Cognitive Dynamic Systems Perception-action Cycle, Radar and Radio
The principles of cognition are becoming increasingly important in the areas of signal processing, communications and control. In this groundbreaking book, Simon Haykin, a pioneer in the field and an award-winning researcher, educator and author, sets out the fundamental ideas of cognitive dynamic s...
Saved in:
| Main Author: | |
|---|---|
| Format: | eBook Book |
| Language: | English |
| Published: |
Cambridge
Cambridge University Press
22.03.2012
|
| Edition: | 1 |
| Subjects: | |
| ISBN: | 9780521114363, 0521114365 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The principles of cognition are becoming increasingly important in the areas of signal processing, communications and control. In this groundbreaking book, Simon Haykin, a pioneer in the field and an award-winning researcher, educator and author, sets out the fundamental ideas of cognitive dynamic systems. Weaving together the various branches of study involved, he demonstrates the power of cognitive information processing and highlights a range of future research directions. The book begins with a discussion of core topics such as cognition and sensing, dealing, in particular, with the perception-action cycle. Bayesian filtering, machine learning and dynamic programming are then addressed. Building on these foundations, there is detailed coverage of two important practical applications, cognitive radar and cognitive radio. Blending theory and practice, this insightful book is aimed at all graduate students and researchers looking for a thorough grounding in this fascinating field. |
|---|---|
| AbstractList | The principles of cognition are becoming increasingly important in the areas of signal processing, communications and control. In this groundbreaking book, Simon Haykin, a pioneer in the field and an award-winning researcher, educator and author, sets out the fundamental ideas of cognitive dynamic systems. Weaving together the various branches of study involved, he demonstrates the power of cognitive information processing and highlights a range of future research directions. The book begins with a discussion of core topics such as cognition and sensing, dealing, in particular, with the perception-action cycle. Bayesian filtering, machine learning and dynamic programming are then addressed. Building on these foundations, there is detailed coverage of two important practical applications, cognitive radar and cognitive radio. Blending theory and practice, this insightful book is aimed at all graduate students and researchers looking for a thorough grounding in this fascinating field. In this groundbreaking book, Simon Haykin, a pioneer in the field and award-winning researcher, educator and author, sets out the fundamental ideas of cognitive dynamic systems. Weaving together the various branches of study involved, he demonstrates the power of cognitive information processing and highlights a range of future research directions. |
| Author | Haykin, Simon |
| Author_xml | – sequence: 1 givenname: Simon surname: Haykin fullname: Haykin, Simon organization: McMaster University, Ontario |
| BackLink | https://cir.nii.ac.jp/crid/1130000796787247488$$DView record in CiNii |
| BookMark | eNqF0c1LwzAUAPCIH7jN3fXmQQQP1bwkTV6Ors4PGOygiLfSpums61pt6mT_ve06FBQxh4Twfi_hvdcnO0VZWEIOgZ4DBXURjKZaIfUBEJBLvkX6X5enbTJcBxkAiCa4R3pIQVBfINsnQ-deaLOkUlRgjxwF5azI6mxpj69WRbTIzPH9ytV24Q7Ibhrlzg4354A8Xo8fgltvMr25Cy4nXuRLroUHlButpNSo0SiVqEgqxFiy1NdJxAARTSq11RQThio2FIXv-7HQJpZWpnxAzrqHIze3H-65zGsXLnMbl-XchU0tAFQxYIqz_-13Uxp72tnXqnx7t64O18zYoq6iPByPApSMC2zgSQeLLAtN1u4AvO2S0k0tigklsGW8YyZaxFWWzGxoymrzNdCwHU34czRNlvcrKy7_9p-2SoR_ |
| ContentType | eBook Book |
| Copyright | Cambridge University Press 2012 |
| Copyright_xml | – notice: Cambridge University Press 2012 |
| DBID | RYH |
| DEWEY | 003/.7 |
| DOI | 10.1017/CBO9780511818363 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences Mathematics |
| EISBN | 051181836X 9780511818363 1139114689 9781139114684 9781107212732 1107212731 |
| Edition | 1 |
| ExternalDocumentID | 9781107212732 9780511818363 EBC862348 BB08969614 10_1017_CBO9780511818363 |
| GroupedDBID | -G2 -VX 089 20A 38. A4J AAAAZ AABBV AAHFW ABARN ABMFC ABQPQ ABZUC ACLGV ACNOG ADCGF ADQZK ADVEM AEDFS AERYV AEWAL AEWQY AHAWV AHHNL AIXPE AJFER AJXXZ ALMA_UNASSIGNED_HOLDINGS AMJDZ ANGWU ASYWF AYSPE AZZ BBABE BFIBU BJUTA COBLI COXPH CYGLA CZZ DOUIK DUGUG EBACC EBSCA ECOWB FH2 GEOUK ICERG JJU MYL OLDIN OTBUH OZASK OZBHS PQQKQ S2O SACVX XI1 ZXKUE ~H6 ABESS ABMRC AHWGJ RYH |
| ID | FETCH-LOGICAL-a56394-103c97669898c77d7a6788b62f59da21888cf69e908d287bc084555b49cb6e6f3 |
| ISBN | 9780521114363 0521114365 |
| ISICitedReferencesCount | 115 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=(Sirsi) u849577&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 20 03:36:14 EDT 2025 Wed Jul 30 03:53:13 EDT 2025 Wed Dec 10 09:01:02 EST 2025 Thu Jun 26 21:03:28 EDT 2025 Wed Mar 12 03:53:07 EDT 2025 Wed Sep 13 03:21:31 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCallNum_Ident | Q325 .H39 2012 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a56394-103c97669898c77d7a6788b62f59da21888cf69e908d287bc084555b49cb6e6f3 |
| Notes | Includes bibliographical references and index |
| OCLC | 801405482 |
| PQID | EBC862348 |
| PageCount | 324 |
| ParticipantIDs | askewsholts_vlebooks_9781107212732 askewsholts_vlebooks_9780511818363 proquest_ebookcentral_EBC862348 nii_cinii_1130000796787247488 cambridge_corebooks_10_1017_CBO9780511818363 cambridge_cbo_10_1017_CBO9780511818363 |
| PublicationCentury | 2000 |
| PublicationDate | 20120322 2012 2012-06-05 2012-03-22 |
| PublicationDateYYYYMMDD | 2012-03-22 2012-01-01 2012-06-05 |
| PublicationDate_xml | – month: 03 year: 2012 text: 20120322 day: 22 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationYear | 2012 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| SSID | ssj0000677048 |
| Score | 2.4073992 |
| Snippet | The principles of cognition are becoming increasingly important in the areas of signal processing, communications and control. In this groundbreaking book,... In this groundbreaking book, Simon Haykin, a pioneer in the field and award-winning researcher, educator and author, sets out the fundamental ideas of... |
| SourceID | askewsholts proquest nii cambridge |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Cognitive radio networks Self-organizing systems |
| Subtitle | Perception-action Cycle, Radar and Radio |
| TableOfContents | 6.13.3 Communications between scene analyzer and perceptual memory 6.3 Baseband model of radar signal transmission -- 6.3.1 Baseband models of the transmitted and received signals -- 6.3.2 Bank of matched fi lters and envelope detectors -- 6.3.3 State-space model of the target -- 6.3.4 Dependence of measurement noise on the transmitted signal -- 6.3.5 Closing remarks -- 6.4 System design considerations -- 6.5 Cubature Kalman filter for target-state estimation -- 6.5.1 Cubature rule of third degree -- 6.5.2 Probability-distribution flow-graph of the Bayesian filter -- 6.5.3 Time update -- 6.5.4 Measurement update -- 6.5.5 Summarizing remarks -- 6.6 Transition from perception to action -- 6.6.1 Feedback information about the target -- 6.6.2 Posterior expected error covariance matrix -- 6.7 Cost-to-go function -- 6.7.1 Cost-to-go function using mean-square error -- 6.7.2 Cost-to-go function using Shannon's entropy -- 6.7.3 Another information-theoretic viewpoint of the entropy-based cost-to-go function -- 6.8 Cyclic directed information-flow -- 6.8.1 Bottom-up transmission path -- 6.8.2 Top-down transmission path -- 6.9 Approximate dynamic programming for optimal control -- 6.9.1 Step 1: cost-to-go function for compressing information about the radar environment -- 6.9.2 Step 2: approximation in the measurement space -- 6.9.3 Special case: dynamic optimization -- 6.10 The curse-of-dimensionality problem -- 6.11 Two-dimensional grid for waveform library -- 6.12 Case study: tracking a falling object in space -- 6.12.1 Modeling the reentry problem -- 6.12.2 Radar configurations -- 6.12.3 Performance metric -- 6.12.4 Simulation results -- 6.12.5 Comments on the simulation results -- 6.13 Cognitive radar with single layer of memory -- 6.13.1 Cyclic directed information flow in cognitive radar with single layer of memory -- 6.13.2 Communication among subsystems in cognitive radar 4.1 Probability, conditional probability, and Bayes' rule -- 4.1.1 Conditional probability -- 4.1.2 Bayes' rule -- 4.2 Bayesian inference and importance of the posterior -- 4.2.1 Likelihood -- 4.2.2 The likelihood principle -- 4.2.3 Sufficient statistic -- 4.3 Parameter estimation and hypothesis testing: the MAP rule -- 4.3.1 Parameter estimation -- 4.3.2 Hypothesis testing -- 4.3.3 Summarizing remarks on Bayesian inference -- 4.4 State-space models -- 4.4.1 Sequential state-estimation problem -- 4.4.2 Hierarchy of state-space models -- 4.5 The Bayesian filter -- 4.5.1 Optimality of the Bayesian filter -- 4.5.2 Approximation of the Bayesian filter -- 4.6 Extended Kalman filter -- 4.6.1 Summarizing remarks on the extended Kalman filter -- 4.7 Cubature Kalman filters -- 4.7.1 Converting to spherical-radial integration -- 4.7.2 Spherical rule -- 4.7.3 Radial rule -- 4.7.4 Spherical-radial rule -- 4.7.5 Derivation of the CKF -- 4.7.6 Properties of the CKF -- 4.7.7 Summarizing remarks on the CKF -- 4.8 On the relationship between the cubature and unscented Kalman filters -- 4.8.1 Unscented Kalman filter -- 4.8.2 On the relationship between UKF and CKF -- 4.8.2.1 Theoretical considerations -- 4.8.2.2 Geometric considerations -- 4.8.2.3 Curse-of-dimensionality problem -- 4.8.3 Summarizing remarks -- 4.9 The curse of dimensionality -- 4.9.1 Case study on the curse-of-dimensionality problem -- 4.10 Recurrent multilayer perceptrons: an application for state estimation -- 4.10.1 Description of the supervised training framework using the EKF -- 4.10.2 The EKF algorithm -- 4.10.3 Decoupled EKF -- 4.10.4 Summarizing remarks on the EKF -- 4.10.5 Supervised training of neural networks using the CKF -- 4.10.6 Adaptivity considerations -- 4.11 Summary and discussion -- 4.11.1 Optimal Bayesian filter -- 4.11.2 Extended Kalman filter -- 4.11.3 Cubature Kalman filters 2.11.2 Generalized Hebbian algorithm -- 2.11.3 Signal-flow graph of the GHA -- 2.12 Summary and discussion -- 2.12.1 Cognition -- 2.12.2 Two different views of perception -- Notes and practical references -- 3: Power-spectrum estimation for sensing the environment -- 3.1 The power spectrum -- 3.2 Power spectrum estimation -- 3.2.1 Parametric methods -- 3.2.2 Nonparametric methods -- 3.3 Multitaper method -- 3.3.1 Attributes of multitaper spectral estimation -- 3.3.2 Multitaper spectral estimation theory -- 3.3.3 Adaptive modification of multitaper spectral estimation -- 3.3.4 Summarizing remarks on the MTM -- 3.3.5 Comparison of the MTM with other spectral estimators -- 3.4 Space-time processing -- 3.4.1 Physical interpretation of the action performed by the MTM-SVD processor -- 3.5 Time-frequency analysis -- 3.5.1 Theoretical background of nonstationarity -- 3.5.2 Spectral coherences of nonstationary processes based on the Loève transform -- 3.5.3 Two special cases of the dynamic spectrum D (t0, f ) -- 3.5.3.1 Wigner-Ville distribution -- 3.5.3.2 Cyclic power spectrum -- 3.5.4 Instrumentation for computing Loève spectral correlations -- 3.6 Cyclostationarity -- 3.6.1 Fourier framework of cyclic statistics -- 3.6.2 Instrumentation for computing the Fourier spectral correlations -- 3.6.3 Relationship between the Fourier and Loève spectral coherences -- 3.6.4 Contrasting the two theories on cyclostationarity -- 3.7 Harmonic F-test for spectral line components -- 3.7.1 Brief outline of the F-test -- 3.7.2 Point regression single-line F -test -- 3.8 Summary and discussion -- 3.8.1 The MTM for power spectrum estimation -- 3.8.2 Extensions of the MTM -- 3.8.3 Concluding remarks -- 3.8.3.1 Mathematical framework -- 3.8.3.2 Practical requirement -- Notes and practical references -- 4: Bayesian filtering for state estimation of the environment Cover -- Cognitive Dynamic Systems -- Title -- Copyright -- Contents -- Preface -- Acknowledgments -- 1: Introduction -- 1.1 Cognitive dynamic systems -- 1.2 The perception-action cycle -- 1.3 Cognitive dynamic wireless systems: radar and radio -- 1.3.1 Cognitive radar -- 1.3.2 Cognitive radio -- 1.4 Illustrative cognitive radar experiment -- 1.4.1 The experiment -- 1.4.2 The environment -- 1.4.3 The radar -- 1.4.4 State-space model -- 1.4.5 Simulation results -- 1.5 Principle of information preservation -- 1.5.1 Feedback information -- 1.5.2 Bayesian filtering of the measurements -- 1.5.3 Information preservation through cognition -- 1.5.4 Concluding remarks -- 1.6 Organization of the book -- Notes and practical references -- 2: The perception-action cycle -- 2.1 Perception -- 2.1.1 Functional integration-across-time property of cognition -- 2.2 Memory -- 2.2.1 Perceptual memory -- 2.2.2 Executive memory -- 2.2.3 Final reciprocal coupling to complete the cognitive information-processing cycle -- 2.2.4 Roles of memory in cognition -- 2.3 Working memory -- 2.4 Attention -- 2.4.1 Roles of attention in cognition -- 2.5 Intelligence -- 2.5.1 Efficiency of processing information -- 2.5.2 Synchronized cognitive information processing -- 2.5.3 The role of intelligence in cognition -- 2.6 Practical benefits of hierarchy in the perception-action cycle -- 2.7 Neural networks for parallel distributed cognitive information processing -- 2.7.1 Benefits of neural networks -- 2.7.2 Models of a neuron -- 2.7.3 Multilayer feedforward networks -- 2.8 Associative learning process for memory construction -- 2.8.1 Pattern association -- 2.8.2 Replicator (identity) mapping -- 2.9 Back-propagation algorithm -- 2.9.1 Summary of the back-propagation algorithm -- 2.10 Recurrent multilayer perceptrons -- 2.11 Self-organized learning -- 2.11.1 Hebb's postulate of learning Notes and practical references -- 5: Dynamic programming for action in the environment -- 5.1 Markov decision processes -- 5.1.1 The basic problem -- 5.2 Bellman's optimality criterion -- 5.2.1 Dynamic-programming algorithm -- 5.2.2 Bellman's optimality equation -- 5.3 Policy iteration -- 5.3.1 Formulation of the policy iteration algorithm -- 5.4 Value iteration -- 5.4.1 Formulation of the value iteration algorithm -- 5.5 Approximate dynamic programming for problems with imperfect state information -- 5.5.1 Basics of problems with imperfect state information -- 5.5.2 Reformulation of the imperfect state-information problem as a perfect state-information problem -- 5.6 Reinforcement learning viewed as approximate dynamic programming -- 5.7 Q-learning -- 5.7.1 Summarizing remarks -- 5.8 Temporal-difference learning -- 5.8.1 Multistep TD learning -- 5.8.2 Eligible traces -- 5.8.3 Two limiting cases of TD learning -- 5.8.4 Summarizing remarks -- 5.9 On the relationships between temporal-difference learning and dynamic programming -- 5.9.1 λ-return -- 5.10 Linear function approximations of dynamic programming -- 5.11 Linear GQ(λ) for predictive learning -- 5.11.1 Objective function setting the stage for approximation -- 5.11.2 The GQ(λ) algorithm -- 5.11.3 Weight-doubling trick -- 5.11.4 Eligibility traces vector -- 5.11.5 New action-state feature vector -- 5.11.6 Summarizing remarks -- 5.11.7 Practical considerations -- 5.12 Summary and discussion -- 5.12.1 Bellman's dynamic programming -- 5.12.2 Imperfect state information -- 5.12.3 Reinforcement learning -- 5.12.4 Linear GQ(k) algorithm -- 5.12.5 Greedy-GQ -- 5.12.6 New generation of approximate dynamic programming algorithms: linear GQ methods -- Notes and practical references -- 6: Cognitive radar -- 6.1 Three classes of radars defined -- 6.2 The perception-action cycle |
| Title | Cognitive Dynamic Systems |
| URI | http://dx.doi.org/10.1017/CBO9780511818363 https://doi.org/10.1017/CBO9780511818363?locatt=mode:legacy https://cir.nii.ac.jp/crid/1130000796787247488 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=862348 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780511818363 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781107212732&uid=none |
| WOSCitedRecordID | wos(Sirsi) u849577&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwEA86fXAvfuPUaRDxaZVtbZrEx42poKjgB76VNG2hKJ2sU7b_3kuaxbr5gQ--hLYc15HferlL7n6H0CGnIWM-545IJFHHjMThCY8cquKPhLt-pCu8Hy7p1RV7fOQ3hs0v1-0EaJax0Yi__CvU8AzAVqWzf4DbKoUHcA2gwwiwwzjlEdtbQzRgM4Gios28oWnOddj_YjNYHMf0B5djWSQTD0QkbB4n3BS5WYVhGpt-XbcAKpiC4_I2gc63KG8TfFkBVs7yKAJKVcoLEZJbGJ0Z81pwMnU711pU1awyIzpFWt3pNJni3VEtxuepD1Hxwlnv-v7Cbn8p4jowHqZ6WL-SGD4k-xPMqbJi-J5-ZRVVRf4EywAsEcO8zIsBPkKWpjMrq3YX7lZQRZWQrKK5OFtDy5PGGdjY0XV0aqHCBipsoMIneBYorIFqYA1TAwNIWIO0gR5Oe3fdc8c0tHAEAU_QgzXPleD_6aadktKICvAVWOi3E8IjAd4WYzLxecybLIJQNpRN5hFCQo_L0I_9xN1ElayfxVsIy4R5ohVRKVzpMbC7PgPnkbZFKCSRvF1DB6UZCt6e9eF7Hnyaxh-E1L6AYv93QdORnd1Ahv2gSAykwTQoNdQoCfYHRtn34nVAKpCpGlvqWBX8VQ4TQtsehXWlhvYnGAZalUlXDnqdLsThrse2f9Gwg5Y-PoVdVBkOXuM6WpRvwzQf7Jm_5DvQ9GMH |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Cognitive+dynamic+systems+%3A+perception--action+cycle%2C+radar%2C+and+radio&rft.au=Haykin%2C+Simon+S.&rft.date=2012-01-01&rft.pub=Cambridge+University+Press&rft.isbn=9780521114363&rft_id=info:doi/10.1017%2FCBO9780511818363&rft.externalDocID=BB08969614 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fassets.cambridge.org%2F97805211%2F14363%2Fcover%2F9780521114363.jpg http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97805118%2F9780511818363.jpg http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811072%2F9781107212732.jpg |

