Scaling Relations for Acidity and Reactivity of Zeolites

Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlatio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C Vol. 121; no. 42; p. 23520
Main Authors: Liu, Chong, Tranca, Ionut, van Santen, Rutger A, Hensen, Emiel J M, Pidko, Evgeny A
Format: Journal Article
Language:English
Published: United States 26.10.2017
ISSN:1932-7447
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlations are limited to zeolites with the same topology. The adsorption energies of bases such as carbon monoxide (CO), acetonitrile (CH CN), ammonia (NH ), trimethylamine (N(CH ) ), and pyridine (C H N) give the same trend of acid strength for FAU zeolites with varying composition. Crystal orbital Hamilton populations (COHP) analysis provides a detailed molecular orbital picture of adsorbed base molecules on the Brønsted acid sites (BAS). Bonding is dominated by strong σ donation from guest molecules to the BAS for the adsorbed CO and CH CN complexes. An electronic descriptor of acid strength is constructed based on the bond order calculations, which is an intrinsic parameter rather than adsorption energy that contains additional contributions due to secondary effects such as van der Waals interactions with the zeolite walls. The bond order parameter derived for the CH CN adsorption complex represents a useful descriptor for the intrinsic acid strength of FAU zeolites. For FAU zeolites the activation energy for the conversion of π-adsorbed isobutene into alkoxy species correlates well with the acid strength determined by the NH adsorption energies. Other zeolites such as MFI and CHA do not follow the scaling relations obtained for FAU; we ascribe this to the different van der Waals interactions and steric effects induced by zeolite framework topology.
AbstractList Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlations are limited to zeolites with the same topology. The adsorption energies of bases such as carbon monoxide (CO), acetonitrile (CH CN), ammonia (NH ), trimethylamine (N(CH ) ), and pyridine (C H N) give the same trend of acid strength for FAU zeolites with varying composition. Crystal orbital Hamilton populations (COHP) analysis provides a detailed molecular orbital picture of adsorbed base molecules on the Brønsted acid sites (BAS). Bonding is dominated by strong σ donation from guest molecules to the BAS for the adsorbed CO and CH CN complexes. An electronic descriptor of acid strength is constructed based on the bond order calculations, which is an intrinsic parameter rather than adsorption energy that contains additional contributions due to secondary effects such as van der Waals interactions with the zeolite walls. The bond order parameter derived for the CH CN adsorption complex represents a useful descriptor for the intrinsic acid strength of FAU zeolites. For FAU zeolites the activation energy for the conversion of π-adsorbed isobutene into alkoxy species correlates well with the acid strength determined by the NH adsorption energies. Other zeolites such as MFI and CHA do not follow the scaling relations obtained for FAU; we ascribe this to the different van der Waals interactions and steric effects induced by zeolite framework topology.
Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlations are limited to zeolites with the same topology. The adsorption energies of bases such as carbon monoxide (CO), acetonitrile (CH3CN), ammonia (NH3), trimethylamine (N(CH3)3), and pyridine (C5H5N) give the same trend of acid strength for FAU zeolites with varying composition. Crystal orbital Hamilton populations (COHP) analysis provides a detailed molecular orbital picture of adsorbed base molecules on the Brønsted acid sites (BAS). Bonding is dominated by strong σ donation from guest molecules to the BAS for the adsorbed CO and CH3CN complexes. An electronic descriptor of acid strength is constructed based on the bond order calculations, which is an intrinsic parameter rather than adsorption energy that contains additional contributions due to secondary effects such as van der Waals interactions with the zeolite walls. The bond order parameter derived for the CH3CN adsorption complex represents a useful descriptor for the intrinsic acid strength of FAU zeolites. For FAU zeolites the activation energy for the conversion of π-adsorbed isobutene into alkoxy species correlates well with the acid strength determined by the NH3 adsorption energies. Other zeolites such as MFI and CHA do not follow the scaling relations obtained for FAU; we ascribe this to the different van der Waals interactions and steric effects induced by zeolite framework topology.Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic reactivity scales with acidity for a range of zeolites with different topologies and chemical compositions. We found that straightforward correlations are limited to zeolites with the same topology. The adsorption energies of bases such as carbon monoxide (CO), acetonitrile (CH3CN), ammonia (NH3), trimethylamine (N(CH3)3), and pyridine (C5H5N) give the same trend of acid strength for FAU zeolites with varying composition. Crystal orbital Hamilton populations (COHP) analysis provides a detailed molecular orbital picture of adsorbed base molecules on the Brønsted acid sites (BAS). Bonding is dominated by strong σ donation from guest molecules to the BAS for the adsorbed CO and CH3CN complexes. An electronic descriptor of acid strength is constructed based on the bond order calculations, which is an intrinsic parameter rather than adsorption energy that contains additional contributions due to secondary effects such as van der Waals interactions with the zeolite walls. The bond order parameter derived for the CH3CN adsorption complex represents a useful descriptor for the intrinsic acid strength of FAU zeolites. For FAU zeolites the activation energy for the conversion of π-adsorbed isobutene into alkoxy species correlates well with the acid strength determined by the NH3 adsorption energies. Other zeolites such as MFI and CHA do not follow the scaling relations obtained for FAU; we ascribe this to the different van der Waals interactions and steric effects induced by zeolite framework topology.
Author Liu, Chong
van Santen, Rutger A
Hensen, Emiel J M
Pidko, Evgeny A
Tranca, Ionut
Author_xml – sequence: 1
  givenname: Chong
  surname: Liu
  fullname: Liu, Chong
  organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
– sequence: 2
  givenname: Ionut
  surname: Tranca
  fullname: Tranca, Ionut
  organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
– sequence: 3
  givenname: Rutger A
  surname: van Santen
  fullname: van Santen, Rutger A
  organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
– sequence: 4
  givenname: Emiel J M
  surname: Hensen
  fullname: Hensen, Emiel J M
  organization: Inorganic Materials Chemistry Group, Schuit Institute of Catalysis, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
– sequence: 5
  givenname: Evgeny A
  surname: Pidko
  fullname: Pidko, Evgeny A
  organization: ITMO University, Lomonosova 9, St. Petersburg, 191002, Russia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29142616$$D View this record in MEDLINE/PubMed
BookMark eNo1j0tLw0AUhWdRsQ_du5Is3STOnVcyy1J8QUHQrtyEedzIlCRTM4nQf2_Fujp8nI8DZ0lmfeyRkBugBVAG98alYn9wrigtraBUM7IAzVleClHOyTKlPaWSU-CXZM40CKZALUj17kwb-s_sDVszhtinrIlDtnbBh_GYmd6fGuPG8P2Lsck-MLZhxHRFLhrTJrw-54rsHh92m-d8-_r0sllvcyOVHnPlKkSUpeCNqaxzCr1yykuQltPKMwTuKZfMamG9Z0pL8E2lLReGl41nK3L3N3sY4teEaay7kBy2rekxTqkGrSQTEhic1NuzOtkOfX0YQmeGY_1_lv0ANN1XMA
CitedBy_id crossref_primary_10_1039_D1CY02289J
crossref_primary_10_1002_cphc_201800723
crossref_primary_10_1016_j_micromeso_2022_112184
crossref_primary_10_1016_j_jcat_2019_04_021
crossref_primary_10_1016_j_rechem_2025_102410
crossref_primary_10_1039_C7CS00358G
crossref_primary_10_1002_cmtd_202400076
crossref_primary_10_1016_j_micromeso_2019_03_033
crossref_primary_10_3390_catal13050833
crossref_primary_10_1016_j_apsusc_2020_148058
crossref_primary_10_1016_j_rineng_2024_103122
crossref_primary_10_1039_C9CY00534J
crossref_primary_10_1016_j_micromeso_2024_113468
crossref_primary_10_1007_s10562_020_03492_6
crossref_primary_10_1016_j_jcat_2021_11_002
crossref_primary_10_3390_catal12010051
crossref_primary_10_1007_s10562_018_2330_7
crossref_primary_10_1039_C8CY01194J
crossref_primary_10_1002_cctc_201801493
crossref_primary_10_1039_C8CY02414F
crossref_primary_10_1039_D2SC01225A
crossref_primary_10_1002_cctc_202100009
crossref_primary_10_1021_jacs_3c14787
crossref_primary_10_1016_j_micromeso_2019_04_058
crossref_primary_10_1007_s11244_021_01489_y
crossref_primary_10_1039_D1CY00282A
crossref_primary_10_1002_qua_25873
crossref_primary_10_1002_smtd_201800266
crossref_primary_10_1007_s10853_019_03845_6
crossref_primary_10_1039_D5CS00220F
crossref_primary_10_3390_molecules25040926
crossref_primary_10_1038_s41598_023_39667_5
crossref_primary_10_1038_s41598_022_11354_x
crossref_primary_10_1016_j_jcat_2024_115656
crossref_primary_10_1039_D5SC03200H
crossref_primary_10_1016_j_checat_2022_04_003
crossref_primary_10_1021_jacs_2c01022
crossref_primary_10_1021_prechem_4c00060
crossref_primary_10_1002_cphc_202400080
crossref_primary_10_1016_j_micromeso_2018_02_023
crossref_primary_10_1016_j_apsusc_2019_144148
crossref_primary_10_1016_j_jssc_2020_121862
crossref_primary_10_3390_catal11091105
crossref_primary_10_1038_s41467_023_39541_y
crossref_primary_10_1016_j_jmro_2024_100182
crossref_primary_10_1039_D3CY00642E
crossref_primary_10_1007_s10562_025_04991_0
crossref_primary_10_1039_D1CY01860D
crossref_primary_10_1002_cctc_201901560
crossref_primary_10_3390_computation8030081
crossref_primary_10_1039_D0EN00812E
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.jpcc.7b08176
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
ExternalDocumentID 29142616
Genre Journal Article
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH9
IHE
JG~
NPM
RNS
ROL
UI2
UKR
VF5
VG9
W1F
7X8
ID FETCH-LOGICAL-a569t-6c8eee5743fa8bcc6ed6c6d515b308d2e13d0352b94bdd26951df89b34a37fd2
IEDL.DBID 7X8
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414114800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-7447
IngestDate Thu Jul 10 18:15:15 EDT 2025
Mon Jul 21 06:05:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a569t-6c8eee5743fa8bcc6ed6c6d515b308d2e13d0352b94bdd26951df89b34a37fd2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.7b08176
PMID 29142616
PQID 1965245121
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1965245121
pubmed_primary_29142616
PublicationCentury 2000
PublicationDate 2017-10-26
PublicationDateYYYYMMDD 2017-10-26
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J Phys Chem C Nanomater Interfaces
PublicationYear 2017
SSID ssj0053013
Score 2.5326543
Snippet Zeolites are widely applied as solid acid catalysts in various technological processes. In this work we have computationally investigated how catalytic...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 23520
Title Scaling Relations for Acidity and Reactivity of Zeolites
URI https://www.ncbi.nlm.nih.gov/pubmed/29142616
https://www.proquest.com/docview/1965245121
Volume 121
WOSCitedRecordID wos000414114800031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWAIsHC-1FeMhKrS2M7tjOhqqJioapEh4ol8lMqQ1JI4fu5TtIyISGxZIkiJdfXPic-1_cgdMeVz6IARAxwVcJFP5DMi0D6OnE-MUHQEGqzCTkeq9ksm7QbblVbVrlaE-uF2pU27pHfx853lAM8JQ-LdxJdo6K62lpobKIOAyoTs1rO1ipCCsnLGlUZWCTnspUpAdbuta16bwtre9IAKErxO8GsgWa0_99XPEB7LcXEgyYnDtGGL47QznDl7HaM1AsMDEAWXlfCYaCueGDnDjg51oWDO_HAQ_SVwGXArz5WyfnqBE1Hj9PhE2kdFIhORbYkwirvfQosIWhlrBXeCSsccBjD-spRnzAXG6KajBvnqAC65YLKDOOayeDoKdoqysKfI5woJz1nfW0sEALJjEqtN6mBCa2D4baLblcxyeFrouqgC19-VvlPVLrorAlsvmg6aeQ0S-IvnLj4w9OXaJdGSAXcoOIKdQJMT3-Ntu3Xcl593NQjD9fx5Pkb-O-5FQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+Relations+for+Acidity+and+Reactivity+of+Zeolites&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Liu%2C+Chong&rft.au=Tranca%2C+Ionut&rft.au=van+Santen%2C+Rutger+A&rft.au=Hensen%2C+Emiel+J+M&rft.date=2017-10-26&rft.issn=1932-7447&rft.volume=121&rft.issue=42&rft.spage=23520&rft_id=info:doi/10.1021%2Facs.jpcc.7b08176&rft_id=info%3Apmid%2F29142616&rft_id=info%3Apmid%2F29142616&rft.externalDocID=29142616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon