Chebyshev Wavelet Finite Difference Method: A New Approach for Solving Initial and Boundary Value Problems of Fractional Order

A new method based on a hybrid of Chebyshev wavelets and finite difference methods is introduced for solving linear and nonlinear fractional differential equations. The useful properties of the Chebyshev wavelets and finite difference method are utilized to reduce the computation of the problem to a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Abstract and Applied Analysis Ročník 2013; číslo 2013; s. 700 - 714-1264
Hlavní autoři: Kazemi Nasab, A., Kiliçman, Adem, Pashazadeh Atabakan, Z., Abbasbandy, Saeid
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cairo, Egypt Hindawi Limiteds 01.01.2013
Hindawi Puplishing Corporation
Hindawi Publishing Corporation
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:1085-3375, 1687-0409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A new method based on a hybrid of Chebyshev wavelets and finite difference methods is introduced for solving linear and nonlinear fractional differential equations. The useful properties of the Chebyshev wavelets and finite difference method are utilized to reduce the computation of the problem to a set of linear or nonlinear algebraic equations. This method can be considered as a nonuniform finite difference method. Some examples are given to verify and illustrate the efficiency and simplicity of the proposed method.
ISSN:1085-3375
1687-0409
DOI:10.1155/2013/916456