The p-adic Simpson Correspondence (AM-193)

The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra—namely Higgs bundles. This book undertakes a systematic development of the theory f...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavní autori: Abbes, Ahmed, Gros, Michel, Tsuji, Takeshi
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: United States Princeton University Press 2016
Vydanie:1
Edícia:Annals of Mathematics Studies
Predmet:
ISBN:1400881234, 9781400881239, 0691170282, 9780691170282, 0691170290, 9780691170299
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra—namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches, one by Ahmed Abbes and Michel Gros, the other by Takeshi Tsuji. The authors mainly focus on generalized representations of the fundamental group that are p-adically close to the trivial representation.The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal p-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The authors show the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the volume contains results of wider interest in p-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in p-adic Hodge theory, it remains relatively unexplored. The authors present a new approach based on a generalization of P. Deligne's covanishing topos.
AbstractList The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebranamely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches, one by Ahmed Abbes and Michel Gros, the other by Takeshi Tsuji. The authors mainly focus on generalized representations of the fundamental group that are p-adically close to the trivial representation.The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal p-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The authors show the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the volume contains results of wider interest in p-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost tale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in p-adic Hodge theory, it remains relatively unexplored. The authors present a new approach based on a generalization of P. Deligne's covanishing topos.
The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra—namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches, one by Ahmed Abbes and Michel Gros, the other by Takeshi Tsuji. The authors mainly focus on generalized representations of the fundamental group that are p-adically close to the trivial representation.The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal p-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The authors show the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the volume contains results of wider interest in p-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in p-adic Hodge theory, it remains relatively unexplored. The authors present a new approach based on a generalization of P. Deligne's covanishing topos.
The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper smooth variety over a p-adic field in terms of linear algebra—namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches, one by Ahmed Abbes and Michel Gros, the other by Takeshi Tsuji. The authors mainly focus on generalized representations of the fundamental group that are p-adically close to the trivial representation. The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universal p-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The authors show the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the volume contains results of wider interest in p-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach in p-adic Hodge theory, it remains relatively unexplored. The authors present a new approach based on a generalization of P. Deligne's covanishing topos.
No detailed description available for "The p-adic Simpson Correspondence (AM-193)".
Thep-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing allp-adic representations of the fundamental group of a proper smooth variety over ap-adic field in terms of linear algebra-namely Higgs bundles. This book undertakes a systematic development of the theory following two new approaches, one by Ahmed Abbes and Michel Gros, the other by Takeshi Tsuji. The authors mainly focus on generalized representations of the fundamental group that arep-adically close to the trivial representation. The first approach relies on a new family of period rings built from the torsor of deformations of the variety over a universalp-adic thickening defined by J. M. Fontaine. The second approach introduces a crystalline-type topos and replaces the notion of Higgs bundles with that of Higgs isocrystals. The authors show the compatibility of the two constructions and the compatibility of the correspondence with the natural cohomologies. The last part of the volume contains results of wider interest inp-adic Hodge theory. The reader will find a concise introduction to Faltings' theory of almost étale extensions and a chapter devoted to the Faltings topos. Though this topos is the general framework for Faltings' approach inp-adic Hodge theory, it remains relatively unexplored. The authors present a new approach based on a generalization of P. Deligne's covanishing topos.
Author Tsuji, Takeshi
Gros, Michel
Abbes, Ahmed
Author_FL ツジ, タケシ
Author_FL_xml – sequence: 3
  fullname: ツジ, タケシ
Author_xml – sequence: 1
  fullname: Abbes, Ahmed
– sequence: 2
  fullname: Gros, Michel
– sequence: 3
  fullname: Tsuji, Takeshi
BackLink https://cir.nii.ac.jp/crid/1130282269079343488$$DView record in CiNii
https://hal.science/hal-01289189$$DView record in HAL
BookMark eNplkc1v1DAQxY2giG7pkQPi0BVCgiIFPLbjj-N2VSjSIg5UXC0nnt1km42DnbYqf30TsqIgLh7PvJ_eG9kz8qQNLRLyAugHyCH_aJQGQanWwLh5RGZ_GvH47-aAzBiFnHJQSj8lh4YLyaQE8Ywcp7SldBAN15AfkveXFc67zPm6nH-vd10K7XwZYsTUhdZjW-L83eJrBoafPicHa9ckPN7XI_Lj0_nl8iJbffv8ZblYZS5XUpnMjFF-7de8QI1lUXLvQHtDqUAlC--VAfRMFLoADyovhCo4IC-pNF4oxo_I6WRcucZ2sd65eGeDq-3FYmXHGQWmDWhzAw-sS1d4m6rQ9MneNFiEcJXsP-_1wN66psfocROv74aLHQLK_9i3E9vF8PMaU29_W5bY9nHY4PxsKcBozvRAvtqTGBvcBDtFK25yOe73ZlLburZlPZ4AnDLNmDRUDT_DhR5NTiZsm_oQ9xZbW_Y96F-i2qmBeDkRNSLuASNyJviovZ600iXXDCF2F9qwia6rks1zyaXQ_B6jfqOx
ContentType eBook
Book
Copyright 2016 Princeton University Press
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Princeton University Press
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID I4C
RYH
YSPEL
1XC
DEWEY 512
DOI 10.1515/9781400881239
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
CiNii Complete
Perlego
Hyper Article en Ligne (HAL)
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 1400881234
9781400881239
Edition 1
Editor Tsuji, Takeshi
Gros, Michel
Editor_xml – sequence: 1
  fullname: Gros, Michel
– sequence: 2
  fullname: Tsuji, Takeshi
ExternalDocumentID oai:HAL:hal-01289189v1
9781400881239
EBC4198328
739561
BB20775016
j.ctt18z4hm7
9452437
5563648
Genre Electronic books
GroupedDBID 20A
38.
AABBV
AAMYY
AAPBO
AAUSU
ABARN
ABAZT
ABCYV
ABCYY
ABIAV
ABONK
ABYBY
ACISH
ACJZA
ACLGV
ACVAX
ADDXO
ADKSY
ADNIA
ADVEM
AERYV
AEYCP
AFRFP
AHWGJ
AIGZA
AIUUY
AJFER
AJWNA
ALMA_UNASSIGNED_HOLDINGS
ARPAB
ARSQP
AZZ
BBABE
CZZ
DGSIF
DHNOV
E06
ECNEQ
EWWBQ
FURLO
GEOUK
I4C
J-X
JLPMJ
JSXJJ
KBOFU
MYL
NRCWT
PQQKQ
TI5
~I6
AAGED
AAHPY
AAYAM
AAZEP
ABHWV
ACEOT
ADUON
ADVQQ
AEAED
AEDVL
AFHFQ
AIOLA
AMYDA
BETOA
BFBZU
BFRBX
HELXT
QD8
YSPEL
RYH
1XC
ID FETCH-LOGICAL-a57679-92661dfdf3be8ecbc3da18d9004e76bdd791ed24b8b1d175b47b31e3c069d4723
ISBN 1400881234
9781400881239
0691170282
9780691170282
0691170290
9780691170299
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000054575&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Tue Oct 14 20:42:20 EDT 2025
Fri Nov 08 05:50:52 EST 2024
Fri Nov 21 19:58:15 EST 2025
Wed Dec 10 11:51:18 EST 2025
Tue Dec 02 18:55:12 EST 2025
Thu Jun 26 21:03:51 EDT 2025
Mon Aug 18 04:29:24 EDT 2025
Thu Sep 11 05:52:31 EDT 2025
Thu Apr 10 10:37:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 193
Keywords Faltings cohomology
Koszul complex
additive categories
finite tale site
almost flat module
Galois cohomology
ringed covanishing topos
deformation
generalized covanishing topos
torsor
linear algebra
HodgeДate structure
small representation
fundamental group
Dolbeault representation
cohomology
Faltings ringed topos
Hyodo's theory
discrete AЇ-module
almost faithfully flat module
generalized representation
almost tale extension
crystalline-type topos
Higgs bundle
HodgeДate representation
small generalized representation
HodgeДate theory
HiggsДate algebra
overconvergence
locally irreducible scheme
Dolbeault module
covanishing topos
Higgs crystals
almost tale covering
Faltings extension
Faltings topos
Higgs bundles
Higgs isocrystal
Gerd Faltings
ringed total topos
p-adic Simpson correspondence
tale cohomology
p-adic field
inverse limit
solvable Higgs module
period ring
Faltings site
Dolbeault generalized representation
tale fundamental group
almost faithfully flat descent
morphism
p-adic Hodge theory
Higgs envelopes
almost isomorphism
adic module
P-adic number
Rational number
Subgroup
Spectral sequence
Endomorphism
Mathematical induction
Zariski topology
Commutative property
Corollary
Direct sum
Functor
Cohomology
Topology
Integral domain
Homomorphism
Affine transformation
Commutative diagram
Existential quantification
Torsor (algebraic geometry)
Inverse image functor
Direct limit
Adjoint functors
Vector bundle
Identity element
Integral element
Computation
Connected component (graph theory)
Hodge theory
Maximal ideal
Summation
Exact functor
Base change
Tensor product
Residue field
Diagram (category theory)
Embedding
Ring homomorphism
Commutative ring
Fundamental group
Equivalence of categories
Sheaf (mathematics)
Cokernel
Covering space
Logarithm
Exact sequence
Theorem
Formal scheme
Valuation ring
Galois group
Inverse limit
Automorphism
Field of fractions
Coefficient
Irreducible component
Morphism of schemes
Generic point
Initial and terminal objects
Presheaf (category theory)
Profinite group
Morphism
Inverse system
Monoid
Discrete valuation ring
Derived category
Integer
Divisibility rule
Closed immersion
Algebraic closure
LCCN 2015031778
LCCallNum QA179.A23 2016
LCCallNum_Ident QA
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a57679-92661dfdf3be8ecbc3da18d9004e76bdd791ed24b8b1d175b47b31e3c069d4723
Notes Includes bibliographical references and indexes
OCLC 934626614
PQID EBC4198328
PageCount 0
ParticipantIDs hal_primary_oai_HAL_hal_01289189v1
askewsholts_vlebooks_9781400881239
walterdegruyter_marc_9781400881239
proquest_ebookcentral_EBC4198328
perlego_books_739561
nii_cinii_1130282269079343488
jstor_books_j_ctt18z4hm7
ieee_books_9452437
casalini_monographs_5563648
PublicationCentury 2000
PublicationDate 2016
20160209
[2016]
2016-02-09
PublicationDateYYYYMMDD 2016-01-01
2016-02-09
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Princeton, N.J
– name: Princeton
– name: Princeton, NJ
PublicationSeriesTitle Annals of Mathematics Studies
PublicationYear 2016
Publisher Princeton University Press
Publisher_xml – name: Princeton University Press
RestrictionsOnAccess restricted access
SSID ssj0001593815
Score 2.244821
Snippet The p-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing all p-adic representations of the fundamental group of a proper...
Thep-adic Simpson correspondence, recently initiated by Gerd Faltings, aims at describing allp-adic representations of the fundamental group of a proper smooth...
No detailed description available for "The p-adic Simpson Correspondence (AM-193)".
SourceID hal
askewsholts
walterdegruyter
proquest
perlego
nii
jstor
ieee
casalini
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Adjoint functors
Affine transformation
Algebra & number theory
Algebraic closure
Algebraic Geometry
Arithmetical algebraic geometry
Automorphism
Base change
Closed immersion
Coefficient
Cohomology
Cokernel
Commutative diagram
Commutative property
Commutative ring
Computation
Connected component (graph theory)
Corollary
Covering space
Derived category
Diagram (category theory)
Direct limit
Direct sum
Discrete valuation ring
Divisibility rule
Embedding
Endomorphism
Equivalence of categories
Exact functor
Exact sequence
Existential quantification
Field of fractions
Formal scheme
Functor
Fundamental group
Galois cohomology
Galois group
General Topics for Engineers
Generic point
Geometry, Algebraic
Group theory
Higgs bundle
Hodge theory
Homomorphism
Identity element
Initial and terminal objects
Integer
Integral domain
Integral element
Inverse image functor
Inverse limit
Inverse system
Irreducible component
Logarithm
Mathematical induction
MATHEMATICS
MATHEMATICS / Algebra / General
MATHEMATICS / General
MATHEMATICS / Mathematical Analysis
Maximal ideal
Monoid
Morphism
Morphism of schemes
p-adic fields
p-adic groups
P-adic number
Presheaf (category theory)
Profinite group
Rational number
Residue field
Ring homomorphism
Sheaf (mathematics)
Spectral sequence
Subgroup
Summation
Tensor product
Theorem
Topology
Torsor (algebraic geometry)
Valuation ring
Vector bundle
Zariski topology
TableOfContents Front Matter Table of Contents Foreword CHAPTER I: Representations of the fundamental group and the torsor of deformations. CHAPTER II: Representations of the fundamental group and the torsor of deformations. CHAPTER III: Representations of the fundamental group and the torsor of deformations. CHAPTER IV: Cohomology of Higgs isocrystals CHAPTER V: Almost étale coverings CHAPTER VI: Covanishing topos and generalizations Facsimile : Bibliography Indexes
IV.5 Representations of the fundamental group -- IV.6 Comparison with Faltings cohomology -- Chapter V. Almost étale coverings -- V.1 Introduction -- V.2 Almost isomorphisms -- V.3 Almost finitely generated projective modules -- V.4 Trace -- V.5 Rank and determinant -- V.6 Almost flat modules and almost faithfully flat modules -- V.7 Almost étale coverings -- V.8 Almost faithfully flat descent I -- V.9 Almost faithfully flat descent II -- V.10 Liftings -- V.11 Group cohomology of discrete A-G-modules -- V.12 Galois cohomology -- Chapter VI. Covanishing topos and generalizations -- VI.1 Introduction -- VI.2 Notation and conventions -- VI.3 Oriented products of topos -- VI.4 Covanishing topos -- VI.5 Generalized covanishing topos -- VI.6 Morphisms with values in a generalized covanishing topos -- VI.7 Ringed total topos -- VI.8 Ringed covanishing topos -- VI.9 Finite étale site and topos of a scheme -- VI.10 Faltings site and topos -- VI.11 Inverse limit of Faltings topos -- Facsimile : A p-adic Simpson correspondence -- Bibliography -- Indexes
Cover -- Title -- Copyright -- Dedication -- Contents -- Foreword -- Chapter I. Representations of the fundamental group and the torsor of deformations. An overview -- I.1 Introduction -- I.2 Notation and conventions -- I.3 Small generalized representations -- I.4 The torsor of deformations -- I.5 Faltings ringed topos -- I.6 Dolbeault modules -- Chapter II. Representations of the fundamental group and the torsor of deformations. Local study -- II.1 Introduction -- II.2 Notation and conventions -- II.3 Results on continuous cohomology of profinite groups -- II.4 Objects with group actions -- II.5 Logarithmic geometry lexicon -- II.6 Faltings' almost purity theorem -- II.7 Faltings extension -- II.8 Galois cohomology -- II.9 Fontaine p-adic infinitesimal thickenings -- II.10 Higgs-Tate torsors and algebras -- II.11 Galois cohomology II -- II.12 Dolbeault representations -- II.13 Small representations -- II.14 Descent of small representations and applications -- II.15 Hodge-Tate representations -- Chapter III. Representations of the fundamental group and the torsor of deformations. Global aspects -- III.1 Introduction -- III.2 Notation and conventions -- III.3 Locally irreducible schemes -- III.4 Adequate logarithmic schemes -- III.5 Variations on the Koszul complex -- III.6 Additive categories up to isogeny -- III.7 Inverse systems of a topos -- III.8 Faltings ringed topos -- III.9 Faltings topos over a trait -- III.10 Higgs-Tate algebras -- III.11 Cohomological computations -- III.12 Dolbeault modules -- III.13 Dolbeault modules on a small affine scheme -- III.14 Inverse image of a Dolbeault module under an étale morphism -- III.15 Fibered category of Dolbeault modules -- Chapter IV. Cohomology of Higgs isocrystals -- IV.1 Introduction -- IV.2 Higgs envelopes -- IV.3 Higgs isocrystals and Higgs crystals -- IV.4 Cohomology of Higgs isocrystals
Contents --
Ahmed Abbes, Michel Gros --
Chapter VI. Covanishing topos and generalizations
Chapter V. Almost étale coverings
Indexes
Foreword --
Chapter IV. Cohomology of Higgs isocrystals
Gerd Faltings --
Chapter II. Representations of the fundamental group and the torsor of deformations. Local study
Facsimile : A p-adic Simpson correspondence
Chapter III. Representations of the fundamental group and the torsor of deformations. Global aspects
Frontmatter --
Takeshi Tsuji --
Bibliography --
Chapter I. Representations of the fundamental group and the torsor of deformations. An overview
Title The p-adic Simpson Correspondence (AM-193)
URI http://digital.casalini.it/9781400881239
https://ieeexplore.ieee.org/servlet/opac?bknumber=9452437
https://www.jstor.org/stable/j.ctt18z4hm7
https://cir.nii.ac.jp/crid/1130282269079343488
https://www.perlego.com/book/739561/the-padic-simpson-correspondence-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4198328
https://www.degruyterbrill.com/isbn/9781400881239
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781400881239&uid=none
https://hal.science/hal-01289189
Volume 193
WOSCitedRecordID wos0000054575&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZgBYk-IMaYFsZQQbyhiLlxE_txTIVJwJhEQXuz7NhZsx9p1KTdxl_PneO2S-EBHniJWid2En-xfee7-46QN8yqjGJ0j9AZKCgwgkLB90WoTaaVYoMotcwlm0iOj_npqTjxZP6VSyeQFAW_uRHlf4UaygBsDJ39B7iXjUIB_AbQ4Qiww3FNIl7-XSFehsrk6dtvufPygNGOuTfKSeEyh65MPbqZHA7GVz62yXngNB53jXPoUqOvZufO4D9SF7Ya53d3Cej6LsEJ7txbJOpYD0Bs6ZOgbcGsA4uZ-OPsOnBEFL9d12axXltdlj5_rWr3SQdNvqAtdz4Ov37_tNoWGwiQIQaeDRVu-K5Vr0u6qrqA6R-WhrpCWUJVCkNIQTQYoyerS5Gz8C2FwiKHUw9LO720Z5OWFvH42vkjGHs2nd3WC_u3EytGT0jHYqzJJrlni6ek-2VJoVttkVcAZ6-Bs-fh7LXhfEZ-fBiODo9Cn88iVKDVJTAeUBoymckibblNdRoZRbkR8PXaJNbGJIJa02eaa2pArtMs0RG1UbofC8OSfrRNNopJYXdIj4PmrgaW9VNQCE0ac-2YFU2mYFIFpT8gr-90lJxfOtt7JVu9GZDdRf9JGAUNR3olkTMuZhyagC6VZcN6IpGH_Ojgs8QylGoE5WJOA7KJPS5964Api5KA7Lj-96XnMq1ryn-y8RWc2gNIZJrjkaLVHCRU3KEREYtgMQnIlgfLV0ZDcgy36S2Qk-5NvOuyHL4_ZFTAsoSPu4aoRDaY9hs__5uLdsmj1RB6QTbq6czukQfpvM6r6Uv_xf4C8LR-Gw
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=The+p-adic+Simpson+Correspondence&rft.au=Abbes%2C+Ahmed&rft.au=Gros%2C+Michel&rft.au=Tsuji%2C+Takeshi&rft.date=2016-01-01&rft.pub=Princeton+University+Press&rft.isbn=9781400881239&rft_id=info:doi/10.1515%2F9781400881239&rft.externalDBID=n%2Fa&rft.externalDocID=9781400881239
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fprinceton_university_press_rydfxi%2F9781400881239.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.degruyterbrill.com%2Fdocument%2Fcover%2Fisbn%2F9781400881239%2Foriginal
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814008%2F9781400881239.jpg