Distributed Parallel Computing in Stochastic Modeling of Groundwater Systems
Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo‐type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of mea...
Saved in:
| Published in: | Ground water Vol. 51; no. 2; pp. 293 - 297 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford, UK
Blackwell Publishing Ltd
01.03.2013
Ground Water Publishing Company |
| Subjects: | |
| ISSN: | 0017-467X, 1745-6584, 1745-6584 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo‐type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW‐related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. |
|---|---|
| AbstractList | Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo‐type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW‐related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. [PUBLICATION ABSTRACT] Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling.Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. |
| Author | Xu, Haizhen Li, Guomin Dong, Yanhui |
| Author_xml | – sequence: 1 givenname: Yanhui surname: Dong fullname: Dong, Yanhui organization: Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. BOX 9825, Beijing, China; lemondyh@mail.iggcas.ac.cn; hzxu-snower@mail.iggcas.ac.cn – sequence: 2 givenname: Guomin surname: Li fullname: Li, Guomin email: guominli@mail.iggcas.ac.cn organization: E-mail: guominli@mail.iggcas.ac.cn – sequence: 3 givenname: Haizhen surname: Xu fullname: Xu, Haizhen organization: Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. BOX 9825, Beijing, China; lemondyh@mail.iggcas.ac.cn; hzxu-snower@mail.iggcas.ac.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22823593$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks9v0zAcxS00xLrCv4AiceGSzL8dH0DaOihIBSY2NMTFch0HXJK4sx2t_e-X0NHDLqsvtvz9vGfJ752Ao853FoAMwQIN63RVIEFZzllJCwwRLiCUXBSbZ2CyHxyBCYRI5JSLn8fgJMYVhJBIKF-AY4xLTJgkE7C4cDEFt-yTrbJLHXTT2Cab-XbdJ9f9zlyXXSVv_uiYnMm--Mo247Wvs3nwfVfd6WRDdrWNybbxJXhe6ybaVw_7FPz4-OF69ilffJt_np0tcs2YEHmtUY0pYtJoWTKEuSSMIFvapcEQC00roqnGZimNtWUNZWVgRXlFl4RbWhMyBW93vuvgb3sbk2pdNLZpdGd9HxXiDJESIiieRinlWGAG6dMowQRTDhE6AEWMEyjJ6PrmEbryfeiG7xkNkSCoHLKYgtcPVL9sbaXWwbU6bNX_oAag3AEm-BiDrfcIgmrshFqpMXo1Rq_GTqh_nVCbQfr-kdS4pJPzXQraNYcYvNsZ3LnGbg9-WM1vzq6H06DPd_qhanaz1-vwVw1TwdTN17n6df6dnV_QS0XJPSXR3I0 |
| CODEN | GRWAAP |
| CitedBy_id | crossref_primary_10_1007_s10040_015_1254_1 crossref_primary_10_1061__ASCE_WW_1943_5460_0000356 crossref_primary_10_1111_gwat_13024 crossref_primary_10_1016_j_jhydrol_2018_06_042 |
| Cites_doi | 10.1111/j.1745-6584.2009.00598.x 10.1016/j.advwatres.2003.08.003 10.1007/s00477-004-0192-6 10.2136/vzj2002.2070 10.1016/S0022-1694(98)00102-4 10.1109/icbbe.2011.5780860 10.1111/j.1745-6584.2007.00320.x 10.1111/j.1745-6584.2004.tb02623.x 10.1016/j.cageo.2011.10.005 10.3133/ofr200092 10.1111/j.1745-6584.1999.tb00951.x 10.1111/j.1745-6584.1988.tb00425.x 10.1111/j.1745-6584.2004.t01-10-.x |
| ContentType | Journal Article |
| Copyright | 2012, The Author(s). Groundwater © 2012, National Ground Water Association 2012, The Author(s). Groundwater © 2012, National Ground Water Association. Copyright Ground Water Publishing Company Mar/Apr 2013 |
| Copyright_xml | – notice: 2012, The Author(s). Groundwater © 2012, National Ground Water Association – notice: 2012, The Author(s). Groundwater © 2012, National Ground Water Association. – notice: Copyright Ground Water Publishing Company Mar/Apr 2013 |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7ST 7UA C1K F1W H96 H97 K9. L.G SOI 7X8 7TG KL. 7S9 L.6 7SU 8FD FR3 KR7 |
| DOI | 10.1111/j.1745-6584.2012.00967.x |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts MEDLINE - Academic Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Health & Medical Complete (Alumni) Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Engineering Research Database Technology Research Database Environmental Engineering Abstracts |
| DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE Civil Engineering Abstracts CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1745-6584 |
| EndPage | 297 |
| ExternalDocumentID | 2931612261 22823593 10_1111_j_1745_6584_2012_00967_x GWAT967 ark_67375_WNG_ZBR5BD4P_4 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
| GeographicLocations | Beijing China China China, People's Rep., Beijing Indonesia |
| GeographicLocations_xml | – name: China – name: Beijing China – name: China, People's Rep., Beijing – name: Indonesia |
| GroupedDBID | --- -DZ -~X .3N .DC .GA .Y3 05W 0R~ 10A 186 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 7X2 7X7 7XC 8-0 8-1 8-3 8-4 8-5 88E 88I 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJCF ABJNI ABPPZ ABPVW ABUWG ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AETEA AEUYN AEUYR AEYWJ AFBPY AFFHD AFFPM AFGKR AFKRA AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BCR BCU BDRZF BEC BENPR BES BFHJK BGLVJ BHBCM BHPHI BKOMP BKSAR BLC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 CAG CCPQU COF CS3 D-E D-F D1J D1K DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 F5P FEDTE FYUFA FZ0 G-S G.N GNUQQ GODZA GUQSH H.T H.X HCIFZ HF~ HGLYW HMCUK HVGLF HZI HZ~ IAG IAO IEA IEP IOF ITC IX1 J0M K48 K6- L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK5 LOXES LP6 LP7 LUTES LW6 LYRES M0K M1P M2O M2P M7R M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PEA PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PRG PROAC PSQYO PTHSS PYCSY Q.N Q11 Q2X QB0 R.K R05 RIWAO RJQFR ROL RWL RX1 S0X SAMSI SJFOW SUPJJ TAE TN5 UB1 UKHRP V8K VH1 VJK W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 Y6R ZCA ZZTAW ~02 ~IA ~KM ~WT 3V. AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALIPV ALUQN WRC YCJ AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7QH 7ST 7UA C1K F1W H96 H97 K9. L.G SOI 7X8 7TG KL. 7S9 L.6 7SU 8FD FR3 KR7 |
| ID | FETCH-LOGICAL-a5577-fa1f24159ca98512693531e8ebc2027a4d3a4a2cb9cee8f09dc0d46d4b36e4f33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000315961100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0017-467X 1745-6584 |
| IngestDate | Tue Oct 07 09:36:54 EDT 2025 Fri Sep 05 17:27:53 EDT 2025 Tue Oct 07 10:00:17 EDT 2025 Thu Oct 02 07:39:15 EDT 2025 Tue Oct 07 05:12:57 EDT 2025 Thu Apr 03 06:55:30 EDT 2025 Sat Nov 29 06:55:59 EST 2025 Tue Nov 18 22:02:49 EST 2025 Wed Jan 22 16:51:32 EST 2025 Tue Nov 11 03:33:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2012, The Author(s). Groundwater © 2012, National Ground Water Association. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a5577-fa1f24159ca98512693531e8ebc2027a4d3a4a2cb9cee8f09dc0d46d4b36e4f33 |
| Notes | ark:/67375/WNG-ZBR5BD4P-4 istex:16B7B89DE8ABC5D66BA5020E8E06505A4A743841 ArticleID:GWAT967 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22823593 |
| PQID | 1321731882 |
| PQPubID | 48478 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_1651380107 proquest_miscellaneous_1446272504 proquest_miscellaneous_1323246011 proquest_miscellaneous_1315630934 proquest_journals_1321731882 pubmed_primary_22823593 crossref_primary_10_1111_j_1745_6584_2012_00967_x crossref_citationtrail_10_1111_j_1745_6584_2012_00967_x wiley_primary_10_1111_j_1745_6584_2012_00967_x_GWAT967 istex_primary_ark_67375_WNG_ZBR5BD4P_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03 March/April 2013 2013-03-00 2013-Mar 20130301 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: United States – name: Dublin |
| PublicationTitle | Ground water |
| PublicationTitleAlternate | Ground Water |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd Ground Water Publishing Company |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Ground Water Publishing Company |
| References | Franssen, H. J. H., and W. Kinzelbach. 2008. Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research 44, W09408. DOI: 10.1029/2007WR006505. Feyen, L., A.M. Dessalegn, F. De Smedt, S. Gebremeskel, and O. Batelaan. 2004. Application of a Bayesian approach to stochastic delineation of capture zones. Ground Water 42, no. 4: 542-551. Zheng, C., and P.P. Wang. 1999. MT3DMS-A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Ground-Water Systems. Documentation and User's Guide. Jacksonville, Florida: U.S. Army Corps of Engineers. Neuman, S.P. 2004. Stochastic groundwater models in practice. Stochastic Environmental Research and Risk Assessment 18, no. 4: 268-270. Deutsch, C.V., and A.G. Journel. 1998. GSLIB: Geostatistical Software Library and User's Guide, 2nd ed. New York: Oxford University Press. van Leeuwen, M., C.B.M. te Stroet, A.P. Butler, and J.A. Tompkins. 1999. Stochastic determination of the Wierden (Netherlands) capture zones. Ground Water 37, no. 1: 8-17. Li, S.G., D. McLaughlin, and H.S. Liao. 2003. A computationally practical method for stochastic groundwater modeling. Advances in Water Resources 26, no. 11: 1137-1148. Dong, Y.H., G. Li, and H.Z. Xu. 2012. An areal recharge and discharge simulating method for MODFLOW. Computers & Geosciences 42: 203-205. Zhang, Y., D.A. Benson, and B. Baeumer. 2007. Predicting the tails of breakthrough curves in regional-scale alluvial systems. Ground Water 45, no. 4: 473-484. Vassolo, S., W. Kinzelbach, and W. Schäfer. 1998. Determination of well head protection zone by stochastic inverse modeling. Journal of Hydrology 206, no. 3/4: 268-280. Pollock, D.W. 1988. Semianalytical computation of path lines for finite-difference models. Ground Water 26, no. 6: 743-750. Yeh, T.J., and J. Simunek. 2002. Stochastic fusion of information for characterizing and monitoring the Vadose Zone. Vadose Zone Journal 1, no. 2: 207-221. Dong, Y.H., and G. Li. 2009. A Parallel PCG Solver for MODFLOW. Ground Water 47, no. 6: 845-850. Lemke, L.D., W.A. Barrack, L.M. Abriola, and P. Goovaerts. 2004. Matching solute breakthrough with deterministic and stochastic aquifer models. Ground Water 42, no. 6: 920-934. 2009; 47 2004; 42 1990 2004; 18 2000 2011 1988; 26 1999; 37 1998 2002; 1 1998; 206 2003; 26 2008; 44 2007; 45 2012; 42 1999 e_1_2_7_5_1 e_1_2_7_4_1 Deutsch C.V. (e_1_2_7_2_1) 1998 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Franssen H. J. H. (e_1_2_7_6_1) 2008; 44 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_15_1 e_1_2_7_14_1 Zheng C. (e_1_2_7_18_1) 1999 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 |
| References_xml | – reference: Pollock, D.W. 1988. Semianalytical computation of path lines for finite-difference models. Ground Water 26, no. 6: 743-750. – reference: Zheng, C., and P.P. Wang. 1999. MT3DMS-A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Ground-Water Systems. Documentation and User's Guide. Jacksonville, Florida: U.S. Army Corps of Engineers. – reference: Deutsch, C.V., and A.G. Journel. 1998. GSLIB: Geostatistical Software Library and User's Guide, 2nd ed. New York: Oxford University Press. – reference: Feyen, L., A.M. Dessalegn, F. De Smedt, S. Gebremeskel, and O. Batelaan. 2004. Application of a Bayesian approach to stochastic delineation of capture zones. Ground Water 42, no. 4: 542-551. – reference: Franssen, H. J. H., and W. Kinzelbach. 2008. Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research 44, W09408. DOI: 10.1029/2007WR006505. – reference: Yeh, T.J., and J. Simunek. 2002. Stochastic fusion of information for characterizing and monitoring the Vadose Zone. Vadose Zone Journal 1, no. 2: 207-221. – reference: Li, S.G., D. McLaughlin, and H.S. Liao. 2003. A computationally practical method for stochastic groundwater modeling. Advances in Water Resources 26, no. 11: 1137-1148. – reference: Zhang, Y., D.A. Benson, and B. Baeumer. 2007. Predicting the tails of breakthrough curves in regional-scale alluvial systems. Ground Water 45, no. 4: 473-484. – reference: Lemke, L.D., W.A. Barrack, L.M. Abriola, and P. Goovaerts. 2004. Matching solute breakthrough with deterministic and stochastic aquifer models. Ground Water 42, no. 6: 920-934. – reference: Neuman, S.P. 2004. Stochastic groundwater models in practice. Stochastic Environmental Research and Risk Assessment 18, no. 4: 268-270. – reference: Vassolo, S., W. Kinzelbach, and W. Schäfer. 1998. Determination of well head protection zone by stochastic inverse modeling. Journal of Hydrology 206, no. 3/4: 268-280. – reference: van Leeuwen, M., C.B.M. te Stroet, A.P. Butler, and J.A. Tompkins. 1999. Stochastic determination of the Wierden (Netherlands) capture zones. Ground Water 37, no. 1: 8-17. – reference: Dong, Y.H., and G. Li. 2009. A Parallel PCG Solver for MODFLOW. Ground Water 47, no. 6: 845-850. – reference: Dong, Y.H., G. Li, and H.Z. Xu. 2012. An areal recharge and discharge simulating method for MODFLOW. Computers & Geosciences 42: 203-205. – volume: 47 start-page: 845 issue: 6 year: 2009 end-page: 850. article-title: A Parallel PCG Solver for MODFLOW publication-title: Ground Water – volume: 18 start-page: 268 issue: 4 year: 2004 end-page: 270. article-title: Stochastic groundwater models in practice publication-title: Stochastic Environmental Research and Risk Assessment – volume: 44 start-page: W09408. year: 2008 article-title: Real‐time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem publication-title: Water Resources Research – volume: 42 start-page: 203 year: 2012 end-page: 205 article-title: An areal recharge and discharge simulating method for MODFLOW publication-title: Computers & Geosciences – start-page: 2566 year: 2011 end-page: 2569. – volume: 26 start-page: 1137 issue: 11 year: 2003 end-page: 1148. article-title: A computationally practical method for stochastic groundwater modeling publication-title: Advances in Water Resources – volume: 206 start-page: 268 issue: 3/4 year: 1998 end-page: 280. article-title: Determination of well head protection zone by stochastic inverse modeling publication-title: Journal of Hydrology – year: 2000 – volume: 1 start-page: 207 issue: 2 year: 2002 end-page: 221. article-title: Stochastic fusion of information for characterizing and monitoring the Vadose Zone publication-title: Vadose Zone Journal – volume: 45 start-page: 473 issue: 4 year: 2007 end-page: 484. article-title: Predicting the tails of breakthrough curves in regional‐scale alluvial systems publication-title: Ground Water – volume: 42 start-page: 542 issue: 4 year: 2004 end-page: 551. article-title: Application of a Bayesian approach to stochastic delineation of capture zones publication-title: Ground Water – year: 1990 – volume: 42 start-page: 920 issue: 6 year: 2004 end-page: 934. article-title: Matching solute breakthrough with deterministic and stochastic aquifer models publication-title: Ground Water – volume: 37 start-page: 8 issue: 1 year: 1999 end-page: 17. article-title: Stochastic determination of the Wierden (Netherlands) capture zones publication-title: Ground Water – year: 1998 – volume: 26 start-page: 743 issue: 6 year: 1988 end-page: 750. article-title: Semianalytical computation of path lines for finite‐difference models publication-title: Ground Water – year: 1999 – ident: e_1_2_7_3_1 doi: 10.1111/j.1745-6584.2009.00598.x – ident: e_1_2_7_8_1 – volume-title: GSLIB: Geostatistical Software Library and User's Guide year: 1998 ident: e_1_2_7_2_1 – ident: e_1_2_7_10_1 doi: 10.1016/j.advwatres.2003.08.003 – ident: e_1_2_7_11_1 doi: 10.1007/s00477-004-0192-6 – volume: 44 start-page: W09408. year: 2008 ident: e_1_2_7_6_1 article-title: Real‐time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem publication-title: Water Resources Research – ident: e_1_2_7_16_1 doi: 10.2136/vzj2002.2070 – ident: e_1_2_7_14_1 doi: 10.1016/S0022-1694(98)00102-4 – ident: e_1_2_7_15_1 doi: 10.1109/icbbe.2011.5780860 – ident: e_1_2_7_17_1 doi: 10.1111/j.1745-6584.2007.00320.x – volume-title: MT3DMS—A Modular Three‐Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Ground‐Water Systems year: 1999 ident: e_1_2_7_18_1 – ident: e_1_2_7_5_1 doi: 10.1111/j.1745-6584.2004.tb02623.x – ident: e_1_2_7_4_1 doi: 10.1016/j.cageo.2011.10.005 – ident: e_1_2_7_7_1 doi: 10.3133/ofr200092 – ident: e_1_2_7_13_1 doi: 10.1111/j.1745-6584.1999.tb00951.x – ident: e_1_2_7_12_1 doi: 10.1111/j.1745-6584.1988.tb00425.x – ident: e_1_2_7_9_1 doi: 10.1111/j.1745-6584.2004.t01-10-.x |
| SSID | ssj0003909 |
| Score | 2.0285385 |
| Snippet | Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 293 |
| SubjectTerms | basins batch systems China Computation Computer Simulation Distributed processing Encounters Groundwater Heterogeneity hydrologic models Indonesia Java (programming language) Models, Theoretical Monte Carlo Method Monte Carlo simulation Parallel processing Stochastic models Stochastic Processes Stochasticity uncertainty |
| Title | Distributed Parallel Computing in Stochastic Modeling of Groundwater Systems |
| URI | https://api.istex.fr/ark:/67375/WNG-ZBR5BD4P-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1745-6584.2012.00967.x https://www.ncbi.nlm.nih.gov/pubmed/22823593 https://www.proquest.com/docview/1321731882 https://www.proquest.com/docview/1315630934 https://www.proquest.com/docview/1323246011 https://www.proquest.com/docview/1446272504 https://www.proquest.com/docview/1651380107 |
| Volume | 51 |
| WOSCitedRecordID | wos000315961100018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1745-6584 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003909 issn: 0017-467X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5Bi8R44McYEBiTkRBvQUnsxPHjRul4qKpqbKzixXIcW5uY0intYPz33KVptKKpmhBvkXKO5PPd-Tvn_B3AeyOKNDLKhLxMXChKU4RGlXkobexxua3wzf2KbyM5HufTqZq09U90F2bJD9EduJFnNPGaHNwU83UnlyINaQelCi3i3VSZ_Ih4sp-gGYse9AdHw5NRF5cxu1eruIzhYfp3Xc8t31rbrPqk9-vbkOg6sG12puGT_zmnp_C4xadsf2lQz-Ceq7bh0Q3Wwm142DZOP_v9HEYDIt6lnlmuZBNTU2eWC7ZsFYHC7LxiXxcze2aIDppR4zW6_s5mntGhV1X-Qqhbs5Y2fQdOhp-PP30J2wYNoUlTKUNvYk8IQFmjELklmeLo0i53haUzFSNKboRJbKFwK859pEoblSIrRcEzJzznL6BXzSr3CpjyCGQI3XnrRORlzgtiSiMyS0uQLgC5WgltW_ZyaqJxoW9kMag7TbrTpDvd6E5fBxB3Iy-XDB53GPOhWexugKl_UAWcTPXp-FB_PzhKDwZiokUAuytr0K3zzzUm-LHEWJknAbzrXqPb0r8YU7nZFcnExMymuNgkQwrBjDneIIPpfCKJh26DTJbGHJFIJAN4ubTYbmIJptw8VTyArDHMO6tIH57uH-PT638d-Aa2kqa1CNXz7UJvUV-5t_DA_lycz-s9uC-n-V7rwn8A4zw_ug |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED6hFmnwMGAwCAwwEuItKImdOH7cKN0QpapGxypeLMeJtYkpnbIOxr_nLkmjFU3VhHiLlHOinH3n7xz7-wDeGpHFgVHG53lU-CI3mW9UnvrShg672wpXn6_4NpLjcTqbqUkrB0RnYRp-iG7BjSKjztcU4LQgvRrlUsQ-TaG0RYuIN1Ui3yOg7At8TdyD_uBweDTqEjOW92qZmDE_zP7e2HPDs1Zmqz45_uomKLqKbOupafjgv37UQ9hsESrbbYbUI7hTlFtw_xpv4RZstNLpJ78fw2hA1LukmlXkbGIq0mY5Y41YBBqz05J9XcztiSFCaEbSa3QAns0do2WvMv-FYLdiLXH6Ezgafpx-OPBbiQbfxLGUvjOhIwygrFGI3aJEcQzqIi0yS6sqRuTcCBPZTOFknLpA5TbIRZKLjCeFcJxvQ6-cl8UzYMohlCF852whAidTnhFXGtFZWgJ1HshlV2jb8peTjMaZvlbHoO80-U6T73TtO33lQdi1PG84PG7R5l3d210DU_2gPXAy1sfjff197zDeG4iJFh7sLIeDbsP_QmOJH0rMlmnkwZvuNgYu_Y0xZTG_JJuQuNkUF-tsyCFYM4drbLCgjyQx0a2xSeKQIxYJpAdPmyHbfViERTePFfcgqUfmrV2k9493p3j1_F8bvoaNg-mXkR59Gn9-AfeiWmiEdvftQG9RXRYv4a79uTi9qF61kfwHjR9Cwg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hLuJx4FFegQJBQtyCktiJ42PLsgWxWq1KS1dcLMcPtaLKVukWyr9nJslGXVStKsQtUsaRPPaMv3Hs7wN4q3mZxVrqiNnURdzqMtLSFpEwicfhNtw39yu-jcVkUsxmctrJAdFdmJYfot9wo8ho8jUFuDu1fjXKBc8iWkLpiBYRb8pcvEdAOeCZzDFKB8O90cG4T8xY3stlYsb8MPv7YM8V31pZrQbk-IuroOgqsm2WptH9_9qpB3CvQ6jhdjulHsINV23C3Uu8hZtwu5NOP_r9CMZDot4l1Sxnw6muSZvlJGzFItA4PK7Cr4u5OdJECB2S9BpdgA_nPqRtr8r-QrBbhx1x-mM4GH3c__Ap6iQaIp1lQkReJ54wgDRaInZLc8kwqF3hSkO7KppbprlOTSlxMS58LK2JLc8tL1nuuGfsCWxU88o9g1B6hDKE77xxPPaiYCVxpRGdpSFQF4BYDoUyHX85yWicqEt1DPpOke8U-U41vlMXASR9y9OWw-Mabd41o9030PUPOgMnMnU42VXfd_aynSGfKh7A1nI6qC78zxSW-InAbFmkAbzpX2Pg0t8YXbn5OdkkxM0mGV9nQw7BmjlZY4MFfSqIiW6NTZ4lDLFILAJ42k7ZvmMpFt0skyyAvJmZ13aR2j3c3sen5__a8DXcmg5Havx58uUF3EkbnRE63LcFG4v63L2Em-bn4visftUF8h-yHkI9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+parallel+computing+in+stochastic+modeling+of+groundwater+systems&rft.jtitle=Ground+water&rft.au=Dong%2C+Yanhui&rft.au=Li%2C+Guomin&rft.au=Xu%2C+Haizhen&rft.date=2013-03-01&rft.eissn=1745-6584&rft.volume=51&rft.issue=2&rft.spage=293&rft_id=info:doi/10.1111%2Fj.1745-6584.2012.00967.x&rft_id=info%3Apmid%2F22823593&rft.externalDocID=22823593 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-467X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-467X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-467X&client=summon |