Group cohomology of discrete A-G-modules -- V.12 Galois cohomology -- Chapter VI. Covanishing topos and generalizations -- VI.1 Introduction -- VI.2 Notation and conventions -- VI.3 Oriented products of topos -- VI.4 Covanishing topos -- VI.5 Generalized covanishing topos -- VI.6 Morphisms with values in a generalized covanishing topos -- VI.7 Ringed total topos -- VI.8 Ringed covanishing topos -- VI.9 Finite étale site and topos of a scheme -- VI.10 Faltings site and topos -- VI.11 Inverse limit of Faltings topos -- Facsimile : A p-adic Simpson correspondence -- Bibliography -- Indexes
  • Cover -- Title -- Copyright -- Dedication -- Contents -- Foreword -- Chapter I. Representations of the fundamental group and the torsor of deformations. An overview -- I.1 Introduction -- I.2 Notation and conventions -- I.3 Small generalized representations -- I.4 The torsor of deformations -- I.5 Faltings ringed topos -- I.6 Dolbeault modules -- Chapter II. Representations of the fundamental group and the torsor of deformations. Local study -- II.1 Introduction -- II.2 Notation and conventions -- II.3 Results on continuous cohomology of profinite groups -- II.4 Objects with group actions -- II.5 Logarithmic geometry lexicon -- II.6 Faltings' almost purity theorem -- II.7 Faltings extension -- II.8 Galois cohomology -- II.9 Fontaine p-adic infinitesimal thickenings -- II.10 Higgs-Tate torsors and algebras -- II.11 Galois cohomology II -- II.12 Dolbeault representations -- II.13 Small representations -- II.14 Descent of small representations and applications -- II.15 Hodge-Tate representations -- Chapter III. Representations of the fundamental group and the torsor of deformations. Global aspects -- III.1 Introduction -- III.2 Notation and conventions -- III.3 Locally irreducible schemes -- III.4 Adequate logarithmic schemes -- III.5 Variations on the Koszul complex -- III.6 Additive categories up to isogeny -- III.7 Inverse systems of a topos -- III.8 Faltings ringed topos -- III.9 Faltings topos over a trait -- III.10 Higgs-Tate algebras -- III.11 Cohomological computations -- III.12 Dolbeault modules -- III.13 Dolbeault modules on a small affine scheme -- III.14 Inverse image of a Dolbeault module under an étale morphism -- III.15 Fibered category of Dolbeault modules -- Chapter IV. Cohomology of Higgs isocrystals -- IV.1 Introduction -- IV.2 Higgs envelopes -- IV.3 Higgs isocrystals and Higgs crystals -- IV.4 Cohomology of Higgs isocrystals
  • Contents --
  • Ahmed Abbes, Michel Gros --
  • Chapter VI. Covanishing topos and generalizations
  • Chapter V. Almost étale coverings
  • Indexes
  • Foreword --
  • Chapter IV. Cohomology of Higgs isocrystals
  • Gerd Faltings --
  • Chapter II. Representations of the fundamental group and the torsor of deformations. Local study
  • Facsimile : A p-adic Simpson correspondence
  • Chapter III. Representations of the fundamental group and the torsor of deformations. Global aspects
  • Frontmatter --
  • Takeshi Tsuji --
  • Bibliography --
  • Chapter I. Representations of the fundamental group and the torsor of deformations. An overview