Cognitive Dynamic Systems Perception-action Cycle, Radar and Radio

The principles of cognition are becoming increasingly important in the areas of signal processing, communications and control. In this groundbreaking book, Simon Haykin, a pioneer in the field and an award-winning researcher, educator and author, sets out the fundamental ideas of cognitive dynamic s...

Full description

Saved in:
Bibliographic Details
Main Author: Haykin, Simon
Format: eBook Book
Language:English
Published: Cambridge Cambridge University Press 22.03.2012
Edition:1
Subjects:
ISBN:9780521114363, 0521114365
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The principles of cognition are becoming increasingly important in the areas of signal processing, communications and control. In this groundbreaking book, Simon Haykin, a pioneer in the field and an award-winning researcher, educator and author, sets out the fundamental ideas of cognitive dynamic systems. Weaving together the various branches of study involved, he demonstrates the power of cognitive information processing and highlights a range of future research directions. The book begins with a discussion of core topics such as cognition and sensing, dealing, in particular, with the perception-action cycle. Bayesian filtering, machine learning and dynamic programming are then addressed. Building on these foundations, there is detailed coverage of two important practical applications, cognitive radar and cognitive radio. Blending theory and practice, this insightful book is aimed at all graduate students and researchers looking for a thorough grounding in this fascinating field.
AbstractList The principles of cognition are becoming increasingly important in the areas of signal processing, communications and control. In this groundbreaking book, Simon Haykin, a pioneer in the field and an award-winning researcher, educator and author, sets out the fundamental ideas of cognitive dynamic systems. Weaving together the various branches of study involved, he demonstrates the power of cognitive information processing and highlights a range of future research directions. The book begins with a discussion of core topics such as cognition and sensing, dealing, in particular, with the perception-action cycle. Bayesian filtering, machine learning and dynamic programming are then addressed. Building on these foundations, there is detailed coverage of two important practical applications, cognitive radar and cognitive radio. Blending theory and practice, this insightful book is aimed at all graduate students and researchers looking for a thorough grounding in this fascinating field.
In this groundbreaking book, Simon Haykin, a pioneer in the field and award-winning researcher, educator and author, sets out the fundamental ideas of cognitive dynamic systems. Weaving together the various branches of study involved, he demonstrates the power of cognitive information processing and highlights a range of future research directions.
Author Haykin, Simon
Author_xml – sequence: 1
  givenname: Simon
  surname: Haykin
  fullname: Haykin, Simon
  organization: McMaster University, Ontario
BackLink https://cir.nii.ac.jp/crid/1130000796787247488$$DView record in CiNii
BookMark eNqF0c1LwzAUAPCIH7jN3fXmQQQP1bwkTV6Ors4PGOygiLfSpums61pt6mT_ve06FBQxh4Twfi_hvdcnO0VZWEIOgZ4DBXURjKZaIfUBEJBLvkX6X5enbTJcBxkAiCa4R3pIQVBfINsnQ-deaLOkUlRgjxwF5azI6mxpj69WRbTIzPH9ytV24Q7Ibhrlzg4354A8Xo8fgltvMr25Cy4nXuRLroUHlButpNSo0SiVqEgqxFiy1NdJxAARTSq11RQThio2FIXv-7HQJpZWpnxAzrqHIze3H-65zGsXLnMbl-XchU0tAFQxYIqz_-13Uxp72tnXqnx7t64O18zYoq6iPByPApSMC2zgSQeLLAtN1u4AvO2S0k0tigklsGW8YyZaxFWWzGxoymrzNdCwHU34czRNlvcrKy7_9p-2SoR_
ContentType eBook
Book
Copyright Cambridge University Press 2012
Copyright_xml – notice: Cambridge University Press 2012
DBID RYH
DEWEY 003/.7
DOI 10.1017/CBO9780511818363
DatabaseName CiNii Complete
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Mathematics
EISBN 051181836X
9780511818363
1139114689
9781139114684
9781107212732
1107212731
Edition 1
ExternalDocumentID 9781107212732
9780511818363
EBC862348
BB08969614
10_1017_CBO9780511818363
GroupedDBID -G2
-VX
089
20A
38.
A4J
AAAAZ
AABBV
AAHFW
ABARN
ABMFC
ABQPQ
ABZUC
ACLGV
ACNOG
ADCGF
ADQZK
ADVEM
AEDFS
AERYV
AEWAL
AEWQY
AHAWV
AHHNL
AIXPE
AJFER
AJXXZ
ALMA_UNASSIGNED_HOLDINGS
AMJDZ
ANGWU
ASYWF
AYSPE
AZZ
BBABE
BFIBU
BJUTA
COBLI
COXPH
CYGLA
CZZ
DOUIK
DUGUG
EBACC
EBSCA
ECOWB
FH2
GEOUK
ICERG
JJU
MYL
OLDIN
OTBUH
OZASK
OZBHS
PQQKQ
S2O
SACVX
XI1
ZXKUE
~H6
ABESS
ABMRC
AHWGJ
RYH
ID FETCH-LOGICAL-a56394-103c97669898c77d7a6788b62f59da21888cf69e908d287bc084555b49cb6e6f3
ISBN 9780521114363
0521114365
ISICitedReferencesCount 115
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=(Sirsi) u849577&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 20 03:36:14 EDT 2025
Wed Jul 30 03:53:13 EDT 2025
Wed Dec 10 09:01:02 EST 2025
Thu Jun 26 21:03:28 EDT 2025
Wed Mar 12 03:53:07 EDT 2025
Wed Sep 13 03:21:31 EDT 2023
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q325 .H39 2012
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a56394-103c97669898c77d7a6788b62f59da21888cf69e908d287bc084555b49cb6e6f3
Notes Includes bibliographical references and index
OCLC 801405482
PQID EBC862348
PageCount 324
ParticipantIDs askewsholts_vlebooks_9781107212732
askewsholts_vlebooks_9780511818363
proquest_ebookcentral_EBC862348
nii_cinii_1130000796787247488
cambridge_corebooks_10_1017_CBO9780511818363
cambridge_cbo_10_1017_CBO9780511818363
PublicationCentury 2000
PublicationDate 20120322
2012
2012-06-05
2012-03-22
PublicationDateYYYYMMDD 2012-03-22
2012-01-01
2012-06-05
PublicationDate_xml – month: 03
  year: 2012
  text: 20120322
  day: 22
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationYear 2012
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0000677048
Score 2.4073992
Snippet The principles of cognition are becoming increasingly important in the areas of signal processing, communications and control. In this groundbreaking book,...
In this groundbreaking book, Simon Haykin, a pioneer in the field and award-winning researcher, educator and author, sets out the fundamental ideas of...
SourceID askewsholts
proquest
nii
cambridge
SourceType Aggregation Database
Publisher
SubjectTerms Cognitive radio networks
Self-organizing systems
Subtitle Perception-action Cycle, Radar and Radio
TableOfContents 6.13.3 Communications between scene analyzer and perceptual memory
6.3 Baseband model of radar signal transmission -- 6.3.1 Baseband models of the transmitted and received signals -- 6.3.2 Bank of matched fi lters and envelope detectors -- 6.3.3 State-space model of the target -- 6.3.4 Dependence of measurement noise on the transmitted signal -- 6.3.5 Closing remarks -- 6.4 System design considerations -- 6.5 Cubature Kalman filter for target-state estimation -- 6.5.1 Cubature rule of third degree -- 6.5.2 Probability-distribution flow-graph of the Bayesian filter -- 6.5.3 Time update -- 6.5.4 Measurement update -- 6.5.5 Summarizing remarks -- 6.6 Transition from perception to action -- 6.6.1 Feedback information about the target -- 6.6.2 Posterior expected error covariance matrix -- 6.7 Cost-to-go function -- 6.7.1 Cost-to-go function using mean-square error -- 6.7.2 Cost-to-go function using Shannon's entropy -- 6.7.3 Another information-theoretic viewpoint of the entropy-based cost-to-go function -- 6.8 Cyclic directed information-flow -- 6.8.1 Bottom-up transmission path -- 6.8.2 Top-down transmission path -- 6.9 Approximate dynamic programming for optimal control -- 6.9.1 Step 1: cost-to-go function for compressing information about the radar environment -- 6.9.2 Step 2: approximation in the measurement space -- 6.9.3 Special case: dynamic optimization -- 6.10 The curse-of-dimensionality problem -- 6.11 Two-dimensional grid for waveform library -- 6.12 Case study: tracking a falling object in space -- 6.12.1 Modeling the reentry problem -- 6.12.2 Radar configurations -- 6.12.3 Performance metric -- 6.12.4 Simulation results -- 6.12.5 Comments on the simulation results -- 6.13 Cognitive radar with single layer of memory -- 6.13.1 Cyclic directed information flow in cognitive radar with single layer of memory -- 6.13.2 Communication among subsystems in cognitive radar
4.1 Probability, conditional probability, and Bayes' rule -- 4.1.1 Conditional probability -- 4.1.2 Bayes' rule -- 4.2 Bayesian inference and importance of the posterior -- 4.2.1 Likelihood -- 4.2.2 The likelihood principle -- 4.2.3 Sufficient statistic -- 4.3 Parameter estimation and hypothesis testing: the MAP rule -- 4.3.1 Parameter estimation -- 4.3.2 Hypothesis testing -- 4.3.3 Summarizing remarks on Bayesian inference -- 4.4 State-space models -- 4.4.1 Sequential state-estimation problem -- 4.4.2 Hierarchy of state-space models -- 4.5 The Bayesian filter -- 4.5.1 Optimality of the Bayesian filter -- 4.5.2 Approximation of the Bayesian filter -- 4.6 Extended Kalman filter -- 4.6.1 Summarizing remarks on the extended Kalman filter -- 4.7 Cubature Kalman filters -- 4.7.1 Converting to spherical-radial integration -- 4.7.2 Spherical rule -- 4.7.3 Radial rule -- 4.7.4 Spherical-radial rule -- 4.7.5 Derivation of the CKF -- 4.7.6 Properties of the CKF -- 4.7.7 Summarizing remarks on the CKF -- 4.8 On the relationship between the cubature and unscented Kalman filters -- 4.8.1 Unscented Kalman filter -- 4.8.2 On the relationship between UKF and CKF -- 4.8.2.1 Theoretical considerations -- 4.8.2.2 Geometric considerations -- 4.8.2.3 Curse-of-dimensionality problem -- 4.8.3 Summarizing remarks -- 4.9 The curse of dimensionality -- 4.9.1 Case study on the curse-of-dimensionality problem -- 4.10 Recurrent multilayer perceptrons: an application for state estimation -- 4.10.1 Description of the supervised training framework using the EKF -- 4.10.2 The EKF algorithm -- 4.10.3 Decoupled EKF -- 4.10.4 Summarizing remarks on the EKF -- 4.10.5 Supervised training of neural networks using the CKF -- 4.10.6 Adaptivity considerations -- 4.11 Summary and discussion -- 4.11.1 Optimal Bayesian filter -- 4.11.2 Extended Kalman filter -- 4.11.3 Cubature Kalman filters
2.11.2 Generalized Hebbian algorithm -- 2.11.3 Signal-flow graph of the GHA -- 2.12 Summary and discussion -- 2.12.1 Cognition -- 2.12.2 Two different views of perception -- Notes and practical references -- 3: Power-spectrum estimation for sensing the environment -- 3.1 The power spectrum -- 3.2 Power spectrum estimation -- 3.2.1 Parametric methods -- 3.2.2 Nonparametric methods -- 3.3 Multitaper method -- 3.3.1 Attributes of multitaper spectral estimation -- 3.3.2 Multitaper spectral estimation theory -- 3.3.3 Adaptive modification of multitaper spectral estimation -- 3.3.4 Summarizing remarks on the MTM -- 3.3.5 Comparison of the MTM with other spectral estimators -- 3.4 Space-time processing -- 3.4.1 Physical interpretation of the action performed by the MTM-SVD processor -- 3.5 Time-frequency analysis -- 3.5.1 Theoretical background of nonstationarity -- 3.5.2 Spectral coherences of nonstationary processes based on the Loève transform -- 3.5.3 Two special cases of the dynamic spectrum D (t0, f ) -- 3.5.3.1 Wigner-Ville distribution -- 3.5.3.2 Cyclic power spectrum -- 3.5.4 Instrumentation for computing Loève spectral correlations -- 3.6 Cyclostationarity -- 3.6.1 Fourier framework of cyclic statistics -- 3.6.2 Instrumentation for computing the Fourier spectral correlations -- 3.6.3 Relationship between the Fourier and Loève spectral coherences -- 3.6.4 Contrasting the two theories on cyclostationarity -- 3.7 Harmonic F-test for spectral line components -- 3.7.1 Brief outline of the F-test -- 3.7.2 Point regression single-line F -test -- 3.8 Summary and discussion -- 3.8.1 The MTM for power spectrum estimation -- 3.8.2 Extensions of the MTM -- 3.8.3 Concluding remarks -- 3.8.3.1 Mathematical framework -- 3.8.3.2 Practical requirement -- Notes and practical references -- 4: Bayesian filtering for state estimation of the environment
Cover -- Cognitive Dynamic Systems -- Title -- Copyright -- Contents -- Preface -- Acknowledgments -- 1: Introduction -- 1.1 Cognitive dynamic systems -- 1.2 The perception-action cycle -- 1.3 Cognitive dynamic wireless systems: radar and radio -- 1.3.1 Cognitive radar -- 1.3.2 Cognitive radio -- 1.4 Illustrative cognitive radar experiment -- 1.4.1 The experiment -- 1.4.2 The environment -- 1.4.3 The radar -- 1.4.4 State-space model -- 1.4.5 Simulation results -- 1.5 Principle of information preservation -- 1.5.1 Feedback information -- 1.5.2 Bayesian filtering of the measurements -- 1.5.3 Information preservation through cognition -- 1.5.4 Concluding remarks -- 1.6 Organization of the book -- Notes and practical references -- 2: The perception-action cycle -- 2.1 Perception -- 2.1.1 Functional integration-across-time property of cognition -- 2.2 Memory -- 2.2.1 Perceptual memory -- 2.2.2 Executive memory -- 2.2.3 Final reciprocal coupling to complete the cognitive information-processing cycle -- 2.2.4 Roles of memory in cognition -- 2.3 Working memory -- 2.4 Attention -- 2.4.1 Roles of attention in cognition -- 2.5 Intelligence -- 2.5.1 Efficiency of processing information -- 2.5.2 Synchronized cognitive information processing -- 2.5.3 The role of intelligence in cognition -- 2.6 Practical benefits of hierarchy in the perception-action cycle -- 2.7 Neural networks for parallel distributed cognitive information processing -- 2.7.1 Benefits of neural networks -- 2.7.2 Models of a neuron -- 2.7.3 Multilayer feedforward networks -- 2.8 Associative learning process for memory construction -- 2.8.1 Pattern association -- 2.8.2 Replicator (identity) mapping -- 2.9 Back-propagation algorithm -- 2.9.1 Summary of the back-propagation algorithm -- 2.10 Recurrent multilayer perceptrons -- 2.11 Self-organized learning -- 2.11.1 Hebb's postulate of learning
Notes and practical references -- 5: Dynamic programming for action in the environment -- 5.1 Markov decision processes -- 5.1.1 The basic problem -- 5.2 Bellman's optimality criterion -- 5.2.1 Dynamic-programming algorithm -- 5.2.2 Bellman's optimality equation -- 5.3 Policy iteration -- 5.3.1 Formulation of the policy iteration algorithm -- 5.4 Value iteration -- 5.4.1 Formulation of the value iteration algorithm -- 5.5 Approximate dynamic programming for problems with imperfect state information -- 5.5.1 Basics of problems with imperfect state information -- 5.5.2 Reformulation of the imperfect state-information problem as a perfect state-information problem -- 5.6 Reinforcement learning viewed as approximate dynamic programming -- 5.7 Q-learning -- 5.7.1 Summarizing remarks -- 5.8 Temporal-difference learning -- 5.8.1 Multistep TD learning -- 5.8.2 Eligible traces -- 5.8.3 Two limiting cases of TD learning -- 5.8.4 Summarizing remarks -- 5.9 On the relationships between temporal-difference learning and dynamic programming -- 5.9.1 λ-return -- 5.10 Linear function approximations of dynamic programming -- 5.11 Linear GQ(λ) for predictive learning -- 5.11.1 Objective function setting the stage for approximation -- 5.11.2 The GQ(λ) algorithm -- 5.11.3 Weight-doubling trick -- 5.11.4 Eligibility traces vector -- 5.11.5 New action-state feature vector -- 5.11.6 Summarizing remarks -- 5.11.7 Practical considerations -- 5.12 Summary and discussion -- 5.12.1 Bellman's dynamic programming -- 5.12.2 Imperfect state information -- 5.12.3 Reinforcement learning -- 5.12.4 Linear GQ(k) algorithm -- 5.12.5 Greedy-GQ -- 5.12.6 New generation of approximate dynamic programming algorithms: linear GQ methods -- Notes and practical references -- 6: Cognitive radar -- 6.1 Three classes of radars defined -- 6.2 The perception-action cycle
Title Cognitive Dynamic Systems
URI http://dx.doi.org/10.1017/CBO9780511818363
https://doi.org/10.1017/CBO9780511818363?locatt=mode:legacy
https://cir.nii.ac.jp/crid/1130000796787247488
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=862348
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780511818363
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781107212732&uid=none
WOSCitedRecordID wos(Sirsi) u849577&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwEA86fXAvfuPUaRDxaZVtbZrEx42poKjgB76VNG2hKJ2sU7b_3kuaxbr5gQ--hLYc15HferlL7n6H0CGnIWM-545IJFHHjMThCY8cquKPhLt-pCu8Hy7p1RV7fOQ3hs0v1-0EaJax0Yi__CvU8AzAVqWzf4DbKoUHcA2gwwiwwzjlEdtbQzRgM4Gios28oWnOddj_YjNYHMf0B5djWSQTD0QkbB4n3BS5WYVhGpt-XbcAKpiC4_I2gc63KG8TfFkBVs7yKAJKVcoLEZJbGJ0Z81pwMnU711pU1awyIzpFWt3pNJni3VEtxuepD1Hxwlnv-v7Cbn8p4jowHqZ6WL-SGD4k-xPMqbJi-J5-ZRVVRf4EywAsEcO8zIsBPkKWpjMrq3YX7lZQRZWQrKK5OFtDy5PGGdjY0XV0aqHCBipsoMIneBYorIFqYA1TAwNIWIO0gR5Oe3fdc8c0tHAEAU_QgzXPleD_6aadktKICvAVWOi3E8IjAd4WYzLxecybLIJQNpRN5hFCQo_L0I_9xN1ElayfxVsIy4R5ohVRKVzpMbC7PgPnkbZFKCSRvF1DB6UZCt6e9eF7Hnyaxh-E1L6AYv93QdORnd1Ahv2gSAykwTQoNdQoCfYHRtn34nVAKpCpGlvqWBX8VQ4TQtsehXWlhvYnGAZalUlXDnqdLsThrse2f9Gwg5Y-PoVdVBkOXuM6WpRvwzQf7Jm_5DvQ9GMH
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Cognitive+dynamic+systems+%3A+perception--action+cycle%2C+radar%2C+and+radio&rft.au=Haykin%2C+Simon+S.&rft.date=2012-01-01&rft.pub=Cambridge+University+Press&rft.isbn=9780521114363&rft_id=info:doi/10.1017%2FCBO9780511818363&rft.externalDocID=BB08969614
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fassets.cambridge.org%2F97805211%2F14363%2Fcover%2F9780521114363.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97805118%2F9780511818363.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811072%2F9781107212732.jpg