Optimal learning

Learn the science of collecting information to make effective decisions Everyday decisions are made without the benefit of accurate information. Optimal Learning develops the needed principles for gathering information to make decisions, especially when collecting information is time-consuming and e...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Powell, Warren B, Ryzhov, Ilya Olegovich
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Hoboken, NJ Wiley 2012
John Wiley & Sons, Incorporated
Wiley-Blackwell
Vydání:1
Edice:Wiley series in probability and statistics
Wiley series in probability and statistics.
Témata:
ISBN:0470596694, 9780470596692, 9781118309858, 1118309855
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Learn the science of collecting information to make effective decisions Everyday decisions are made without the benefit of accurate information. Optimal Learning develops the needed principles for gathering information to make decisions, especially when collecting information is time-consuming and expensive. Designed for readers with an elementary background in probability and statistics, the book presents effective and practical policies illustrated in a wide range of applications, from energy, homeland security, and transportation to engineering, health, and business. This book covers the fundamental dimensions of a learning problem and presents a simple method for testing and comparing policies for learning. Special attention is given to the knowledge gradient policy and its use with a wide range of belief models, including lookup table and parametric and for online and offline problems. Three sections develop ideas with increasing levels of sophistication: Fundamentals explores fundamental topics, including adaptive learning, ranking and selection, the knowledge gradient, and bandit problems Extensions and Applications features coverage of linear belief models, subset selection models, scalar function optimization, optimal bidding, and stopping problems Advanced Topics explores complex methods including simulation optimization, active learning in mathematical programming, and optimal continuous measurements Each chapter identifies a specific learning problem, presents the related, practical algorithms for implementation, and concludes with numerous exercises. A related website features additional applications and downloadable software, including MATLAB and the Optimal Learning Calculator, a spreadsheet-based package that provides an introduc­tion to learning and a variety of policies for learning.
AbstractList Learn the science of collecting information to make effective decisions Everyday decisions are made without the benefit of accurate information. Optimal Learning develops the needed principles for gathering information to make decisions, especially when collecting information is time-consuming and expensive. Designed for readers with an elementary background in probability and statistics, the book presents effective and practical policies illustrated in a wide range of applications, from energy, homeland security, and transportation to engineering, health, and business. This book covers the fundamental dimensions of a learning problem and presents a simple method for testing and comparing policies for learning. Special attention is given to the knowledge gradient policy and its use with a wide range of belief models, including lookup table and parametric and for online and offline problems. Three sections develop ideas with increasing levels of sophistication: Fundamentals explores fundamental topics, including adaptive learning, ranking and selection, the knowledge gradient, and bandit problems Extensions and Applications features coverage of linear belief models, subset selection models, scalar function optimization, optimal bidding, and stopping problems Advanced Topics explores complex methods including simulation optimization, active learning in mathematical programming, and optimal continuous measurements Each chapter identifies a specific learning problem, presents the related, practical algorithms for implementation, and concludes with numerous exercises. A related website features additional applications and downloadable software, including MATLAB and the Optimal Learning Calculator, a spreadsheet-based package that provides an introduc­tion to learning and a variety of policies for learning.
Author Powell, Warren B
Ryzhov, Ilya Olegovich
Author_xml – sequence: 1
  fullname: Powell, Warren B
– sequence: 2
  fullname: Ryzhov, Ilya Olegovich
BackLink https://cir.nii.ac.jp/crid/1130282273112677376$$DView record in CiNii
BookMark eNqNzztPwzAQAGAjKIKUSiyMSAwIiaFw53P8GGlVHlKlLog1chwHQk1S4gB_n0AYOuLhrLv7dKdL2F7d1J6xE4QrBODXRmlE1ARGp3qHTbZyrnZZAkJBaqQ0YsQSDoh9QXKzzxJMhdQoSMIBm8T4Cv2TkjSXh-x4temqNxvOgrdtXdXPR2xU2hD95O8fs6fbxeP8frpc3T3Mb5ZTm0pNNOVUAFDhnJXgndLCClPKsvA5eSqV51QWMneWCMrSkS1QaO0AU22cUH1lzC6HwTau_Vd8aUIXs8_g86ZZx2zrOoH_t1z19mKwm7Z5__Cxy36Z83XX2pAtZnPNOaSih-cDrKsqc9VPRCTgfVsRIpdKkZI9Ox2YD1XeNtmwc7GcoeZCpPQNA39w_w
ContentType eBook
Book
DBID RYH
DEWEY 006.3/1
DOI 10.1002/9781118309858
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781118309827
1118309820
9781118309841
1118309847
Edition 1
ExternalDocumentID 9781118309841
9781118309827
EBC822054
BB09093533
182445
GroupedDBID 089
20A
38.
3XJ
3XM
5VX
A4J
AABBV
AAMRL
AARDG
ABARN
ABBFG
ABIAV
ABQPQ
ABQPW
ACGYG
ACIQC
ACLGV
ACNUM
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
AKHYG
AKQZE
ALMA_UNASSIGNED_HOLDINGS
AMYDA
ASVIU
AZZ
BBABE
CZZ
GEOUK
HF4
IEZ
IVUIE
JFSCD
JJU
KKBTI
LQKAK
LWYJN
MYL
OHSWP
PQQKQ
T71
UZ6
W1A
WIIVT
YPLAZ
ZEEST
RYH
IVK
ID FETCH-LOGICAL-a56833-23d003dcca60ec784a49f6fdeb3e3f7e23fd6bca330ffc3ad1488c01589c47fc3
ISBN 0470596694
9780470596692
9781118309858
1118309855
IngestDate Fri Nov 08 02:10:34 EST 2024
Fri Nov 08 06:11:45 EST 2024
Wed Dec 10 08:47:26 EST 2025
Thu Jun 26 23:38:36 EDT 2025
Wed Dec 10 04:07:46 EST 2025
IsPeerReviewed false
IsScholarly false
LCCN 2011047629
LCCallNum Q325.5 .P69 2012
LCCallNum_Ident Q325.5 .P69 2012
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a56833-23d003dcca60ec784a49f6fdeb3e3f7e23fd6bca330ffc3ad1488c01589c47fc3
Notes Includes bibliographical references (p. 366-379) and index
OCLC 1546814360
795912947
PQID EBC822054
PageCount 384
ParticipantIDs askewsholts_vlebooks_9781118309841
askewsholts_vlebooks_9781118309827
proquest_ebookcentral_EBC822054
nii_cinii_1130282273112677376
elibro_books_ELB182445
PublicationCentury 2000
PublicationDate 2012.
2012
2012-04-24
2012-05-22
PublicationDateYYYYMMDD 2012-01-01
2012-04-24
2012-05-22
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
– name: Hoboken, N.J
– name: Newark
PublicationSeriesTitle Wiley series in probability and statistics
Wiley series in probability and statistics.
PublicationYear 2012
Publisher Wiley
John Wiley & Sons, Incorporated
Wiley-Blackwell
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Incorporated
– name: Wiley-Blackwell
SSID ssj0000663826
ssib017732437
Score 2.4242861
Snippet Learn the science of collecting information to make effective decisions Everyday decisions are made without the benefit of accurate information. Optimal...
SourceID askewsholts
proquest
nii
elibro
SourceType Aggregation Database
Publisher
SubjectTerms Artificial intelligence
Machine learning
TableOfContents 8.2.3 A Bayesian Interpretation -- 8.2.4 Generating a Prior -- 8.3 The Knowledge Gradient for a Linear Model -- 8.4 Application to Drug Discovery -- 8.5 Application to Dynamic Pricing -- 8.6 Bibliographic Notes -- Problems -- 9 Subset Selection Problems -- 9.1 Applications -- 9.2 Choosing a Subset Using Ranking and Selection -- 9.2.1 Setting Prior Means and Variances -- 9.2.2 Two Strategies for Setting Prior Covariances -- 9.3 Larger Sets -- 9.3.1 Using Simulation to Reduce the Problem Size -- 9.3.2 Computational Issues -- 9.3.3 Experiments -- 9.4 Very Large Sets -- 9.5 Bibliographic Notes -- Problems -- 10 Optimizing a Scalar Function -- 10.1 Deterministic Measurements -- 10.2 Stochastic Measurements -- 10.2.1 The Model -- 10.2.2 Finding the Posterior Distribution -- 10.2.3 Choosing the Measurement -- 10.2.4 Discussion -- 10.3 Bibliographic Notes -- Problems -- 11 Optimal Bidding -- 11.1 Modeling Customer Demand -- 11.1.1 Some Valuation Models -- 11.1.2 The Logit Model -- 11.2 Bayesian Modeling for Dynamic Pricing -- 11.2.1 A Conjugate Prior for Choosing Between Two Demand Curves -- 11.2.2 Moment Matching for Nonconjugate Problems -- 11.2.3 An Approximation for the Logit Model -- 11.3 Bidding Strategies -- 11.3.1 An Idea From Multi-Armed Bandits -- 11.3.2 Bayes-Greedy Bidding -- 11.3.3 Numerical Illustrations -- 11.4 Why Does It Work?* -- 11.4.1 Moment Matching for Pareto Prior -- 11.4.2 Approximating the Logistic Expectation -- 11.5 Bibliographic Notes -- Problems -- 12 Stopping Problems -- 12.1 Sequential Probability Ratio Test -- 12.2 The Secretary Problem -- 12.2.1 Setup -- 12.2.2 Solution -- 12.3 Bibliographic Notes -- Problems -- 13 Active Learning in Statistics -- 13.1 Deterministic Policies -- 13.2 Sequential Policies for Classification -- 13.2.1 Uncertainty Sampling -- 13.2.2 Query by Committee -- 13.2.3 Expected Error Reduction
17.4.3 Experiments -- 17.5 An Expected Improvement Policy -- 17.6 Bibliographic Notes -- Index
Intro -- Optimal Learning -- CONTENTS -- Preface -- Acknowledgments -- 1 The Challenges of Learning -- 1.1 Learning the Best Path -- 1.2 Areas of Application -- 1.3 Major Problem Classes -- 1.4 The Different Types of Learning -- 1.5 Learning from Different Communities -- 1.6 Information Collection Using Decision Trees -- 1.6.1 A Basic Decision Tree -- 1.6.2 Decision Tree for Offline Learning -- 1.6.3 Decision Tree for Online Learning -- 1.6.4 Discussion -- 1.7 Website and Downloadable Software -- 1.8 Goals of this Book -- Problems -- 2 Adaptive Learning -- 2.1 The Frequentist View -- 2.2 The Bayesian View -- 2.2.1 The Updating Equations for Independent Beliefs -- 2.2.2 The Expected Value of Information -- 2.2.3 Updating for Correlated Normal Priors -- 2.2.4 Bayesian Updating with an Uninformative Prior -- 2.3 Updating for Non-Gaussian Priors -- 2.3.1 The Gamma-Exponential Model -- 2.3.2 The Gamma-Poisson Model -- 2.3.3 The Pareto-Uniform Model -- 2.3.4 Models for Learning Probabilities* -- 2.3.5 Learning an Unknown Variance* -- 2.4 Monte Carlo Simulation -- 2.5 Why Does It Work?* -- 2.5.1 Derivation of σ -- 2.5.2 Derivation of Bayesian Updating Equations for Independent Beliefs -- 2.6 Bibliographic Notes -- Problems -- 3 The Economics of Information -- 3.1 An Elementary Information Problem -- 3.2 The Marginal Value of Information -- 3.3 An information Acquisition Problem -- 3.4 Bibliographic Notes -- Problems -- 4 Ranking and Selection -- 4.1 The Model -- 4.2 Measurement Policies -- 4.2.1 Deterministic Versus Sequential Policies -- 4.2.2 Optimal Sequential Policies -- 4.2.3 Heuristic Policies -- 4.3 Evaluating Policies -- 4.4 More Advanced Topics* -- 4.4.1 An Alternative Representation of the Probability Space -- 4.4.2 Equivalence of Using True Means and Sample Estimates -- 4.5 Bibliographic Notes -- Problems -- 5 The Knowledge Gradient
5.1 The Knowledge Gradient for Independent Beliefs -- 5.1.1 Computation -- 5.1.2 Some Properties of the Knowledge Gradient -- 5.1.3 The Four Distributions of Learning -- 5.2 The Value of Information and the S-Curve Effect -- 5.3 Knowledge Gradient for Correlated Beliefs -- 5.4 Anticipatory Versus Experiential Learning -- 5.5 The Knowledge Gradient for Some Non-Gaussian Distributions -- 5.5.1 The Gamma-Exponential Model -- 5.5.2 The Gamma-Poisson Model -- 5.5.3 The Pareto-Uniform Model -- 5.5.4 The Beta-Bernoulli Model -- 5.5.5 Discussion -- 5.6 Relatives of the Knowledge Gradient -- 5.6.1 Expected Improvement -- 5.6.2 Linear Loss* -- 5.7 The Problem of Priors -- 5.8 Discussion -- 5.9 Why Does It Work?* -- 5.9.1 Derivation of the Knowledge Gradient Formula -- 5.10 Bibliographic Notes -- Problems -- 6 Bandit Problems -- 6.1 The Theory and Practice of Gittins Indices -- 6.1.1 Gittins Indices in the Beta-Bernoulli Model -- 6.1.2 Gittins Indices in the Normal-Normal Model -- 6.1.3 Approximating Gittins Indices -- 6.2 Variations of Bandit Problems -- 6.3 Upper Confidence Bounding -- 6.4 The Knowledge Gradient for Bandit Problems -- 6.4.1 The Basic Idea -- 6.4.2 Some Experimental Comparisons -- 6.4.3 Non-Normal Models -- 6.5 Bibliographic Notes -- Problems -- 7 Elements of a Learning Problem -- 7.1 The States of our System -- 7.2 Types of Decisions -- 7.3 Exogenous Information -- 7.4 Transition Functions -- 7.5 Objective Functions -- 7.5.1 Designing Versus Controlling -- 7.5.2 Measurement Costs -- 7.5.3 Objectives -- 7.6 Evaluating Policies -- 7.7 Discussion -- 7.8 Bibliographic Notes -- Problems -- 8 Linear Belief Models -- 8.1 Applications -- 8.1.1 Maximizing Ad Clicks -- 8.1.2 Dynamic Pricing -- 8.1.3 Housing Loans -- 8.1.4 Optimizing Dose Response -- 8.2 A Brief Review of Linear Regression -- 8.2.1 The Normal Equations -- 8.2.2 Recursive Least Squares
13.3 A Variance-Minimizing Policy -- 13.4 Mixtures of Gaussians -- 13.4.1 Estimating Parameters -- 13.4.2 Active Learning -- 13.5 Bibliographic Notes -- 14 Simulation Optimization -- 14.1 Indifference Zone Selection -- 14.1.1 Batch Procedures -- 14.1.2 Sequential Procedures -- 14.1.3 The 0-1 Procedure: Connection to Linear Loss -- 14.2 Optimal Computing Budget Allocation -- 14.2.1 Indifference-Zone Version -- 14.2.2 Linear Loss Version -- 14.2.3 When Does It Work? -- 14.3 Model-Based Simulated Annealing -- 14.4 Other Areas of Simulation Optimization -- 14.5 Bibliographic Notes -- 15 Learning in Mathematical Programming -- 15.1 Applications -- 15.1.1 Piloting a Hot Air Balloon -- 15.1.2 Optimizing a Portfolio -- 15.1.3 Network Problems -- 15.2 Learning on Graphs -- 15.3 Alternative Edge Selection Policies -- 15.4 Learning Costs for Linear Programs* -- 15.5 Bibliographic Notes -- 16 Optimizing Over Continuous Measurements -- 16.1 The Belief Model -- 16.1.1 Updating Equations -- 16.1.2 Parameter Estimation -- 16.2 Sequential Kriging Optimization -- 16.3 The Knowledge Gradient for Continuous Parameters* -- 16.3.1 Maximizing the Knowledge Gradient -- 16.3.2 Approximating the Knowledge Gradient -- 16.3.3 The Gradient of the Knowledge Gradient -- 16.3.4 Maximizing the Knowledge Gradient -- 16.3.5 The KGCP Policy -- 16.4 Efficient Global Optimization -- 16.5 Experiments -- 16.6 Extension to Higher-Dimensional Problems -- 16.7 Bibliographic Notes -- 17 Learning With a Physical State -- 17.1 Introduction to Dynamic Programming -- 17.1.1 Approximate Dynamic Programming -- 17.1.2 The Exploration vs. Exploitation Problem -- 17.1.3 Discussion -- 17.2 Some Heuristic Learning Policies -- 17.3 The Local Bandit Approximation -- 17.4 The Knowledge Gradient in Dynamic Programming -- 17.4.1 Generalized Learning Using Basis Functions -- 17.4.2 The Knowledge Gradient
Title Optimal learning
URI https://elibro.net/es/ereader/elibrodemo/182445
https://cir.nii.ac.jp/crid/1130282273112677376
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=822054
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781118309827&uid=none
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781118309841&uid=none
Volume 841
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFH4ahcO48GMgCnSrEDcUlsZu7FxTFSZtohyAcYsc24GKkiBSKthfv2fHyQocgMMuVuJEtvKe8_k92-99APvCJ32ZBj1PpKnyqEiFx_tUe1IRP9AyYEJJSzbBTk745WV06qjFSksnwPKcPz5Gd_9V1ViHyjahsx9Qd9MoVuA1Kh1LVDuWLyzi5rbS-Aj__luUuCOCuGpQr6hPPv8253Lzg_iw2WZ5-nNdzCxOTJ7EwWiirwqEjuv5tQB7qGJ-LcACyTMH0afM8OuEFd_cK7is0q-atFfoZxA_4lUa9RcZqOPYj8x-KSELsMBCdHEXj4ej85_NWpYxW9BNsQH_rj9aJzeq-3f5TbHH78_6W4ZlUd4goCPYT0sT7mXWCQqc6vPx-NUEaWf9s1VomUiQNfik83VYqfkvug4Ov8CKk3i3lvgGXBwNzwY_PMcw4Yl-yA2LHVEIawqHcehryTgVNMrCTOmUaJIxHZBMhakUhPhZJolQ6D1yiSYUjyRlWLMJrbzI9RZ08WNDnXHGRSioEiJifsoFMxYwzVjaa8Pe3Icms4ndDS-TOWkE7B0vUWxpsxJSUj0c_orRS6S034YOCi2RY1P2zJY0mn-MmCgxxnAmacO3WpyJbdgdAE6G8YCbiGu6_UYLO_D537jbhdb0_kF3YEnOpuPy_qsbF38BVOItFQ
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Optimal+learning&rft.au=Powell%2C+Warren+B.&rft.au=Ryzhov%2C+Ilya+Olegovich&rft.date=2012-01-01&rft.pub=Wiley&rft.isbn=9780470596692&rft_id=info:doi/10.1002%2F9781118309858&rft.externalDocID=BB09093533
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811183%2F9781118309827.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811183%2F9781118309841.jpg