Statistical tools for nonlinear regression : a practical guide with S-PLUS examples

Statistical Tools for Nonlinear Regression, (Second Edition), presents methods for analyzing data using parametric nonlinear regression models. The new edition has been expanded to include binomial, multinomial and Poisson non-linear models. Using examples from experiments in agronomy and biochemist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huet, Sylvie, Bouvier, Annie, Gruet, Marie-Anne, Jolivet, E. (Emmanuel)
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: New York, NY Springer 1996
Springer New York
Ausgabe:1
Schriftenreihe:Springer Series in Statistics
Schlagworte:
ISBN:0387947272, 9780387947273, 9781475725254, 1475725256, 1475725248, 9781475725247
ISSN:0172-7397
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Statistical Tools for Nonlinear Regression, (Second Edition), presents methods for analyzing data using parametric nonlinear regression models. The new edition has been expanded to include binomial, multinomial and Poisson non-linear models. Using examples from experiments in agronomy and biochemistry, it shows how to apply these methods. It concentrates on presenting the methods in an intuitive way rather than developing the theoretical backgrounds. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-Plus and R. Its main advantages are to make the model building, estimation and validation tasks, easy to do. More precisely, Complex models can be easily described using a symbolic syntax. The regression function as well as the variance function can be defined explicitly as functions of independent variables and of unknown parameters or they can be defined as the solution to a system of differential equations. Moreover, constraints on the parameters can easily be added to the model. It is thus possible to test nested hypotheses and to compare several data sets. Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap. Some graphical tools are proposed for visualizing the fitted curves, the residuals, the confidence regions, and the numerical estimation procedure. This book is aimed at scientists who are not familiar with statistical theory, but have a basic knowledge of statistical concepts. It includes methods based on classical nonlinear regression theory and more modern methods, such as bootstrap, which have proved effective in practice. The additional chapters of the second edition assume some practical experience in data analysis using generalized linear models. The book will be of interest both for practitioners as a guide and a reference book, and for students, as a tutorial book. Sylvie Huet and Emmanuel Jolivet are senior researchers and Annie Bouvier is computing engineer at INRA, National Institute of Agronomical Research, France; Marie-Anne Poursat is associate professor of statistics at the University Paris XI.
AbstractList Statistical Tools for Nonlinear Regression, (Second Edition), presents methods for analyzing data using parametric nonlinear regression models. The new edition has been expanded to include binomial, multinomial and Poisson non-linear models. Using examples from experiments in agronomy and biochemistry, it shows how to apply these methods. It concentrates on presenting the methods in an intuitive way rather than developing the theoretical backgrounds. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-Plus and R. Its main advantages are to make the model building, estimation and validation tasks, easy to do. More precisely, Complex models can be easily described using a symbolic syntax. The regression function as well as the variance function can be defined explicitly as functions of independent variables and of unknown parameters or they can be defined as the solution to a system of differential equations. Moreover, constraints on the parameters can easily be added to the model. It is thus possible to test nested hypotheses and to compare several data sets. Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap. Some graphical tools are proposed for visualizing the fitted curves, the residuals, the confidence regions, and the numerical estimation procedure. This book is aimed at scientists who are not familiar with statistical theory, but have a basic knowledge of statistical concepts. It includes methods based on classical nonlinear regression theory and more modern methods, such as bootstrap, which have proved effective in practice. The additional chapters of the second edition assume some practical experience in data analysis using generalized linear models. The book will be of interest both for practitioners as a guide and a reference book, and for students, as a tutorial book. Sylvie Huet and Emmanuel Jolivet are senior researchers and Annie Bouvier is computing engineer at INRA, National Institute of Agronomical Research, France; Marie-Anne Poursat is associate professor of statistics at the University Paris XI.
Author Bouvier, Annie
Huet, Sylvie
Gruet, Marie-Anne
Jolivet, Emmanuel
Author_xml – sequence: 1
  fullname: Huet, Sylvie
– sequence: 2
  fullname: Bouvier, Annie
– sequence: 3
  fullname: Gruet, Marie-Anne
– sequence: 4
  fullname: Jolivet, E. (Emmanuel)
BackLink https://cir.nii.ac.jp/crid/1130000795421502080$$DView record in CiNii
BookMark eNp9kctO5DAQRY0GRjTQH8DOi5FYBcp2nLJnN7R4SS2B1MDWchyn8RCSHjs8Ph9HPUvExpau7imVTh2Q3X7oPSHHDE4ZAJ5pVAUrSpRYcMlFATtknjM2JVMAP8gBCIW6RI58l8yAIS9QaNwj-7oCJlCKn2RWKeCouZL7ZJ7SXwBgGvIUmJHVarRjSGNwtqPjMHSJtkOkeZEu9N5GGv06-pTC0NPf1NJNtG5bXr-GxtP3MD7RVXG3fFhR_2FfNp1PR2SvtV3y8___IXm8vLhfXBfL26ubxZ9lYSWKvGgjGutYLRliCbyUvGVKceVE3TqUTVlZDWXdINdOQt2Ubea8rZBJdL52tTgkZ9vBaRNDv_bR1MPwnAwDM_kz2ZVhZrJlJl0GMlF9QdjonsKb_x482YKbOPx79Wk0fiKd78doO3NxvhCgZL5Cbv7aNvsQjAvTy5jIzgG1LDmTwEGB-ARsdoYv
ContentType eBook
Book
Copyright Springer-Verlag New York 1996
Copyright_xml – notice: Springer-Verlag New York 1996
CorporateAuthor SpringerLink (Online service)
CorporateAuthor_xml – name: SpringerLink (Online service)
DBID RYH
DEWEY 519.5/36
DOI 10.1007/978-1-4757-2523-0
DatabaseName CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
Statistics
EISBN 9781475725230
147572523X
Edition 1
ExternalDocumentID 47923
10.1007/978-1-4757-2523-0
EBC3085272
BA28234996
GroupedDBID 50X
AARNW
ACZBQ
ADHHQ
AEKFX
AGEPW
AGEUI
AKVJN
ALMA_UNASSIGNED_HOLDINGS
ASGFH
AURUN
CZZ
NIOIY
QHGAQ
RYH
SYRPR
~5D
38.
AABBV
ABARN
ABQPQ
ACLGV
ACPRQ
ADHDZ
ADNMO
ADVEM
AERYV
AEZAY
AFOJC
AFPTF
AHWGJ
AJFER
AZZ
BBABE
GEOUK
I4C
JJU
N2R
SBO
~1X
ID FETCH-LOGICAL-a57372-d3dac1b5177402452f18828c3bfc75d46a904bd729c50bd4fa57ea67157cebcb3
ISBN 0387947272
9780387947273
9781475725254
1475725256
1475725248
9781475725247
ISSN 0172-7397
IngestDate Fri May 23 03:24:30 EDT 2025
Sun Jul 27 06:25:16 EDT 2025
Wed Nov 26 06:13:11 EST 2025
Thu Jun 26 22:56:01 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 96013753
LCCallNum_Ident QA276-280
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a57372-d3dac1b5177402452f18828c3bfc75d46a904bd729c50bd4fa57ea67157cebcb3
Notes Includes bibliographical references and index
OCLC 680279285
PQID EBC3085272
PageCount 161
ParticipantIDs springer_books_10_1007_978_1_4757_2523_0
springer_bookarchives_10_1007_978_1_4757_2523_0
proquest_ebookcentral_EBC3085272
nii_cinii_1130000795421502080
PublicationCentury 1900
PublicationDate c1996
1996
1996.
PublicationDateYYYYMMDD 1996-01-01
PublicationDate_xml – year: 1996
  text: 1996
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York
– name: New York, NY
PublicationSeriesTitle Springer Series in Statistics
PublicationYear 1996
Publisher Springer
Springer New York
Publisher_xml – name: Springer
– name: Springer New York
SSID ssj0001901470
ssj0000899357
ssj0000615877
Score 1.7320291
Snippet Statistical Tools for Nonlinear Regression, (Second Edition), presents methods for analyzing data using parametric nonlinear regression models. The new edition...
SourceID springer
proquest
nii
SourceType Publisher
SubjectTerms Mathematical statistics
Mathematics and Statistics
Nonlinear theories
Parameter estimation
Regression analysis
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Statistics for Life Sciences, Medicine, Health Sciences
TableOfContents Springer Series in Statistics Statistical Tools for Nonlinear Regression A Practical Guide with S-PLUS Examples -- Statistical Tools for Nonlinear Regression -- Copyright -- Preface -- Contents -- 1 Nonlinear regression model and parameter estimation -- 2 Accuracy of estimators, confidence intervals and tests -- 3 Variance estimation -- 4 Diagnostics of model misspecification -- 5 Calibration and Prediction -- References -- Index
1 Nonlinear regression model and parameter estimation -- 2 Accuracy of estimators, confidence intervals and tests -- 3 Variance estimation -- 4 Diagnostics of model misspecification -- 5 Calibration and Prediction -- References.
Title Statistical tools for nonlinear regression : a practical guide with S-PLUS examples
URI https://cir.nii.ac.jp/crid/1130000795421502080
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=3085272
https://doi.org/10.1007/978-1-4757-2523-0
http://link.springer.com/10.1007/978-1-4757-2523-0
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXowgFOfIoFinzggLQKJLGdbLjRKhRBWyptW_Vm2Y63irTNot1utfx7ZmwnIRUCceBiJbZjWX5JPDNvZkzIG2EY56mJo9RkIoJLFekKbjObwn4uUq1cHPf5YX58PL24KE7CiYJrd5xA3jTT7bb4_l-hhjoAG0Nn_wHublCogGsAHUqAHcpbEnF3G4I6kFVfe9v09XK5cJkWJo3PhaFWk5W99E6vzcSHOIcIKeh-uakr622ys-jk8Gw2sVuFeYPXPeyetZj9WNzUPRO_3OC-6j0jm77-YBW6H6EqHkFb1_RluYAfrGss36F8W15dqWaDzgJFb4LwXssDE0RrghyopkiLFxylo9_-qHvfDFBhc4HZIlIWxf2u1PkK7n0ErZCBYpbtkB1Qjkbk7kH57exrZ0lD4rJNqucsa8gM53Gg5t0c0pBqqZtTy2-HFMODOYCU0dT1QOO4RZI72eP0IRlhPMojcsc2j8mDoy7N7voJmf0COXWQU4CcdpDTHnL6gSraAU4d4BQBpx5w2gL-lJx_Kk_3P0fhlIxICTxjKKpYpUyiRQKSvCPS5wmoTVPD9NzkouKZKmKuK9CijIh1xefwnFVZnojcWG00e0ZGMDH7nFCtUqu1sHOtKs5zXjBmEsO1Qr3WWD4mu7A00tRYJsiEwgoWgoPciIe9xmNC20WTjuwPHsay3NtnINwDEmPyvl1MiT1USLAs2_zZgIdMJOIhEQ8Jg74dPPGHri_-Mr-X5H7__r4io2v4GnbJPXMDWK1ehxfrJzQ5anY
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Statistical+tools+for+nonlinear+regression+%3A+a+practical+guide+with+S-PLUS+examples&rft.au=Huet%2C+Sylvie&rft.au=Bouvier%2C+Annie&rft.au=Gruet%2C+Marie-Anne&rft.au=Jolivet%2C+E.+%28Emmanuel%29&rft.date=1996-01-01&rft.pub=Springer&rft.isbn=9780387947273&rft_id=info:doi/10.1007%2F978-1-4757-2523-0&rft.externalDocID=BA28234996
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-1-4757-2523-0