Chebyshev Wavelet Finite Difference Method: A New Approach for Solving Initial and Boundary Value Problems of Fractional Order
A new method based on a hybrid of Chebyshev wavelets and finite difference methods is introduced for solving linear and nonlinear fractional differential equations. The useful properties of the Chebyshev wavelets and finite difference method are utilized to reduce the computation of the problem to a...
Uloženo v:
| Vydáno v: | Abstract and Applied Analysis Ročník 2013; číslo 2013; s. 700 - 714-1264 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cairo, Egypt
Hindawi Limiteds
01.01.2013
Hindawi Puplishing Corporation Hindawi Publishing Corporation John Wiley & Sons, Inc Wiley |
| Témata: | |
| ISSN: | 1085-3375, 1687-0409 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A new method based on a hybrid of Chebyshev wavelets and finite difference methods is introduced for solving linear and nonlinear fractional differential equations. The useful properties of the Chebyshev wavelets and finite difference method are utilized to reduce the computation of the problem to a set of linear or nonlinear algebraic equations. This method can be considered as a nonuniform finite difference method. Some examples are given to verify and illustrate the efficiency and simplicity of the proposed method. |
|---|---|
| ISSN: | 1085-3375 1687-0409 |
| DOI: | 10.1155/2013/916456 |