Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015

Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferomet...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Geophysical research letters Ročník 43; číslo 12; s. 6366 - 6373
Hlavní autori: Li, Xin, Rignot, Eric, Mouginot, Jeremie, Scheuchl, Bernd
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington John Wiley & Sons, Inc 28.06.2016
Wiley
Predmet:
ISSN:0094-8276, 1944-8007
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic‐aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989–1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr2) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature. Key Points First compilation of 26 year ice discharge to quantify the impact of ice dynamics on Totten Glacier Ice dynamics has changed significantly over the last decade and contributed to glacier mass loss Totten Glacier may be more sensitive to ocean temperature than previously thought
AbstractList Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic‐aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989–1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr2) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature. Key Points First compilation of 26 year ice discharge to quantify the impact of ice dynamics on Totten Glacier Ice dynamics has changed significantly over the last decade and contributed to glacier mass loss Totten Glacier may be more sensitive to ocean temperature than previously thought
Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic-aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989-1996, slowed down by 11 plus or minus 12% in 2000 to bring its ice flux in balance with accumulation (65 plus or minus 4 Gt/yr), then accelerated by 18 plus or minus 3% until 2007, and remained constant thereafter. The average ice mass loss (7 plus or minus 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 plus or minus 0.3 Gt/yr super(2)) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature. Key Points * First compilation of 26 year ice discharge to quantify the impact of ice dynamics on Totten Glacier * Ice dynamics has changed significantly over the last decade and contributed to glacier mass loss * Totten Glacier may be more sensitive to ocean temperature than previously thought
Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic‐aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989–1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr2) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature.
Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic‐aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989–1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr 2 ) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature. First compilation of 26 year ice discharge to quantify the impact of ice dynamics on Totten Glacier Ice dynamics has changed significantly over the last decade and contributed to glacier mass loss Totten Glacier may be more sensitive to ocean temperature than previously thought
Abstract Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice thinning in areas of fast flow. Here we present a time series of ice velocity measurements spanning from 1989 to 2015 using Landsat and interferometric synthetic‐aperture radar data, combined with ice thickness from Operation IceBridge, and surface mass balance from Regional Atmospheric Climate Model. We find that the glacier speed exceeded its balance speed in 1989–1996, slowed down by 11 ± 12% in 2000 to bring its ice flux in balance with accumulation (65 ± 4 Gt/yr), then accelerated by 18 ± 3% until 2007, and remained constant thereafter. The average ice mass loss (7 ± 2 Gt/yr) is dominated by ice dynamics (73%). Its acceleration (0.6 ± 0.3 Gt/yr2) is dominated by surface mass balance (80%). Ice velocity apparently increased when ocean temperature was warmer, which suggests a linkage between ice dynamics and ocean temperature.
Author Rignot, Eric
Scheuchl, Bernd
Mouginot, Jeremie
Li, Xin
Author_xml – sequence: 1
  givenname: Xin
  orcidid: 0000-0001-5876-0115
  surname: Li
  fullname: Li, Xin
  organization: University of California
– sequence: 2
  givenname: Eric
  surname: Rignot
  fullname: Rignot, Eric
  organization: California Institute of Technology
– sequence: 3
  givenname: Jeremie
  surname: Mouginot
  fullname: Mouginot, Jeremie
  organization: University of California
– sequence: 4
  givenname: Bernd
  surname: Scheuchl
  fullname: Scheuchl, Bernd
  organization: University of California
BookMark eNqNkk1rGzEQQEVJoU7SW3-AoJce7Ha0-lodQ0gdg6EQkrOYSNois7tKJZngf1-lTiEEGqqDJMSbN8NoTsnJnOZAyCcGXxlA960DptZbUIZp_o4smBFi1QPoE7IAMO3eafWBnJayAwAOnC3I3cYFOozpkfrDjFN0heLs6YSl0DG1LQ30NtUaZroe0cWQl_QKS6UXc8XsanS4pENOE2WmN7Qm2oqQ5-T9gGMJH5_PM3L3_er28nq1_bHeXF5sVyjbWgVkrA_ay94H5YXvvXHIDBhjlHAgXVDqfuDBdRo74QbvGXgmnZBeouCCn5HN0esT7uxDjhPmg00Y7Z-HlH9azK3GMdgOfVMJ7SQXAhGNlp1AA4EDE_eeNdeXo-shp1_7UKqdYnFhHHEOaV8s67lUIA03_4FCr0Fp1TX08yt0l_Z5bk2xzHDWlFywN6keWkap-ydXd6Rcbj-Tw2BdrFhjmmvGOFoG9mkM7MsxaEHLV0F_2_QP_DnHYxzD4U3Wrm-2Ukgu-W993b1q
CitedBy_id crossref_primary_10_5194_tc_17_4853_2023
crossref_primary_10_1002_2016JC012115
crossref_primary_10_1038_nature25026
crossref_primary_10_1038_s41467_023_39764_z
crossref_primary_10_3390_rs12223746
crossref_primary_10_1038_s41467_018_05618_2
crossref_primary_10_1016_j_gloplacha_2024_104548
crossref_primary_10_1038_s41598_022_13517_2
crossref_primary_10_1360_N072024_0231
crossref_primary_10_1029_2019EA000596
crossref_primary_10_1029_2018GL078173
crossref_primary_10_1029_2020GL091790
crossref_primary_10_3390_rs15061677
crossref_primary_10_1029_2019GL086821
crossref_primary_10_1038_s41586_022_04946_0
crossref_primary_10_1016_j_rsase_2025_101476
crossref_primary_10_1017_jog_2021_8
crossref_primary_10_1073_pnas_1812883116
crossref_primary_10_5194_tc_16_737_2022
crossref_primary_10_1109_JSTARS_2025_3528516
crossref_primary_10_1029_2021GL097232
crossref_primary_10_1016_j_geomorph_2018_05_020
crossref_primary_10_1029_2019RG000663
crossref_primary_10_5194_tc_17_1003_2023
crossref_primary_10_1016_j_epsl_2019_115961
crossref_primary_10_5194_tc_17_4549_2023
crossref_primary_10_5194_tc_18_103_2024
crossref_primary_10_1038_s41467_025_57700_1
crossref_primary_10_1038_s41467_023_39588_x
crossref_primary_10_5194_tc_12_521_2018
crossref_primary_10_5194_tc_18_43_2024
crossref_primary_10_1007_s11430_024_1517_1
crossref_primary_10_1117_1_JRS_16_034514
crossref_primary_10_1109_TGRS_2024_3395522
crossref_primary_10_3389_fmars_2023_1159353
crossref_primary_10_3390_rs15163928
crossref_primary_10_1016_j_jag_2021_102612
crossref_primary_10_5194_tc_18_4463_2024
crossref_primary_10_3390_rs12111809
crossref_primary_10_5194_tc_15_663_2021
crossref_primary_10_5194_tc_13_427_2019
crossref_primary_10_1073_pnas_2322622121
crossref_primary_10_5194_tc_17_3593_2023
crossref_primary_10_3390_geosciences13040106
crossref_primary_10_1007_s11430_022_1109_y
crossref_primary_10_1017_jog_2021_106
crossref_primary_10_5194_essd_14_3573_2022
crossref_primary_10_1002_2017GL074433
crossref_primary_10_1029_2021GL093213
crossref_primary_10_1016_j_rse_2019_111595
crossref_primary_10_5194_tc_12_2401_2018
crossref_primary_10_1029_2018JC014634
crossref_primary_10_1038_d41586_018_07714_1
crossref_primary_10_5194_tc_12_2869_2018
crossref_primary_10_3389_feart_2021_741789
Cites_doi 10.5194/cp-11-697-2015
10.1126/science.aaa0940
10.1002/2014GL060111
10.1002/2014GL061940
10.1002/jqs.2593
10.1038/ngeo761
10.3189/2014JoG14J051
10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
10.5194/tc-7-375-2013
10.1002/2013GL059069
10.1016/j.epsl.2013.10.016
10.3189/2012JoG11J118
10.1126/science.1136776
10.1038/ngeo102
10.1016/j.dsr2.2010.10.035
10.1038/nature10968
10.1111/j.1365-246X.2012.05401.x
10.1175/2009JPO4236.1
10.1038/nature08471
10.3390/rs4092753
10.1126/science.262.5139.1525
10.1029/2008GL035592
10.5194/tc-6-1019-2012
10.1017/S0022143000003075
10.1038/ngeo2388
10.1002/2015GL065701
10.1038/ncomms3857
10.1126/science.1235798
10.1126/science.1110662
10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2
10.1029/2011GL050713
10.5194/os-10-267-2014
10.1002/2014GL061052
10.1038/nature10114
10.1017/S0954102090000323
10.1126/science.1208336
10.1016/S0967-0645(00)00038-2
10.1029/2006GL026883
10.1016/j.rse.2006.12.020
10.3189/172756505781829007
10.5194/gmdd-8-3653-2015
10.1002/grl.50527
ContentType Journal Article
Copyright 2016. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2016. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1002/2016GL069173
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database
CrossRef

Aerospace Database
Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 6373
ExternalDocumentID oai_doaj_org_article_2adbf347c5344aaa97524a90e3014bd1
4117402131
10_1002_2016GL069173
GRL54535
Genre article
GeographicLocations PSE, Antarctica, East Antarctica
GeographicLocations_xml – name: PSE, Antarctica, East Antarctica
GrantInformation_xml – fundername: California Institute of Technology's Jet Propulsion Laboratory
  funderid: NNX13AN46G; NNX14AN03G; NNX14AB93G
– fundername: German Aerospace Center (DLR)
– fundername: European Space Agency
– fundername: e‐GEOS under ESA's TPM scheme
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFGKR
AFPKN
AFRAH
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
GROUPED_DOAJ
ID FETCH-LOGICAL-a5555-ea118e7d58de6d4d8d9ca19099964c05ce66bf3ec27a24cfdd10d15c45d5a4343
IEDL.DBID DOA
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380910100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Fri Oct 03 12:43:42 EDT 2025
Sun Nov 09 13:43:04 EST 2025
Wed Oct 01 14:41:44 EDT 2025
Sat Nov 01 15:19:18 EDT 2025
Fri Jul 25 10:46:48 EDT 2025
Tue Nov 18 22:40:32 EST 2025
Sat Nov 29 07:52:46 EST 2025
Wed Aug 20 07:25:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5555-ea118e7d58de6d4d8d9ca19099964c05ce66bf3ec27a24cfdd10d15c45d5a4343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5876-0115
OpenAccessLink https://doaj.org/article/2adbf347c5344aaa97524a90e3014bd1
PQID 1803935782
PQPubID 54723
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_2adbf347c5344aaa97524a90e3014bd1
proquest_miscellaneous_1835605939
proquest_miscellaneous_1808706762
proquest_journals_1931356341
proquest_journals_1803935782
crossref_citationtrail_10_1002_2016GL069173
crossref_primary_10_1002_2016GL069173
wiley_primary_10_1002_2016GL069173_GRL54535
PublicationCentury 2000
PublicationDate 28 June 2016
PublicationDateYYYYMMDD 2016-06-28
PublicationDate_xml – month: 06
  year: 2016
  text: 28 June 2016
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2016
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2011; 333
2012; 484
2013; 4
2012; 189
2013; 28
2002; 19
2000; 47
2006; 33
2013; 40
2015; 11
1999; 45
1993; 262
2008; 35
2012; 39
2013; 341
2002
2008; 31
2015; 348
2011; 58
2012; 58
2013; 7
2014; 41
2008; 1
2015; 8
2014; 60
2010; 40
2011; 474
1990; 2
2007; 315
2004; 17
2015; 42
2007; 111
2005; 51
2005; 308
2015
2013
2009; 461
2012; 6
2010; 3
2014; 385
2012; 4
2014; 10
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_29_1
Menemenlis D. (e_1_2_7_23_1) 2008; 31
Ommen T. D. (e_1_2_7_41_1) 2010; 3
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
Burnham K. P. (e_1_2_7_6_1) 2002
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 41
  start-page: 1576
  year: 2014
  end-page: 1584
  article-title: Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013
  publication-title: Geophys. Res. Lett.
– volume: 10
  start-page: 267
  year: 2014
  end-page: 279
  article-title: Simulated melt rates for the Totten and Dalton ice shelves
  publication-title: Ocean Sci.
– volume: 111
  start-page: 242
  issue: 2–3
  year: 2007
  end-page: 257
  article-title: MODIS‐based Mosaic of Antarctica (MOA) data sets: Continent‐wide surface morphology and snow grain size
  publication-title: Remote Sens. Environ.
– volume: 58
  start-page: 830
  issue: 211
  year: 2012
  end-page: 840
  article-title: Dynamic thinning of Antarctic glaciers from along‐track repeat radar altimetry
  publication-title: J. Glaciol.
– volume: 28
  start-page: 40
  year: 2013
  end-page: 48
  article-title: West Antarctica's sensitivity to natural and human‐forced climate change over the Holocene
  publication-title: J. Quat. Sci.
– volume: 40
  start-page: 3055
  year: 2013
  end-page: 3063
  article-title: Time‐variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data
  publication-title: Geophys. Res. Lett.
– volume: 41
  start-page: 3899
  year: 2014
  end-page: 3905
  article-title: Increased ice losses from Antarctica detected by CryoSat‐2
  publication-title: Geophys. Res. Lett.
– volume: 45
  start-page: 93
  issue: 149
  year: 1999
  end-page: 100
  article-title: Flow of Glaciar Moreno, Argentina, from repeat‐pass shuttle imaging radar images: Comparison of the phase correlation method with radar interferometry
  publication-title: J. Glaciol.
– volume: 484
  start-page: 502
  issue: 7395
  year: 2012
  end-page: 505
  article-title: Antarctic ice‐sheet loss driven by basal melting of ice shelves
  publication-title: Nature
– volume: 58
  start-page: 1194
  issue: 9–10
  year: 2011
  end-page: 1210
  article-title: Late winter oceanography off the Sabrina and BANZARE coast (117128E), East Antarctica
  publication-title: Deep Sea Res., Part II
– volume: 42
  start-page: 8049
  year: 2015
  end-page: 8056
  article-title: Grounding line retreat of Totten Glacier, East Antarctica, 1996 to 2013
  publication-title: Geophys. Res. Lett.
– volume: 262
  start-page: 1525
  issue: 5139
  year: 1993
  end-page: 1530
  article-title: Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream
  publication-title: Science
– volume: 7
  start-page: 375
  year: 2013
  end-page: 393
  article-title: Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica
  publication-title: Cryosphere
– volume: 39
  year: 2012
  article-title: A new, high‐resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling
  publication-title: Geophys. Res. Lett.
– volume: 348
  start-page: 327
  issue: 6232
  year: 2015
  end-page: 332
  article-title: Volume loss from Antarctic ice shelves is accelerating
  publication-title: Science
– volume: 315
  start-page: 1529
  issue: 5818
  year: 2007
  end-page: 32
  article-title: Recent sea‐level contributions of the Antarctic and Greenland ice sheets
  publication-title: Science
– volume: 41
  start-page: 8130
  year: 2014
  end-page: 8137
  article-title: Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data
  publication-title: Geophys. Res. Lett.
– volume: 60
  start-page: 761
  issue: 222
  year: 2014
  end-page: 770
  article-title: Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model
  publication-title: J. Glaciol.
– volume: 4
  start-page: 2857
  year: 2013
  article-title: Observed thinning of Totten Glacier is linked to coastal polynya variability
  publication-title: Nat. Commun.
– volume: 3
  start-page: 267
  issue: 4
  year: 2010
  end-page: 272
  article-title: Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought
  publication-title: Nat. Geosci.
– volume: 1
  start-page: 106
  issue: 2
  year: 2008
  end-page: 110
  article-title: Recent Antarctic ice mass loss from radar interferometry and regional climateămodelling
  publication-title: Nat. Geosci.
– volume: 6
  start-page: 1019
  issue: 5
  year: 2012
  end-page: 1030
  article-title: Ice velocity changes in the Ross and Ronne sectors observed using satellite radar data from 1997 and 2009
  publication-title: Cryosphere
– volume: 19
  start-page: 183
  issue: 2
  year: 2002
  end-page: 204
  article-title: Efficient inverse modeling of barotropic ocean tides
  publication-title: J. Atmos. Oceanic Technol.
– volume: 385
  start-page: 12
  year: 2014
  end-page: 21
  article-title: Revisiting GRACE Antarctic ice mass trends and accelerations considering autocorrelation
  publication-title: Earth Planet. Sci. Lett.
– volume: 341
  start-page: 266
  year: 2013
  end-page: 270
  article-title: Ice‐shelf melting around Antarctica
  publication-title: Science
– volume: 189
  start-page: 863
  year: 2012
  end-page: 876
  article-title: Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE satellite gravimetry
  publication-title: Geophys. J. Int.
– volume: 51
  start-page: 509
  issue: 175
  year: 2005
  end-page: 527
  article-title: Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea‐level rise: 1992–2002
  publication-title: J. Glaciol.
– volume: 17
  start-page: 2890
  issue: 14
  year: 2004
  end-page: 2898
  article-title: The SCAR READER project: Toward a high‐quality database of mean Antarctic meteorological observations
  publication-title: J. Clim.
– year: 2002
– volume: 33
  year: 2006
  article-title: Measuring two‐dimensional movements using a single InSAR pair
  publication-title: Geophys. Res. Lett.
– volume: 35
  year: 2008
  article-title: Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves
  publication-title: Geophys. Res. Lett.
– volume: 474
  start-page: 72
  issue: 7349
  year: 2011
  end-page: 75
  article-title: A dynamic early East Antarctic Ice Sheet suggested by ice‐covered fjord landscapes
  publication-title: Nature
– volume: 47
  start-page: 2299
  issue: 12–13
  year: 2000
  end-page: 2326
  article-title: On the circulation and water masses over the Antarctic continental slope and rise between 80 and 150°E
  publication-title: Deep Sea Res., Part II
– volume: 40
  start-page: 880
  year: 2010
  end-page: 899
  article-title: An Eddy‐permitting southern ocean state estimate
  publication-title: J. Phys. Oceanogr.
– volume: 41
  start-page: 8421
  year: 2014
  end-page: 8428
  article-title: Mass loss of the Amundsen Sea Embayment of West Antarctica from four independent techniques
  publication-title: Geophys. Res. Lett.
– volume: 31
  start-page: 13
  year: 2008
  end-page: 21
  article-title: ECCO2: High resolution global ocean and sea ice data synthesis
  publication-title: Mercator Ocean Newsl.
– volume: 333
  start-page: 1427
  year: 2011
  end-page: 1430
  article-title: Ice flow of the Antarctic ice sheet
  publication-title: Science
– start-page: 294
  year: 2015
  end-page: 298
  article-title: Ocean access to a cavity beneath Totten Glacier in East Antarctica
  publication-title: Nat. Geosci.
– volume: 11
  start-page: 697
  year: 2015
  end-page: 707
  article-title: A two thousand year annual record of snow accumulation rates for Law Dome, East Antarctica
  publication-title: Clim. Past
– volume: 308
  start-page: 1898
  issue: 5730
  year: 2005
  end-page: 1901
  article-title: Snowfall‐driven growth in East Antarctic ice sheet mitigates recent sea‐level rise
  publication-title: Science
– volume: 461
  start-page: 971
  issue: 7266
  year: 2009
  end-page: 975
  article-title: Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets
  publication-title: Nature
– volume: 4
  start-page: 2753
  issue: 9
  year: 2012
  end-page: 2767
  article-title: Mapping of ice motion in Antarctica using synthetic‐aperture radar data
  publication-title: Remote Sens.
– year: 2015
– year: 2013
– volume: 8
  start-page: 3653
  issue: 5
  year: 2015
  end-page: 3743
  article-title: ECCO version 4: An integrated framework for non‐linear inverse modeling and global ocean state estimation
  publication-title: Geosci. Model Dev.
– volume: 2
  start-page: 235
  issue: 3
  year: 1990
  end-page: 242
  article-title: Snow accumulation surface topography in the katabatic zone of Eastern Wilkes Land, Antarctica
  publication-title: Antarct. Sci.
– ident: e_1_2_7_35_1
  doi: 10.5194/cp-11-697-2015
– ident: e_1_2_7_34_1
– ident: e_1_2_7_28_1
  doi: 10.1126/science.aaa0940
– ident: e_1_2_7_22_1
  doi: 10.1002/2014GL060111
– ident: e_1_2_7_39_1
  doi: 10.1002/2014GL061940
– ident: e_1_2_7_20_1
  doi: 10.1002/jqs.2593
– volume: 3
  start-page: 267
  issue: 4
  year: 2010
  ident: e_1_2_7_41_1
  article-title: Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo761
– ident: e_1_2_7_42_1
  doi: 10.3189/2014JoG14J051
– ident: e_1_2_7_8_1
  doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
– ident: e_1_2_7_11_1
  doi: 10.5194/tc-7-375-2013
– volume: 31
  start-page: 13
  year: 2008
  ident: e_1_2_7_23_1
  article-title: ECCO2: High resolution global ocean and sea ice data synthesis
  publication-title: Mercator Ocean Newsl.
– ident: e_1_2_7_48_1
– ident: e_1_2_7_26_1
  doi: 10.1002/2013GL059069
– ident: e_1_2_7_46_1
  doi: 10.1016/j.epsl.2013.10.016
– ident: e_1_2_7_9_1
  doi: 10.3189/2012JoG11J118
– ident: e_1_2_7_38_1
  doi: 10.1126/science.1136776
– ident: e_1_2_7_31_1
  doi: 10.1038/ngeo102
– ident: e_1_2_7_45_1
  doi: 10.1016/j.dsr2.2010.10.035
– ident: e_1_2_7_30_1
  doi: 10.1038/nature10968
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1365-246X.2012.05401.x
– ident: e_1_2_7_21_1
  doi: 10.1175/2009JPO4236.1
– ident: e_1_2_7_29_1
  doi: 10.1038/nature08471
– ident: e_1_2_7_25_1
  doi: 10.3390/rs4092753
– ident: e_1_2_7_4_1
– ident: e_1_2_7_12_1
  doi: 10.1126/science.262.5139.1525
– ident: e_1_2_7_27_1
  doi: 10.1029/2008GL035592
– ident: e_1_2_7_37_1
  doi: 10.5194/tc-6-1019-2012
– ident: e_1_2_7_24_1
  doi: 10.1017/S0022143000003075
– ident: e_1_2_7_5_1
– ident: e_1_2_7_14_1
  doi: 10.1038/ngeo2388
– ident: e_1_2_7_19_1
  doi: 10.1002/2015GL065701
– ident: e_1_2_7_17_1
  doi: 10.1038/ncomms3857
– ident: e_1_2_7_33_1
  doi: 10.1126/science.1235798
– ident: e_1_2_7_7_1
  doi: 10.1126/science.1110662
– ident: e_1_2_7_40_1
  doi: 10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2
– volume-title: Model Selection and Multimodel Inference
  year: 2002
  ident: e_1_2_7_6_1
– ident: e_1_2_7_18_1
  doi: 10.1029/2011GL050713
– ident: e_1_2_7_15_1
  doi: 10.5194/os-10-267-2014
– ident: e_1_2_7_44_1
  doi: 10.1002/2014GL061052
– ident: e_1_2_7_47_1
  doi: 10.1038/nature10114
– ident: e_1_2_7_13_1
  doi: 10.1017/S0954102090000323
– ident: e_1_2_7_32_1
  doi: 10.1126/science.1208336
– ident: e_1_2_7_3_1
  doi: 10.1016/S0967-0645(00)00038-2
– ident: e_1_2_7_2_1
  doi: 10.1029/2006GL026883
– ident: e_1_2_7_36_1
  doi: 10.1016/j.rse.2006.12.020
– ident: e_1_2_7_49_1
  doi: 10.3189/172756505781829007
– ident: e_1_2_7_10_1
  doi: 10.5194/gmdd-8-3653-2015
– ident: e_1_2_7_43_1
  doi: 10.1002/grl.50527
SSID ssj0003031
Score 2.4581788
Snippet Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed ice...
Abstract Totten Glacier has the largest ice discharge in East Antarctica and a basin grounded mostly below sea level. Satellite altimetry data have revealed...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6366
SubjectTerms Acceleration
Antarctica
Atmospherics
Climate
Climate models
Constants
Discharge
Dynamics
Geophysics
Glaciers
Ice
Ice cover
ice discharge
Ice thickness
Interferometry
Landsat
Landsat satellites
Marine
Mass
mass budget
Ocean temperature
Oceans
Radar
Radar data
Remote sensing
Satellite altimetry
Satellites
Sea level
Synthetic aperture radar
Temperature
Temperature effects
Thinning
Totten Glacier
Velocity
SummonAdditionalLinks – databaseName: Wiley Online Library Free Content
  dbid: WIN
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9VAEF5KseCL14pHa1lBn9rQZLObzT7W0h4L5SDS0r6F2UtEOCZykir-e2c2aTyFWhDzFHZnl73NzLeXmWHsHepwaWupk2CVSaQLPjHelEkdCqMM2NxYF4NN6MWivLoyn8YDN7KFGfxDTAduxBlRXhODg-0O_jgNRc1VzM_SAvcb5OwzkxkFMLg8XUyCGKXzEDDPyKQUuhjfvWPxg_XCtzRSdNx_C22uY9aodE4e_29zn7BHI9zkh8P6eMo2QvOMbc1jON9f-BcfgLruObs4dYHXy_Yn90OM-o5D4_k3xNZ8ic3mbc3P2x4RNp8vAQXCap8fQ9fzw6ZHXqET8X1OtiqcnkfxvuXYFLXNLk6Oz48-JmPIhQQUfkkA3HAE7VXpQ-GlL71xgJiBtkXSpcqForB1HpzQIKSrvc9SnyknlVdARqov2GbTNuEl4xaMEKlVaa2VDEaDz3webOqg1HmWw4zt3Qx75UZ_5BQWY1kNnpRFtT5kM_Z-ov4--OH4C90HmsGJhrxnx4R29aUambES4LETUjuVSwkARishwaSB9pfWZzO2czP_1cjSXZWV0YwZEdXd2QY7pQoEBTP2dspGXqULGGhCex2roGtl1D_30WAtFGfR4ADFBXVvf6v55zMEwbl69U_Ur9lDSqc3b6LcYZv96jq8YQ_cj_5rt9qNbPQb0G0WOQ
  priority: 102
  providerName: Wiley-Blackwell
Title Ice flow dynamics and mass loss of Totten Glacier, East Antarctica, from 1989 to 2015
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GL069173
https://www.proquest.com/docview/1803935782
https://www.proquest.com/docview/1931356341
https://www.proquest.com/docview/1808706762
https://www.proquest.com/docview/1835605939
https://doaj.org/article/2adbf347c5344aaa97524a90e3014bd1
Volume 43
WOSCitedRecordID wos000380910100055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hDSRe0PgSHWMyEjyxiMSx4_hxwFomVRWaVrG36PwRCakkU5OB-O85O2nVSTBeyFMSW459vvPdxef7AbwhHS5MLVTijdSJsN4l2ukyqX2hpUaTa2Mj2IRaLMqrK_1lB-orxIQN6YEHwr3n6EydC2VlLgQiaiW5QJ364AsYFx0fsno2ztS4BtPCPGDlaZGUXBVjyDuJP3n7WTGbpwX5KfktZRRz9t8yNHfN1ahvpgfwaDQU2enQwcdwzzdP4MEsAvH-orsYumm7p7A8t57Vq_YncwO6fMewcew7WcVsRV9lbc0u255sYzZbIYny-oSdYdez06YnLg__sk9YOGXCQmAT61tGfZfPYDk9u_z4ORnBEhKUdCUeyVXwysnS-cIJVzptkbR9cGiETaX1RUGE9JYr5MLWzmWpy6QV0kkMx0ufw17TNv4FMIOa89TItFZSeK3QZS73JrVYqjzLcQLvNlSr7JhJPABarKohBzKvdmk8gbfb2tdDBo2_1PsQJmBbJ-S9ji-IG6qRG6p_ccMEjjbTV43C2FVZGQ8gky3052JNg5IFqfMJvN4Wk5SFrRNsfHsTmwgbwqQ57qpDrQSERE0Eipxz53ir2cWczNdcHv6Pgb-Eh6HxEMTGyyPY69c3_hXctz_6b936OArHMex_upgu5_T09XzxGzFhDQg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMqFZysWChgJTjRqHnYcHwtqtyuWFUJb0Zs1sR2EtCRok4L498w4adhKUAmRUxSPLdvxeL7xYz7GXqINF2UlVORLqSNhvYu000VU-VxLDWWmSxvIJtRiUZyd6Q8DzyndhenjQ4wLbqQZYb4mBacF6YPfUUPRdOXTeZyjw5FdZzcEYg3ibvg0W4xTMc7PPWWeFlGRqnw4-Y75DzZzX7JJIXT_Jby5iVqD2Tm--98VvsfuDIiTH_ZD5D675usH7NY0MPr-xLdwBtS2D9npzHperZof3PU09S2H2vGvCK_5CuvNm4ovmw5BNp-uAOeE9T4_grbjh3WH6kKL4vucrqtwOiHFu4ZjVeQOOz0-Wr49iQbWhQgkPpEH9Dm8crJwPnfCFU5bQNhAnpGwsbQ-z8sq8zZVkApbOZfELpFWSCeB7qnusq26qf0jxkvQaRqXMq6UFF4rcInLfBlbKFSWZDBhry_63dghJDkxY6xMH0w5NZtdNmGvRulvfSiOv8i9oV84ylAA7fChWX82gz6aFBw2QigrMyEAQCuZCtCxJxezdMmE7V0MADNodWuSItxkRlD152SNjZI54oIJezEmo7rSHgzUvjkPRdDOMpqgq2SwFKJa1NhBYURd2V4z_ThHHJzJx_8k_Zxtnyzfz818tnj3hN0mGToClxZ7bKtbn_un7Kb93n1p18-CTv0CSZ8aVw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFiouvCsWChgJTjRqHnYcHwvtLhWrVVV1pd6iie2gStuk2qSg_vuOnTRsJaiEyClKJpbteGY-2-P5AD6SD-dFyWVgC6ECrq0JlFFZUNpUCYVFogrtySbkfJ6dnqqjnufUnYXp8kMMC25OM7y9dgpuL0y5-ztrKLmudDoLU5pwJPdhgzsemRFs7B9PFrPBGJOF7kjzFA-yWKZ97DuVsLv-_S2v5JP330Kc67jVO57Jk_-u8lN43GNOttcNkmdwz1bP4eHUc_pe0Z2PAtXNC1gcasvKZf2LmY6ovmFYGXZOAJstqd6sLtlJ3RLMZtMlklVY7bADbFq2V7WkMG5ZfIe5AyvMxUixtmZUFfESFpODk6_fgp53IUBBV2CRZh1WGpEZmxpuMqM0EnBwcyOuQ6FtmhZlYnUsMea6NCYKTSQ0F0agO6m6BaOqruwrYAWqOA4LEZZScKskmsgktgg1ZjKJEhzD55t-z3WflNxxYyzzLp1ynK932Rg-DdIXXTKOv8h9cb9wkHEptP2DevUj7zUyj9FQI7jUIuEcEZUUMUcVWjfJLEw0hu2bAZD3et3kUebPMhOs-vNrRY0SKSGDMXwYXpPCul0YrGx96Ytwe8vkhO6SoVIc2aKiDvIj6s725tPjGSHhRLz-J-n3sHm0P8lnh_Pvb-CRE3ExcHG2DaN2dWnfwgP9sz1rVu96pboGMLsbAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ice+flow+dynamics+and+mass+loss+of+Totten+Glacier%2C+East+Antarctica%2C+from+1989+to+2015&rft.jtitle=Geophysical+research+letters&rft.au=Xin+Li&rft.au=Eric+Rignot&rft.au=Jeremie+Mouginot&rft.au=Bernd+Scheuchl&rft.date=2016-06-28&rft.pub=Wiley&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=43&rft.issue=12&rft.spage=6366&rft.epage=6373&rft_id=info:doi/10.1002%2F2016GL069173&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2adbf347c5344aaa97524a90e3014bd1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon