Strong stability preserving Runge-Kutta and multistep time discretizations

This book captures the state-of-the-art in the field of Strong Stability Preserving (SSP) time stepping methods, which have significant advantages for the time evolution of partial differential equations describing a wide range of physical phenomena. This comprehensive book describes the development...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Gottlieb, Sigal, Ketcheson, David, Shu, Chi-Wang
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Singapore World Scientific Publishing Co. Pte. Ltd 2011
World Scientific
World Scientific Publishing Company
WORLD SCIENTIFIC
WSPC
Vydání:1
Témata:
ISBN:9814289264, 9789814289269
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This book captures the state-of-the-art in the field of Strong Stability Preserving (SSP) time stepping methods, which have significant advantages for the time evolution of partial differential equations describing a wide range of physical phenomena. This comprehensive book describes the development of SSP methods, explains the types of problems which require the use of these methods and demonstrates the efficiency of these methods using a variety of numerical examples. Another valuable feature of this book is that it collects the most useful SSP methods, both explicit and implicit, and presents the other properties of these methods which make them desirable (such as low storage, small error coefficients, large linear stability domains). This book is valuable for both researchers studying the field of time-discretizations for PDEs, and the users of such methods.
AbstractList This book captures the state-of-the-art in the field of Strong Stability Preserving (SSP) time stepping methods, which have significant advantages for the time evolution of partial differential equations describing a wide range of physical phenomena. This comprehensive book describes the development of SSP methods, explains the types of problems which require the use of these methods and demonstrates the efficiency of these methods using a variety of numerical examples. Another valuable feature of this book is that it collects the most useful SSP methods, both explicit and implicit, and presents the other properties of these methods which make them desirable (such as low storage, small error coefficients, large linear stability domains). This book is valuable for both researchers studying the field of time-discretizations for PDEs, and the users of such methods.
Author Shu, Chi-Wang
Gottlieb, Sigal
Ketcheson, David
Author_xml – sequence: 1
  fullname: Gottlieb, Sigal
– sequence: 2
  fullname: Gottlieb, Sigal
– sequence: 3
  fullname: Ketcheson, David
– sequence: 4
  fullname: Shu, Chi-Wang
BackLink https://cir.nii.ac.jp/crid/1130000794306373376$$DView record in CiNii
BookMark eNpVkE1P3DAQho0oFSzsf8ihquhhi7_tHMuKfiJRlaocLduZLC7ZJNgOiP76ekmrqnPweKznHUvPAr3ohx4QOiH4LSGcnile6z20rJWudZl1TZXcR4u_g-QHaEExwZhrTOVLdKQYK3fC6CFapvQTlxJU1JQeoc_XOQ79pkrZutCF_FSNERLEh1Aev039BlZfppxtZfum2k5dDinDWOWwhaoJyUfI4ZfNYejTCTpobZdg-acfox_vL76vP64urz58Wr-7XFkhiapXjWeMglYWuFBWesG9YFo52WDqlPdKC2yZJJRpUE7bRrbYcum4g9a14NgxejMvtukOHtPt0OVkHjpww3CXzH9a_rGPQ-ya5AP0ObTBmxkm2OyUmp3Swr6e2TEO9xOkbJ5X-hKJtjMX52vFlCSigK9msA_B-LA7CWE7rarmDEtWhD__fTpjYTNOrgvptkg1YwxbG5_MzfXX9XmJUCIU-w1aG4og
ContentType eBook
Book
DBID WMAQA
RYH
DEWEY 518/.6
DOI 10.1142/7498
DatabaseName World Scientific
CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISBN 9789814289276
9814289272
9789814466479
9814466476
Edition 1
ExternalDocumentID 9789814289276
10.1142/7498
EBC737615
BB05704373
WSPCB0002157
GroupedDBID -VX
089
20A
38.
92K
9WS
A4J
AABBV
AATMT
ABARN
ABCYV
ABIAV
ABMRC
ABQPQ
ACLGV
ACZWY
ADVEM
AERYV
AFOJC
AHWGJ
AIXPE
AJFER
AKHYG
ALMA_UNASSIGNED_HOLDINGS
ALUEM
AZZ
BBABE
CZZ
DUGUG
EBSCA
ECOWB
GEOUK
HF4
IWG
J-X
JJU
MYL
PQQKQ
PVBBV
WMAQA
XI1
RYH
ID FETCH-LOGICAL-a56179-dc332e87ae457a6c54c5387b6d02b7cc7850a361238e7b8ad6f0a46b4befbfeb3
ISBN 9814289264
9789814289269
IngestDate Sun Nov 30 03:44:49 EST 2025
Sat Mar 08 08:21:38 EST 2025
Wed Nov 26 05:56:04 EST 2025
Thu Jun 26 22:45:42 EDT 2025
Mon Apr 07 05:02:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Strong Stability Preserving
SSP Time Stepping Methods
Time Discretizations
Runge-Kutta Methods
Implicit Explicit Methods
Multi-Step Multi-Stage Methods
Hyperbolic PDEs
Multi-Step Methods
General Linear Methods
Downwinding
LCCN 2010048026
LCCallNum QA297.5
LCCallNum_Ident QA297.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a56179-dc332e87ae457a6c54c5387b6d02b7cc7850a361238e7b8ad6f0a46b4befbfeb3
Notes Includes bibliographical references (p. 167-173) and index
OCLC 733048132
PQID EBC737615
PageCount 189
ParticipantIDs worldscientific_books_10_1142_7498
proquest_ebookcentral_EBC737615
nii_cinii_1130000794306373376
igpublishing_primary_WSPCB0002157
askewsholts_vlebooks_9789814289276
ProviderPackageCode J-X
PublicationCentury 2000
PublicationDate 2011.
c2011
2011
20110100
2011-01-26
PublicationDateYYYYMMDD 2011-01-01
2011-01-26
PublicationDate_xml – year: 2011
  text: 2011.
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationYear 2011
Publisher World Scientific Publishing Co. Pte. Ltd
World Scientific
World Scientific Publishing Company
WORLD SCIENTIFIC
WSPC
Publisher_xml – name: World Scientific Publishing Co. Pte. Ltd
– name: World Scientific
– name: World Scientific Publishing Company
– name: WORLD SCIENTIFIC
– name: WSPC
SSID ssj0000525922
ssib010071925
Score 2.4772713
Snippet This book captures the state-of-the-art in the field of Strong Stability Preserving (SSP) time stepping methods, which have significant advantages for the time...
SourceID askewsholts
worldscientific
proquest
nii
igpublishing
SourceType Aggregation Database
Publisher
SubjectTerms Differential equations
Differential equations -- Numerical solutions
Numerical & Computational Mathematics
Runge-Kutta formulas
Stability
SubjectTermsDisplay Differential equations
Runge-Kutta formulas
Stability
TableOfContents Strong stability preserving Runge-Kutta and multistep time discretizations -- Preface -- Contents -- Chapter 1: Overview: The Development of SSP Methods -- Chapter 2: Strong Stability Preserving Explicit Runge-Kutta Methods -- Chapter 3: The SSP Coefficient for Runge-Kutta Methods -- Chapter 4: SSP Runge-Kutta Methods for Linear Constant Coefficient Problems -- Chapter 5: Bounds and Barriers for SSP Runge-Kutta Methods -- Chapter 6: Low Storage Optimal Explicit SSP Runge-Kutta Methods -- Chapter 7: Optimal Implicit SSP Runge-Kutta Methods -- Chapter 8: SSP Properties of Linear Multistep Methods -- Chapter 9: SSP Properties of Multistep Multi-Stage Methods -- Chapter 10: Downwinding -- Chapter 11: Applications -- Bibliography -- Index
Intro -- Contents -- Preface -- 1. Overview: The Development of SSP Methods -- 2. Strong Stability Preserving Explicit Runge-Kutta Methods -- 2.1 Overview -- 2.2 Motivation -- 2.3 SSP methods as convex combinations of Euler's method: the Shu-Osher formulation -- 2.4 Some optimal SSP Runge{Kutta methods -- 2.4.1 A second order method -- 2.4.2 A third order method -- 2.4.3 A fourth order method -- 3. The SSP Coe cient for Runge-Kutta Methods -- 3.1 The modi ed Shu-Osher form -- 3.1.1 Vector notation -- 3.2 Unique representations -- 3.2.1 The Butcher form -- 3.2.2 Reducibility of Runge{Kutta methods -- 3.3 The canonical Shu-Osher form -- 3.3.1 Computing the SSP coefficient -- 3.4 Formulating the optimization problem -- 3.5 Necessity of the SSP time step restriction -- 4. SSP Runge-Kutta Methods for Linear Constant Coefficient Problems -- 4.1 The circle condition -- 4.2 An example: the midpoint method -- 4.3 The stability function -- 4.3.1 Formulas for the stability function -- 4.3.2 An alternative form -- 4.3.3 Order conditions on the stability function -- 4.4 Strong stability preservation for linear systems -- 4.5 Absolute monotonicity -- 4.6 Necessity of the time step condition -- 4.7 An optimization algorithm -- 4.8 Optimal SSP Runge{Kutta methods for linear problems -- 4.9 Linear constant coe cient operators with time dependent forcing terms -- 5. Bounds and Barriers for SSP Runge-Kutta Methods -- 5.1 Order barriers -- 5.1.1 Stage order -- 5.1.2 Order barrier for explicit Runge-Kutta methods -- 5.1.3 Order barrier for implicit Runge-Kutta methods -- 5.1.4 Order barriers for diagonally implicit and singly implicit methods -- 5.2 Bounds on the SSP coefficient -- 5.2.1 Bounds for explicit Runge-Kutta methods -- 5.2.2 Unconditional strong stability preservation -- 6. Low Storage Optimal Explicit SSP Runge-Kutta Methods
6.1 Low-storage Runge-Kutta algorithms -- 6.1.1 Williamson (2N) methods -- 6.1.2 van der Houwen (2R) methods -- 6.1.3 2S and 2S* methods -- 6.2 Optimal SSP low-storage explicit Runge{Kutta methods -- 6.2.1 Second order methods -- 6.2.2 Third order methods -- 6.2.3 Fourth order methods -- 6.3 Embedded optimal SSP pairs -- 7. Optimal Implicit SSP Runge-Kutta Methods -- 7.1 Barriers, bounds, and bonuses -- 7.2 Optimal second order and third order methods -- 7.3 Optimal fourth through sixth order methods -- 7.4 Coefficients of optimal implicit SSP Runge-Kutta methods -- 7.4.1 Fourth order methods -- 7.4.2 Fifth order methods -- 7.4.3 Sixth order methods -- 8. SSP Properties of Linear Multistep Methods -- 8.1 Bounds and barriers -- 8.1.1 Explicit methods -- 8.1.2 Implicit methods -- 8.2 Explicit SSP multistep methods using few stages -- 8.2.1 Second order methods -- 8.2.2 Third order methods -- 8.2.3 Fourth order methods -- 8.3 Optimal methods of higher order and more steps -- 8.3.1 Explicit methods -- 8.3.2 Implicit methods -- 8.4 Starting methods -- 9. SSP Properties of Multistep Multi-Stage Methods -- 9.1 SSP theory of general linear methods -- 9.2 Two-step Runge{Kutta methods -- 9.2.1 Conditions and barriers for SSP two-step Runge-Kutta methods -- 9.3 Optimal two-step Runge-Kutta methods -- 9.3.1 Formulating the optimization problem -- 9.3.2 Efficient implementation of Type II SSP TSRKs -- 9.3.3 Optimal methods of orders one to four -- 9.3.4 Optimal methods of orders ve to eight -- 9.4 Coefficients of optimal methods -- 9.4.1 Fifth order SSP TSRK methods -- 9.4.2 Sixth order SSP TSRK methods -- 9.4.3 Seventh order SSP TSRK methods -- 9.4.4 Eighth order SSP TSRK methods -- 10. Downwinding -- 10.1 SSP methods with negative ij 's -- 10.2 Explicit SSP Runge-Kutta methods with downwinding -- 10.2.1 Second and third order methods
10.2.2 Fourth order methods -- 10.2.3 A fifth order method -- 10.3 Optimal explicit multistep schemes with downwinding -- 10.4 Application: Deferred correction methods -- 11. Applications -- 11.1 TVD schemes -- 11.2 Maximum principle satisfying schemes and positivity preserving schemes -- 11.3 Coercive approximations -- Bibliography -- Index
Title Strong stability preserving Runge-Kutta and multistep time discretizations
URI http://portal.igpublish.com/iglibrary/search/WSPCB0002157.html
https://cir.nii.ac.jp/crid/1130000794306373376
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=737615
https://www.worldscientific.com/doi/10.1142/7498
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9789814289276&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELboghCtVN5iSwsBcUMpeTixc93V8ioqlVra3iLHdtqoVVg12arw65mxTZJdDogDF2udlTJZf1nPwzPfEPKGBiJF1hW_1Fr6NCkSn9OMwbRMAiUVDw2l0PEXtr_PT0-zA8e825h2Aqyu-c1NNv-vUMM1ABtLZ_8B7u6mcAE-A-gwAuwwrljE3dQVdWBU2wQHTMLrD6z_x5irSbCD_7T29xZta2qwbB4hADw3zeXxmEZiOePPQfzOkOa3Ldio5sjmsDoTl_32jGC7Yi2TFv_2024XrDlf2IP8yj8RTjGqPlC6FFewuTxmgzFJS0t-Z8aRqC2LbJeVP3dhiqyujNr-0it81pMJmIiGUWmNrIGzMyK3P8y-ftvrImPYWS-LIsuO1EsCl7qb0Ltkwwl6h2LWybpoLkArgMZoG2SdPZt3UTywGuqqWvIgNg0dbdP9uIFJcfSAjLDM5CG5petH5L5zBjy31TaPyWcLp9fB6fVwegM4PYDT6-D0EE5vBc4n5Pj97Gj60XeNL3wB5izLfCXjONKcCU0TJlKZUAmKiRWpCqKCScl4EogYmXO4ZgUXKi0DQdOCFrosSl3ET8mo_l7rZ8RjYahKUGI0DpTdn1nJFcukjFUWh8mYvB4sXX59aQ7pm3yw9iwdk1fDFc3nlgklPzk8mE4CYzeyMdmBZc5lhWOIp6RgfiK5fwpQx3iPl78ByI0Ml32czyZTBt-bR1nBJbfPYovnoxyh3vqLmOfkXv82b5NRe7XQO-SOvAYYrl64d-0X74FtPw
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Strong+stability+preserving+Runge-Kutta+and+multistep+time+discretizations&rft.au=Gottlieb%2C+Sigal&rft.au=Ketcheson%2C+David+I.&rft.au=Shu%2C+Chi-Wang&rft.date=2011-01-01&rft.pub=World+Scientific&rft.isbn=9789814289269&rft_id=info:doi/10.1142%2F7498&rft.externalDocID=BB05704373
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97898142%2F9789814289276.jpg
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fportal.igpublish.com%2Figlibrary%2Famazonbuffer%2FWSPCB0002157_null_0_320.png
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.worldscientific.com%2Faction%2FshowCoverImage%3Fdoi%3D10.1142%2F7498