Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015
Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferomet...
Uložené v:
| Vydané v: | Geophysical research letters Ročník 43; číslo 12; s. 6366 - 6373 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
John Wiley & Sons, Inc
28.06.2016
Wiley |
| Predmet: | |
| ISSN: | 0094-8276, 1944-8007 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic‐aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989–1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr2) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature.
Key Points
First compilation of 26 year ice discharge to quantify the impact of ice dynamics on Totten Glacier
Ice dynamics has changed significantly over the last decade and contributed to glacier mass loss
Totten Glacier may be more sensitive to ocean temperature than previously thought |
|---|---|
| AbstractList | Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic‐aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989–1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr2) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature.
Key Points
First compilation of 26 year ice discharge to quantify the impact of ice dynamics on Totten Glacier
Ice dynamics has changed significantly over the last decade and contributed to glacier mass loss
Totten Glacier may be more sensitive to ocean temperature than previously thought Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic-aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989-1996, slowed down by 11 plus or minus 12% in 2000 to bring its ice flux in balance with accumulation (65 plus or minus 4 Gt/yr), then accelerated by 18 plus or minus 3% until 2007, and remained constant thereafter. The average ice mass loss (7 plus or minus 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 plus or minus 0.3 Gt/yr super(2)) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature. Key Points * First compilation of 26 year ice discharge to quantify the impact of ice dynamics on Totten Glacier * Ice dynamics has changed significantly over the last decade and contributed to glacier mass loss * Totten Glacier may be more sensitive to ocean temperature than previously thought Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic‐aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989–1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr2) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature. Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic‐aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989–1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr 2 ) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature. First compilation of 26 year ice discharge to quantify the impact of ice dynamics on Totten Glacier Ice dynamics has changed significantly over the last decade and contributed to glacier mass loss Totten Glacier may be more sensitive to ocean temperature than previously thought Abstract Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic‐aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989–1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr2) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature. |
| Author | Rignot, Eric Scheuchl, Bernd Mouginot, Jeremie Li, Xin |
| Author_xml | – sequence: 1 givenname: Xin orcidid: 0000-0001-5876-0115 surname: Li fullname: Li, Xin organization: University of California – sequence: 2 givenname: Eric surname: Rignot fullname: Rignot, Eric organization: California Institute of Technology – sequence: 3 givenname: Jeremie surname: Mouginot fullname: Mouginot, Jeremie organization: University of California – sequence: 4 givenname: Bernd surname: Scheuchl fullname: Scheuchl, Bernd organization: University of California |
| BookMark | eNqNkk1rGzEQQEVJoU7SW3-AoJce7Ha0-lodQ0gdg6EQkrOYSNois7tKJZngf1-lTiEEGqqDJMSbN8NoTsnJnOZAyCcGXxlA960DptZbUIZp_o4smBFi1QPoE7IAMO3eafWBnJayAwAOnC3I3cYFOozpkfrDjFN0heLs6YSl0DG1LQ30NtUaZroe0cWQl_QKS6UXc8XsanS4pENOE2WmN7Qm2oqQ5-T9gGMJH5_PM3L3_er28nq1_bHeXF5sVyjbWgVkrA_ay94H5YXvvXHIDBhjlHAgXVDqfuDBdRo74QbvGXgmnZBeouCCn5HN0esT7uxDjhPmg00Y7Z-HlH9azK3GMdgOfVMJ7SQXAhGNlp1AA4EDE_eeNdeXo-shp1_7UKqdYnFhHHEOaV8s67lUIA03_4FCr0Fp1TX08yt0l_Z5bk2xzHDWlFywN6keWkap-ydXd6Rcbj-Tw2BdrFhjmmvGOFoG9mkM7MsxaEHLV0F_2_QP_DnHYxzD4U3Wrm-2Ukgu-W993b1q |
| CitedBy_id | crossref_primary_10_5194_tc_17_4853_2023 crossref_primary_10_1002_2016JC012115 crossref_primary_10_1038_nature25026 crossref_primary_10_1038_s41467_023_39764_z crossref_primary_10_3390_rs12223746 crossref_primary_10_1038_s41467_018_05618_2 crossref_primary_10_1016_j_gloplacha_2024_104548 crossref_primary_10_1038_s41598_022_13517_2 crossref_primary_10_1360_N072024_0231 crossref_primary_10_1029_2019EA000596 crossref_primary_10_1029_2018GL078173 crossref_primary_10_1029_2020GL091790 crossref_primary_10_3390_rs15061677 crossref_primary_10_1029_2019GL086821 crossref_primary_10_1038_s41586_022_04946_0 crossref_primary_10_1016_j_rsase_2025_101476 crossref_primary_10_1017_jog_2021_8 crossref_primary_10_1073_pnas_1812883116 crossref_primary_10_5194_tc_16_737_2022 crossref_primary_10_1109_JSTARS_2025_3528516 crossref_primary_10_1029_2021GL097232 crossref_primary_10_1016_j_geomorph_2018_05_020 crossref_primary_10_1029_2019RG000663 crossref_primary_10_5194_tc_17_1003_2023 crossref_primary_10_1016_j_epsl_2019_115961 crossref_primary_10_5194_tc_17_4549_2023 crossref_primary_10_5194_tc_18_103_2024 crossref_primary_10_1038_s41467_025_57700_1 crossref_primary_10_1038_s41467_023_39588_x crossref_primary_10_5194_tc_12_521_2018 crossref_primary_10_5194_tc_18_43_2024 crossref_primary_10_1007_s11430_024_1517_1 crossref_primary_10_1117_1_JRS_16_034514 crossref_primary_10_1109_TGRS_2024_3395522 crossref_primary_10_3389_fmars_2023_1159353 crossref_primary_10_3390_rs15163928 crossref_primary_10_1016_j_jag_2021_102612 crossref_primary_10_5194_tc_18_4463_2024 crossref_primary_10_3390_rs12111809 crossref_primary_10_5194_tc_15_663_2021 crossref_primary_10_5194_tc_13_427_2019 crossref_primary_10_1073_pnas_2322622121 crossref_primary_10_5194_tc_17_3593_2023 crossref_primary_10_3390_geosciences13040106 crossref_primary_10_1007_s11430_022_1109_y crossref_primary_10_1017_jog_2021_106 crossref_primary_10_5194_essd_14_3573_2022 crossref_primary_10_1002_2017GL074433 crossref_primary_10_1029_2021GL093213 crossref_primary_10_1016_j_rse_2019_111595 crossref_primary_10_5194_tc_12_2401_2018 crossref_primary_10_1029_2018JC014634 crossref_primary_10_1038_d41586_018_07714_1 crossref_primary_10_5194_tc_12_2869_2018 crossref_primary_10_3389_feart_2021_741789 |
| Cites_doi | 10.5194/cp-11-697-2015 10.1126/science.aaa0940 10.1002/2014GL060111 10.1002/2014GL061940 10.1002/jqs.2593 10.1038/ngeo761 10.3189/2014JoG14J051 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2 10.5194/tc-7-375-2013 10.1002/2013GL059069 10.1016/j.epsl.2013.10.016 10.3189/2012JoG11J118 10.1126/science.1136776 10.1038/ngeo102 10.1016/j.dsr2.2010.10.035 10.1038/nature10968 10.1111/j.1365-246X.2012.05401.x 10.1175/2009JPO4236.1 10.1038/nature08471 10.3390/rs4092753 10.1126/science.262.5139.1525 10.1029/2008GL035592 10.5194/tc-6-1019-2012 10.1017/S0022143000003075 10.1038/ngeo2388 10.1002/2015GL065701 10.1038/ncomms3857 10.1126/science.1235798 10.1126/science.1110662 10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2 10.1029/2011GL050713 10.5194/os-10-267-2014 10.1002/2014GL061052 10.1038/nature10114 10.1017/S0954102090000323 10.1126/science.1208336 10.1016/S0967-0645(00)00038-2 10.1029/2006GL026883 10.1016/j.rse.2006.12.020 10.3189/172756505781829007 10.5194/gmdd-8-3653-2015 10.1002/grl.50527 |
| ContentType | Journal Article |
| Copyright | 2016. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2016. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
| DOI | 10.1002/2016GL069173 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database CrossRef Aerospace Database Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | 6373 |
| ExternalDocumentID | oai_doaj_org_article_2adbf347c5344aaa97524a90e3014bd1 4117402131 10_1002_2016GL069173 GRL54535 |
| Genre | article |
| GeographicLocations | PSE, Antarctica, East Antarctica |
| GeographicLocations_xml | – name: PSE, Antarctica, East Antarctica |
| GrantInformation_xml | – fundername: California Institute of Technology's Jet Propulsion Laboratory funderid: NNX13AN46G; NNX14AN03G; NNX14AB93G – fundername: German Aerospace Center (DLR) – fundername: European Space Agency – fundername: e‐GEOS under ESA's TPM scheme |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFGKR AFPKN AFRAH AGQPQ AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M GROUPED_DOAJ |
| ID | FETCH-LOGICAL-a5555-ea118e7d58de6d4d8d9ca19099964c05ce66bf3ec27a24cfdd10d15c45d5a4343 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380910100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Fri Oct 03 12:43:42 EDT 2025 Sun Nov 09 13:43:04 EST 2025 Wed Oct 01 14:41:44 EDT 2025 Sat Nov 01 15:19:18 EDT 2025 Fri Jul 25 10:46:48 EDT 2025 Tue Nov 18 22:40:32 EST 2025 Sat Nov 29 07:52:46 EST 2025 Wed Aug 20 07:25:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a5555-ea118e7d58de6d4d8d9ca19099964c05ce66bf3ec27a24cfdd10d15c45d5a4343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5876-0115 |
| OpenAccessLink | https://doaj.org/article/2adbf347c5344aaa97524a90e3014bd1 |
| PQID | 1803935782 |
| PQPubID | 54723 |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2adbf347c5344aaa97524a90e3014bd1 proquest_miscellaneous_1835605939 proquest_miscellaneous_1808706762 proquest_journals_1931356341 proquest_journals_1803935782 crossref_citationtrail_10_1002_2016GL069173 crossref_primary_10_1002_2016GL069173 wiley_primary_10_1002_2016GL069173_GRL54535 |
| PublicationCentury | 2000 |
| PublicationDate | 28 June 2016 |
| PublicationDateYYYYMMDD | 2016-06-28 |
| PublicationDate_xml | – month: 06 year: 2016 text: 28 June 2016 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2016 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2011; 333 2012; 484 2013; 4 2012; 189 2013; 28 2002; 19 2000; 47 2006; 33 2013; 40 2015; 11 1999; 45 1993; 262 2008; 35 2012; 39 2013; 341 2002 2008; 31 2015; 348 2011; 58 2012; 58 2013; 7 2014; 41 2008; 1 2015; 8 2014; 60 2010; 40 2011; 474 1990; 2 2007; 315 2004; 17 2015; 42 2007; 111 2005; 51 2005; 308 2015 2013 2009; 461 2012; 6 2010; 3 2014; 385 2012; 4 2014; 10 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_29_1 Menemenlis D. (e_1_2_7_23_1) 2008; 31 Ommen T. D. (e_1_2_7_41_1) 2010; 3 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 Burnham K. P. (e_1_2_7_6_1) 2002 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 41 start-page: 1576 year: 2014 end-page: 1584 article-title: Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013 publication-title: Geophys. Res. Lett. – volume: 10 start-page: 267 year: 2014 end-page: 279 article-title: Simulated melt rates for the Totten and Dalton ice shelves publication-title: Ocean Sci. – volume: 111 start-page: 242 issue: 2–3 year: 2007 end-page: 257 article-title: MODIS‐based Mosaic of Antarctica (MOA) data sets: Continent‐wide surface morphology and snow grain size publication-title: Remote Sens. Environ. – volume: 58 start-page: 830 issue: 211 year: 2012 end-page: 840 article-title: Dynamic thinning of Antarctic glaciers from along‐track repeat radar altimetry publication-title: J. Glaciol. – volume: 28 start-page: 40 year: 2013 end-page: 48 article-title: West Antarctica's sensitivity to natural and human‐forced climate change over the Holocene publication-title: J. Quat. Sci. – volume: 40 start-page: 3055 year: 2013 end-page: 3063 article-title: Time‐variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data publication-title: Geophys. Res. Lett. – volume: 41 start-page: 3899 year: 2014 end-page: 3905 article-title: Increased ice losses from Antarctica detected by CryoSat‐2 publication-title: Geophys. Res. Lett. – volume: 45 start-page: 93 issue: 149 year: 1999 end-page: 100 article-title: Flow of Glaciar Moreno, Argentina, from repeat‐pass shuttle imaging radar images: Comparison of the phase correlation method with radar interferometry publication-title: J. Glaciol. – volume: 484 start-page: 502 issue: 7395 year: 2012 end-page: 505 article-title: Antarctic ice‐sheet loss driven by basal melting of ice shelves publication-title: Nature – volume: 58 start-page: 1194 issue: 9–10 year: 2011 end-page: 1210 article-title: Late winter oceanography off the Sabrina and BANZARE coast (117128E), East Antarctica publication-title: Deep Sea Res., Part II – volume: 42 start-page: 8049 year: 2015 end-page: 8056 article-title: Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013 publication-title: Geophys. Res. Lett. – volume: 262 start-page: 1525 issue: 5139 year: 1993 end-page: 1530 article-title: Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream publication-title: Science – volume: 7 start-page: 375 year: 2013 end-page: 393 article-title: Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica publication-title: Cryosphere – volume: 39 year: 2012 article-title: A new, high‐resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling publication-title: Geophys. Res. Lett. – volume: 348 start-page: 327 issue: 6232 year: 2015 end-page: 332 article-title: Volume loss from Antarctic ice shelves is accelerating publication-title: Science – volume: 315 start-page: 1529 issue: 5818 year: 2007 end-page: 32 article-title: Recent sea‐level contributions of the Antarctic and Greenland ice sheets publication-title: Science – volume: 41 start-page: 8130 year: 2014 end-page: 8137 article-title: Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data publication-title: Geophys. Res. Lett. – volume: 60 start-page: 761 issue: 222 year: 2014 end-page: 770 article-title: Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model publication-title: J. Glaciol. – volume: 4 start-page: 2857 year: 2013 article-title: Observed thinning of Totten Glacier is linked to coastal polynya variability publication-title: Nat. Commun. – volume: 3 start-page: 267 issue: 4 year: 2010 end-page: 272 article-title: Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought publication-title: Nat. Geosci. – volume: 1 start-page: 106 issue: 2 year: 2008 end-page: 110 article-title: Recent Antarctic ice mass loss from radar interferometry and regional climateămodelling publication-title: Nat. Geosci. – volume: 6 start-page: 1019 issue: 5 year: 2012 end-page: 1030 article-title: Ice velocity changes in the Ross and Ronne sectors observed using satellite radar data from 1997 and 2009 publication-title: Cryosphere – volume: 19 start-page: 183 issue: 2 year: 2002 end-page: 204 article-title: Efficient inverse modeling of barotropic ocean tides publication-title: J. Atmos. Oceanic Technol. – volume: 385 start-page: 12 year: 2014 end-page: 21 article-title: Revisiting GRACE Antarctic ice mass trends and accelerations considering autocorrelation publication-title: Earth Planet. Sci. Lett. – volume: 341 start-page: 266 year: 2013 end-page: 270 article-title: Ice‐shelf melting around Antarctica publication-title: Science – volume: 189 start-page: 863 year: 2012 end-page: 876 article-title: Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry publication-title: Geophys. J. Int. – volume: 51 start-page: 509 issue: 175 year: 2005 end-page: 527 article-title: Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea‐level rise: 1992–2002 publication-title: J. Glaciol. – volume: 17 start-page: 2890 issue: 14 year: 2004 end-page: 2898 article-title: The SCAR READER project: Toward a high‐quality database of mean Antarctic meteorological observations publication-title: J. Clim. – year: 2002 – volume: 33 year: 2006 article-title: Measuring two‐dimensional movements using a single InSAR pair publication-title: Geophys. Res. Lett. – volume: 35 year: 2008 article-title: Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves publication-title: Geophys. Res. Lett. – volume: 474 start-page: 72 issue: 7349 year: 2011 end-page: 75 article-title: A dynamic early East Antarctic Ice Sheet suggested by ice‐covered fjord landscapes publication-title: Nature – volume: 47 start-page: 2299 issue: 12–13 year: 2000 end-page: 2326 article-title: On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E publication-title: Deep Sea Res., Part II – volume: 40 start-page: 880 year: 2010 end-page: 899 article-title: An Eddy‐permitting southern ocean state estimate publication-title: J. Phys. Oceanogr. – volume: 41 start-page: 8421 year: 2014 end-page: 8428 article-title: Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques publication-title: Geophys. Res. Lett. – volume: 31 start-page: 13 year: 2008 end-page: 21 article-title: ECCO2: High resolution global ocean and sea ice data synthesis publication-title: Mercator Ocean Newsl. – volume: 333 start-page: 1427 year: 2011 end-page: 1430 article-title: Ice flow of the Antarctic ice sheet publication-title: Science – start-page: 294 year: 2015 end-page: 298 article-title: Ocean access to a cavity beneath Totten Glacier in East Antarctica publication-title: Nat. Geosci. – volume: 11 start-page: 697 year: 2015 end-page: 707 article-title: A two thousand year annual record of snow accumulation rates for Law Dome, East Antarctica publication-title: Clim. Past – volume: 308 start-page: 1898 issue: 5730 year: 2005 end-page: 1901 article-title: Snowfall‐driven growth in East Antarctic ice sheet mitigates recent sea‐level rise publication-title: Science – volume: 461 start-page: 971 issue: 7266 year: 2009 end-page: 975 article-title: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets publication-title: Nature – volume: 4 start-page: 2753 issue: 9 year: 2012 end-page: 2767 article-title: Mapping of ice motion in Antarctica using synthetic‐aperture radar data publication-title: Remote Sens. – year: 2015 – year: 2013 – volume: 8 start-page: 3653 issue: 5 year: 2015 end-page: 3743 article-title: ECCO version 4: An integrated framework for non‐linear inverse modeling and global ocean state estimation publication-title: Geosci. Model Dev. – volume: 2 start-page: 235 issue: 3 year: 1990 end-page: 242 article-title: Snow accumulation surface topography in the katabatic zone of Eastern Wilkes Land, Antarctica publication-title: Antarct. Sci. – ident: e_1_2_7_35_1 doi: 10.5194/cp-11-697-2015 – ident: e_1_2_7_34_1 – ident: e_1_2_7_28_1 doi: 10.1126/science.aaa0940 – ident: e_1_2_7_22_1 doi: 10.1002/2014GL060111 – ident: e_1_2_7_39_1 doi: 10.1002/2014GL061940 – ident: e_1_2_7_20_1 doi: 10.1002/jqs.2593 – volume: 3 start-page: 267 issue: 4 year: 2010 ident: e_1_2_7_41_1 article-title: Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought publication-title: Nat. Geosci. doi: 10.1038/ngeo761 – ident: e_1_2_7_42_1 doi: 10.3189/2014JoG14J051 – ident: e_1_2_7_8_1 doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2 – ident: e_1_2_7_11_1 doi: 10.5194/tc-7-375-2013 – volume: 31 start-page: 13 year: 2008 ident: e_1_2_7_23_1 article-title: ECCO2: High resolution global ocean and sea ice data synthesis publication-title: Mercator Ocean Newsl. – ident: e_1_2_7_48_1 – ident: e_1_2_7_26_1 doi: 10.1002/2013GL059069 – ident: e_1_2_7_46_1 doi: 10.1016/j.epsl.2013.10.016 – ident: e_1_2_7_9_1 doi: 10.3189/2012JoG11J118 – ident: e_1_2_7_38_1 doi: 10.1126/science.1136776 – ident: e_1_2_7_31_1 doi: 10.1038/ngeo102 – ident: e_1_2_7_45_1 doi: 10.1016/j.dsr2.2010.10.035 – ident: e_1_2_7_30_1 doi: 10.1038/nature10968 – ident: e_1_2_7_16_1 doi: 10.1111/j.1365-246X.2012.05401.x – ident: e_1_2_7_21_1 doi: 10.1175/2009JPO4236.1 – ident: e_1_2_7_29_1 doi: 10.1038/nature08471 – ident: e_1_2_7_25_1 doi: 10.3390/rs4092753 – ident: e_1_2_7_4_1 – ident: e_1_2_7_12_1 doi: 10.1126/science.262.5139.1525 – ident: e_1_2_7_27_1 doi: 10.1029/2008GL035592 – ident: e_1_2_7_37_1 doi: 10.5194/tc-6-1019-2012 – ident: e_1_2_7_24_1 doi: 10.1017/S0022143000003075 – ident: e_1_2_7_5_1 – ident: e_1_2_7_14_1 doi: 10.1038/ngeo2388 – ident: e_1_2_7_19_1 doi: 10.1002/2015GL065701 – ident: e_1_2_7_17_1 doi: 10.1038/ncomms3857 – ident: e_1_2_7_33_1 doi: 10.1126/science.1235798 – ident: e_1_2_7_7_1 doi: 10.1126/science.1110662 – ident: e_1_2_7_40_1 doi: 10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2 – volume-title: Model Selection and Multimodel Inference year: 2002 ident: e_1_2_7_6_1 – ident: e_1_2_7_18_1 doi: 10.1029/2011GL050713 – ident: e_1_2_7_15_1 doi: 10.5194/os-10-267-2014 – ident: e_1_2_7_44_1 doi: 10.1002/2014GL061052 – ident: e_1_2_7_47_1 doi: 10.1038/nature10114 – ident: e_1_2_7_13_1 doi: 10.1017/S0954102090000323 – ident: e_1_2_7_32_1 doi: 10.1126/science.1208336 – ident: e_1_2_7_3_1 doi: 10.1016/S0967-0645(00)00038-2 – ident: e_1_2_7_2_1 doi: 10.1029/2006GL026883 – ident: e_1_2_7_36_1 doi: 10.1016/j.rse.2006.12.020 – ident: e_1_2_7_49_1 doi: 10.3189/172756505781829007 – ident: e_1_2_7_10_1 doi: 10.5194/gmdd-8-3653-2015 – ident: e_1_2_7_43_1 doi: 10.1002/grl.50527 |
| SSID | ssj0003031 |
| Score | 2.4581788 |
| Snippet | Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice... Abstract Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6366 |
| SubjectTerms | Acceleration Antarctica Atmospherics Climate Climate models Constants Discharge Dynamics Geophysics Glaciers Ice Ice cover ice discharge Ice thickness Interferometry Landsat Landsat satellites Marine Mass mass budget Ocean temperature Oceans Radar Radar data Remote sensing Satellite altimetry Satellites Sea level Synthetic aperture radar Temperature Temperature effects Thinning Totten Glacier Velocity |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Free Content dbid: WIN link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEF5KseCL14pHa1lBn9rQZLObzT7W0h4L5SDS0r6F2UtEOCZykir-e2c2aTyFWhDzFHZnl73NzLeXmWHsHepwaWupk2CVSaQLPjHelEkdCqMM2NxYF4NN6MWivLoyn8YDN7KFGfxDTAduxBlRXhODg-0O_jgNRc1VzM_SAvcb5OwzkxkFMLg8XUyCGKXzEDDPyKQUuhjfvWPxg_XCtzRSdNx_C22uY9aodE4e_29zn7BHI9zkh8P6eMo2QvOMbc1jON9f-BcfgLruObs4dYHXy_Yn90OM-o5D4_k3xNZ8ic3mbc3P2x4RNp8vAQXCap8fQ9fzw6ZHXqET8X1OtiqcnkfxvuXYFLXNLk6Oz48-JmPIhQQUfkkA3HAE7VXpQ-GlL71xgJiBtkXSpcqForB1HpzQIKSrvc9SnyknlVdARqov2GbTNuEl4xaMEKlVaa2VDEaDz3webOqg1HmWw4zt3Qx75UZ_5BQWY1kNnpRFtT5kM_Z-ov4--OH4C90HmsGJhrxnx4R29aUambES4LETUjuVSwkARishwaSB9pfWZzO2czP_1cjSXZWV0YwZEdXd2QY7pQoEBTP2dspGXqULGGhCex2roGtl1D_30WAtFGfR4ADFBXVvf6v55zMEwbl69U_Ur9lDSqc3b6LcYZv96jq8YQ_cj_5rt9qNbPQb0G0WOQ priority: 102 providerName: Wiley-Blackwell |
| Title | Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015 |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GL069173 https://www.proquest.com/docview/1803935782 https://www.proquest.com/docview/1931356341 https://www.proquest.com/docview/1808706762 https://www.proquest.com/docview/1835605939 https://doaj.org/article/2adbf347c5344aaa97524a90e3014bd1 |
| Volume | 43 |
| WOSCitedRecordID | wos000380910100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-8007 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hDSRe0PgSHWMyEjyxiMSx4_hxwFomVRWaVrG36PwRCakkU5OB-O85O2nVSTBeyFMSW459vvPdxef7AbwhHS5MLVTijdSJsN4l2ukyqX2hpUaTa2Mj2IRaLMqrK_1lB-orxIQN6YEHwr3n6EydC2VlLgQiaiW5QJ364AsYFx0fsno2ztS4BtPCPGDlaZGUXBVjyDuJP3n7WTGbpwX5KfktZRRz9t8yNHfN1ahvpgfwaDQU2enQwcdwzzdP4MEsAvH-orsYumm7p7A8t57Vq_YncwO6fMewcew7WcVsRV9lbc0u255sYzZbIYny-oSdYdez06YnLg__sk9YOGXCQmAT61tGfZfPYDk9u_z4ORnBEhKUdCUeyVXwysnS-cIJVzptkbR9cGiETaX1RUGE9JYr5MLWzmWpy6QV0kkMx0ufw17TNv4FMIOa89TItFZSeK3QZS73JrVYqjzLcQLvNlSr7JhJPABarKohBzKvdmk8gbfb2tdDBo2_1PsQJmBbJ-S9ji-IG6qRG6p_ccMEjjbTV43C2FVZGQ8gky3052JNg5IFqfMJvN4Wk5SFrRNsfHsTmwgbwqQ57qpDrQSERE0Eipxz53ir2cWczNdcHv6Pgb-Eh6HxEMTGyyPY69c3_hXctz_6b936OArHMex_upgu5_T09XzxGzFhDQg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMqFZysWChgJTjRqHnYcHwtqtyuWFUJb0Zs1sR2EtCRok4L498w4adhKUAmRUxSPLdvxeL7xYz7GXqINF2UlVORLqSNhvYu000VU-VxLDWWmSxvIJtRiUZyd6Q8DzyndhenjQ4wLbqQZYb4mBacF6YPfUUPRdOXTeZyjw5FdZzcEYg3ibvg0W4xTMc7PPWWeFlGRqnw4-Y75DzZzX7JJIXT_Jby5iVqD2Tm--98VvsfuDIiTH_ZD5D675usH7NY0MPr-xLdwBtS2D9npzHperZof3PU09S2H2vGvCK_5CuvNm4ovmw5BNp-uAOeE9T4_grbjh3WH6kKL4vucrqtwOiHFu4ZjVeQOOz0-Wr49iQbWhQgkPpEH9Dm8crJwPnfCFU5bQNhAnpGwsbQ-z8sq8zZVkApbOZfELpFWSCeB7qnusq26qf0jxkvQaRqXMq6UFF4rcInLfBlbKFSWZDBhry_63dghJDkxY6xMH0w5NZtdNmGvRulvfSiOv8i9oV84ylAA7fChWX82gz6aFBw2QigrMyEAQCuZCtCxJxezdMmE7V0MADNodWuSItxkRlD152SNjZI54oIJezEmo7rSHgzUvjkPRdDOMpqgq2SwFKJa1NhBYURd2V4z_ThHHJzJx_8k_Zxtnyzfz818tnj3hN0mGToClxZ7bKtbn_un7Kb93n1p18-CTv0CSZ8aVw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFiouvCsWChgJTjRqHnYcHwvtLhWrVVV1pd6iie2gStuk2qSg_vuOnTRsJaiEyClKJpbteGY-2-P5AD6SD-dFyWVgC6ECrq0JlFFZUNpUCYVFogrtySbkfJ6dnqqjnufUnYXp8kMMC25OM7y9dgpuL0y5-ztrKLmudDoLU5pwJPdhgzsemRFs7B9PFrPBGJOF7kjzFA-yWKZ97DuVsLv-_S2v5JP330Kc67jVO57Jk_-u8lN43GNOttcNkmdwz1bP4eHUc_pe0Z2PAtXNC1gcasvKZf2LmY6ovmFYGXZOAJstqd6sLtlJ3RLMZtMlklVY7bADbFq2V7WkMG5ZfIe5AyvMxUixtmZUFfESFpODk6_fgp53IUBBV2CRZh1WGpEZmxpuMqM0EnBwcyOuQ6FtmhZlYnUsMea6NCYKTSQ0F0agO6m6BaOqruwrYAWqOA4LEZZScKskmsgktgg1ZjKJEhzD55t-z3WflNxxYyzzLp1ynK932Rg-DdIXXTKOv8h9cb9wkHEptP2DevUj7zUyj9FQI7jUIuEcEZUUMUcVWjfJLEw0hu2bAZD3et3kUebPMhOs-vNrRY0SKSGDMXwYXpPCul0YrGx96Ytwe8vkhO6SoVIc2aKiDvIj6s725tPjGSHhRLz-J-n3sHm0P8lnh_Pvb-CRE3ExcHG2DaN2dWnfwgP9sz1rVu96pboGMLsbAA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ice+flow+dynamics+and+mass+loss+of+Totten+Glacier%2C+East+Antarctica%2C+from+1989+to+2015&rft.jtitle=Geophysical+research+letters&rft.au=Xin+Li&rft.au=Eric+Rignot&rft.au=Jeremie+Mouginot&rft.au=Bernd+Scheuchl&rft.date=2016-06-28&rft.pub=Wiley&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=43&rft.issue=12&rft.spage=6366&rft.epage=6373&rft_id=info:doi/10.1002%2F2016GL069173&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2adbf347c5344aaa97524a90e3014bd1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |