HyMaTZ: A Python Program for Modeling Seismic Velocities in Hydrous Regions of the Mantle Transition Zone

Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone...

Full description

Saved in:
Bibliographic Details
Published in:Geochemistry, geophysics, geosystems : G3 Vol. 19; no. 8; pp. 2308 - 2324
Main Authors: Wang, Fei, Barklage, Mitchell, Lou, Xiaoting, Lee, Suzan, Bina, Craig R., Jacobsen, Steven D.
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01.08.2018
Wiley
Subjects:
ISSN:1525-2027, 1525-2027
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic‐velocity models. The influence of water is applied through a regression to experimental data on how H2O influences the thermoelastic properties of (Mg,Fe)2SiO4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H2O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in VS as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low‐velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/or an alternative compositional model is required. Plain Language Summary Olivine and its high‐pressure polymorphs, wadsleyite and ringwoodite, constitute at least half of the material in the Earth's upper mantle. In addition to magnesium, iron, silicon, and oxygen, these phases are known for their ability to incorporate H2O. Water is incorporated into their crystal structures as OH (hydroxyl) defects, charge‐balanced primarily by cation vacancies. Hydration of olivine, wadsleyite, and ringwoodite through such defects modifies their density and elastic properties such as the bulk (K) and shear (G) moduli, which can lead to changes in seismic velocities as determined from analyses of seismograms using methods such as seismic tomography. This paper presents a tool for researchers to calculate and graph the influence of hydration in olivine, wadsleyite, and ringwoodite for comparison to any seismic‐velocity model. While Hydrous Mantle Transition Zone accounts for elastic property changes due to hydration, the effect of water on thermodynamic phase proportions is not yet included. The goal of such studies is to assess the amount and regional distribution of water in the mantle transition zone. Key Points HyMaTZ calculates seismic velocity profiles for different states of hydration in the transition zone In the upper MTZ, adding 1.65 wt% H2O, 7 mol% Fe, or increasing temperature by 160 K cause roughly equivalent reductions in VS Velocities within the eastern U.S. low‐velocity anomaly are consistent with ~1 wt% H2O in wadsleyite along a 1600 K adiabat
AbstractList Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic‐velocity models. The influence of water is applied through a regression to experimental data on how H2O influences the thermoelastic properties of (Mg,Fe)2SiO4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H2O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in VS as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low‐velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/or an alternative compositional model is required. Plain Language Summary Olivine and its high‐pressure polymorphs, wadsleyite and ringwoodite, constitute at least half of the material in the Earth's upper mantle. In addition to magnesium, iron, silicon, and oxygen, these phases are known for their ability to incorporate H2O. Water is incorporated into their crystal structures as OH (hydroxyl) defects, charge‐balanced primarily by cation vacancies. Hydration of olivine, wadsleyite, and ringwoodite through such defects modifies their density and elastic properties such as the bulk (K) and shear (G) moduli, which can lead to changes in seismic velocities as determined from analyses of seismograms using methods such as seismic tomography. This paper presents a tool for researchers to calculate and graph the influence of hydration in olivine, wadsleyite, and ringwoodite for comparison to any seismic‐velocity model. While Hydrous Mantle Transition Zone accounts for elastic property changes due to hydration, the effect of water on thermodynamic phase proportions is not yet included. The goal of such studies is to assess the amount and regional distribution of water in the mantle transition zone. Key Points HyMaTZ calculates seismic velocity profiles for different states of hydration in the transition zone In the upper MTZ, adding 1.65 wt% H2O, 7 mol% Fe, or increasing temperature by 160 K cause roughly equivalent reductions in VS Velocities within the eastern U.S. low‐velocity anomaly are consistent with ~1 wt% H2O in wadsleyite along a 1600 K adiabat
Abstract Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic‐velocity models. The influence of water is applied through a regression to experimental data on how H2O influences the thermoelastic properties of (Mg,Fe)2SiO4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H2O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in VS as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low‐velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/or an alternative compositional model is required.
Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic‐velocity models. The influence of water is applied through a regression to experimental data on how H 2 O influences the thermoelastic properties of (Mg,Fe) 2 SiO 4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H 2 O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in V S as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low‐velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/or an alternative compositional model is required. Olivine and its high‐pressure polymorphs, wadsleyite and ringwoodite, constitute at least half of the material in the Earth's upper mantle. In addition to magnesium, iron, silicon, and oxygen, these phases are known for their ability to incorporate H 2 O. Water is incorporated into their crystal structures as OH (hydroxyl) defects, charge‐balanced primarily by cation vacancies. Hydration of olivine, wadsleyite, and ringwoodite through such defects modifies their density and elastic properties such as the bulk ( K ) and shear ( G ) moduli, which can lead to changes in seismic velocities as determined from analyses of seismograms using methods such as seismic tomography. This paper presents a tool for researchers to calculate and graph the influence of hydration in olivine, wadsleyite, and ringwoodite for comparison to any seismic‐velocity model. While Hydrous Mantle Transition Zone accounts for elastic property changes due to hydration, the effect of water on thermodynamic phase proportions is not yet included. The goal of such studies is to assess the amount and regional distribution of water in the mantle transition zone. HyMaTZ calculates seismic velocity profiles for different states of hydration in the transition zone In the upper MTZ, adding 1.65 wt% H 2 O, 7 mol% Fe, or increasing temperature by 160 K cause roughly equivalent reductions in V S Velocities within the eastern U.S. low‐velocity anomaly are consistent with ~1 wt% H 2 O in wadsleyite along a 1600 K adiabat
Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic‐velocity models. The influence of water is applied through a regression to experimental data on how H2O influences the thermoelastic properties of (Mg,Fe)2SiO4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H2O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in VS as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low‐velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/or an alternative compositional model is required.
Author Jacobsen, Steven D.
Wang, Fei
Lee, Suzan
Barklage, Mitchell
Bina, Craig R.
Lou, Xiaoting
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0002-8316-454X
  surname: Wang
  fullname: Wang, Fei
  email: feiwang2020@u.northwestern.edu
  organization: Northwestern University
– sequence: 2
  givenname: Mitchell
  surname: Barklage
  fullname: Barklage, Mitchell
  organization: Northwestern University
– sequence: 3
  givenname: Xiaoting
  orcidid: 0000-0001-9206-1385
  surname: Lou
  fullname: Lou, Xiaoting
  organization: Northwestern University
– sequence: 4
  givenname: Suzan
  orcidid: 0000-0003-1884-1185
  surname: Lee
  fullname: Lee, Suzan
  organization: Northwestern University
– sequence: 5
  givenname: Craig R.
  orcidid: 0000-0001-5946-3737
  surname: Bina
  fullname: Bina, Craig R.
  organization: Northwestern University
– sequence: 6
  givenname: Steven D.
  orcidid: 0000-0002-9746-958X
  surname: Jacobsen
  fullname: Jacobsen, Steven D.
  organization: Northwestern University
BookMark eNp9kU9rGzEQxUVJoInTWz-AoNe61d_Vbm_BJOtATELi9OCL0K5GjsxaSqU1Yb9913UpppCcZhh-895j5hydhBgAoc-UfKOEVd8ZoWU9I0SJQnxAZ1QyOWWEqZOj_iM6z3lDCBVSlmfIz4eFWa5-4Et8P_TPMeD7FNfJbLGLCS-ihc6HNX4En7e-xT-hi63vPWTsA54PNsVdxg-w9jFkHB3unwEvTOg7wMtkQh7ZUXM15rxAp850GT79rRP0dH21nM2nt3f1zezydmqkFGoqHbetrDhzygEriG1sQ8qKF9KWTVM5Z42r9j2BwpECuCh4K6AhjnJV0pZP0M1B10az0S_Jb00adDRe_xnEtNYm9b7tQIvKKWlk66y1grGypCCVopZKYHvzUevLQeslxV87yL3exF0KY3zNKKVCqFLIkfp6oNoUc07g_rlSoveP0cePGXH2Hz5e1Ozv1Cfju7eW-GHp1XcwvGug67q-YrTgiv8GHC2gIw
CitedBy_id crossref_primary_10_1016_j_epsl_2022_117441
crossref_primary_10_1002_gj_5045
crossref_primary_10_1016_j_jseaes_2024_106316
crossref_primary_10_1016_j_epsl_2020_116240
crossref_primary_10_1016_j_tecto_2025_230834
crossref_primary_10_2138_am_2022_8380
crossref_primary_10_1016_j_sesci_2020_08_003
crossref_primary_10_1016_j_epsl_2020_116626
crossref_primary_10_1016_j_tecto_2023_229723
crossref_primary_10_1016_j_tecto_2022_229248
crossref_primary_10_1016_j_epsl_2022_117867
crossref_primary_10_1016_j_gsf_2020_08_012
crossref_primary_10_1029_2022GL101213
crossref_primary_10_1016_j_epsl_2024_118838
crossref_primary_10_1029_2020JB019381
crossref_primary_10_1029_2022JB025035
Cites_doi 10.1016/j.epsl.2008.04.041
10.1029/RG014i004p00541
10.1016/j.pepi.2006.02.002
10.2138/am.2005.1751
10.1029/2000JB000049
10.2138/rmg.2006.62.11
10.2138/am‐2000‐2‐306
10.1002/2014GC005627
10.1029/JB074i025p05961
10.1007/s00410‐011‐0675‐7
10.1007/978-1-4612-4928-3_7
10.1029/1999JB900300
10.2138/am.2011.3807
10.1029/2001JB000317
10.1002/2014GC005588
10.1016/j.epsl.2007.01.023
10.1029/2009GL038660
10.1016/j.epsl.2010.11.038
10.1007/BF00223318
10.1016/S0012-821X(97)00010-1
10.1029/2005GL023453
10.1007/s004100050161
10.1002/2015GL063436
10.2138/am-2003-8-913
10.1098/rsta.2002.1077
10.1016/j.epsl.2010.02.025
10.1111/j.1365‐246X.2005.02642.x
10.1029/96JB01266
10.2138/am‐2003‐1025
10.1038/nature13080
10.1016/0031‐9201(75)90017‐5
10.1111/j.1365‐246X.1991.tb06724.x
10.1029/94JB00042
10.1146/annurev.earth.34.031405.125211
10.1126/science.260.5113.1487
10.1016/j.epsl.2012.03.001
10.1016/0022‐5096(63)90060‐7
10.1016/S0031‐9201(03)00022‐0
10.1029/2001GL014418
10.1016/j.epsl.2006.06.014
10.1029/2008JB005949
10.1146/annurev.ea.20.050192.002523
10.1029/GM168
10.1029/97JB01168
10.1016/j.pepi.2004.09.007
10.1080/08957950802296287
10.1029/157GM05
10.1016/S0012‐821X(98)00034‐X
10.1146/annurev.earth.36.031207.124244
10.1029/93GL01767
10.1029/91JB02675
10.1029/2006GL026441
10.1016/j.pepi.2015.11.005
10.1016/S0012‐821X(98)00063‐6
10.1029/168GM14
10.1016/j.epsl.2005.04.022
10.1016/j.epsl.2008.08.012
10.1785/0220160186
10.1016/S0031‐9201(03)00156‐0
10.1073/pnas.0608609104
10.1007/s11430‐016‐5277‐9
10.1016/j.pepi.2008.01.003
10.1016/j.pepi.2003.08.011
10.1126/science.1083636
10.1016/j.pepi.2003.09.015
10.1016/j.pepi.2007.02.010
10.1029/97JB00682
10.1180/0026461056930248
10.1016/j.pepi.2010.06.014
10.1016/j.pepi.2008.10.020
10.1111/j.1365‐246X.1979.tb04790.x
10.1111/j.1365‐246X.2010.04890.x
10.1016/j.pepi.2006.08.004
10.1029/98JB01819
10.1126/science.268.5207.74
10.1002/2016GL068239
10.1038/320321a0
10.1016/S0031‐9201(01)00192‐3
10.1126/science.1253358
10.1126/sciadv.1603024
10.1111/j.1365‐246X.1995.tb03540.x
10.1029/93RG01249
10.1029/2001GL014429
10.1016/0012‐821X(67)90114‐8
10.1029/2009GC002540
10.1007/BF00691869
10.1093/gji/ggu334
10.1038/386578a0
10.1093/petrology/egt035
10.2138/rmg.2006.62.14
10.1002/2013GC005122
10.1016/j.epsl.2005.04.033
10.1145/76909.76913
10.1029/2003JB002610
10.1016/j.epsl.2014.05.014
10.2138/am‐2000‐2‐305
10.1038/nature09401
10.1029/2004JB003162
10.1029/2007GC001834
10.1016/0012‐821X(87)90233‐0
10.2138/am.2012.4010
10.1002/2015JB012123
10.1029/97GL03217
10.1029/2008GL034398
10.1029/RG028i004p00399
10.1016/j.pepi.2010.08.003
10.2138/am.2012.3869
10.1002/2015GL067097
10.1029/2008GL035618
10.1029/JB074i025p05949
10.1098/rsta.1981.0025
10.1016/j.pepi.2003.07.018
10.1002/2014GL061231
ContentType Journal Article
Copyright 2018. American Geophysical Union. All Rights Reserved.
2018. American Geophysical Union. All rights reserved.
Copyright_xml – notice: 2018. American Geophysical Union. All Rights Reserved.
– notice: 2018. American Geophysical Union. All rights reserved.
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOA
DOI 10.1029/2018GC007464
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1525-2027
EndPage 2324
ExternalDocumentID oai_doaj_org_article_49f75a5cfddd422881e5771d15e2fe26
10_1029_2018GC007464
GGGE21637
Genre article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  funderid: EAR‐1452344
GroupedDBID 05W
0R~
1OC
24P
31~
3V.
50Y
5GY
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AANHP
AAYCA
AAZKR
ABCUV
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACGFS
ACGOD
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D1J
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OK1
P-X
P2W
PCBAR
PQQKQ
PROAC
Q2X
R.K
ROL
SUPJJ
UB1
WBKPD
WYJ
ZZTAW
~02
~OA
AAFWJ
AAMMB
AAYXX
AEFGJ
AFFHD
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
WIN
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a5547-5f3dc5932f7fe260dbdb089365d8bb9ffdaf95d8b0e6f06e3463c4eb0f13781c3
IEDL.DBID WIN
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452122500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1525-2027
IngestDate Fri Oct 03 12:53:45 EDT 2025
Wed Aug 13 11:31:55 EDT 2025
Sat Nov 29 05:12:58 EST 2025
Tue Nov 18 22:37:22 EST 2025
Wed Jan 22 16:33:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5547-5f3dc5932f7fe260dbdb089365d8bb9ffdaf95d8b0e6f06e3463c4eb0f13781c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1884-1185
0000-0002-9746-958X
0000-0001-9206-1385
0000-0002-8316-454X
0000-0001-5946-3737
OpenAccessLink https://doaj.org/article/49f75a5cfddd422881e5771d15e2fe26
PQID 2111447845
PQPubID 54722
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_49f75a5cfddd422881e5771d15e2fe26
proquest_journals_2111447845
crossref_primary_10_1029_2018GC007464
crossref_citationtrail_10_1029_2018GC007464
wiley_primary_10_1029_2018GC007464_GGGE21637
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geochemistry, geophysics, geosystems : G3
PublicationYear 2018
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2007; 104
2006; 34
2006; 33
2017; 88
2010; 467
2000; 85
1993; 20
2008; 35
2010; 183
1998; 159
1975; 10
2010; 182
1998; 157
2009; 114
2012; 97
2005; 69
1997; 147
2014; 402
2009; 10
2013; 54
1993; 31
1997; 386
2008; 28
2016; 43
2014; 15
1986
1994; 79
1995; 122
1991; 105
2004; 143
2007; 162
2005; 90
2005; 236
2015; 120
1997; 24
1981; 25
2009; 174
2014; 41
1996; 123
2011; 301
1981; 299
2002; 360
1990; 28
2000; 105
1967; 2
1994; 99
2010; 293
1995; 268
1992; 20
2012; 40
2012; 163
2017; 3
1987; 72
1969; 74
2008; 9
2011; 96
1992; 97
1996; 101
2001; 106
1997; 102
2007; 256
1987; 86
2012; 331
2006; 62
2004; 143‐144
2015; 42
2005; 148
2002; 107
2005; 32
1983; 60
2006; 248
2008; 275
2008; 273
2003; 88
2001; 124
1979; 57
2015; 16
2003; 138
1993; 260
2006
2005
2004; 109
2014; 199
2008; 166
2006; 159
2003; 136
2016; 59
2006; 156
2009; 36
2014; 507
1976; 14
2005; 162
2002; 29
1963; 11
1986; 320
1998; 103
1989; 15
2011; 184
1989; 16
2003; 300
2016; 250
2014; 344
e_1_2_6_114_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_110_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_101_1
Smyth J. R. (e_1_2_6_91_1) 1994; 79
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_112_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_111_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
Smyth J. R. (e_1_2_6_90_1) 1987; 72
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 236
  start-page: 167
  issue: 1‐2
  year: 2005
  end-page: 181
  article-title: Storage capacity of H O in nominally anhydrous minerals in the upper mantle
  publication-title: Earth and Planetary Science Letters
– volume: 301
  start-page: 413
  issue: 3–4
  year: 2011
  end-page: 423
  article-title: Water distribution across the mantle transition zone and its implications for global material circulation
  publication-title: Earth and Planetary Science Letters
– volume: 360
  start-page: 2475
  issue: 1800
  year: 2002
  end-page: 2491
  article-title: Mantle shear‐wave tomography and the fate of subducted slabs
  publication-title: Philosophical Transactions of the Royal Society A
– volume: 34
  start-page: 629
  issue: 1
  year: 2006
  end-page: 653
  article-title: Water, melting, and the deep Earth H O cycle
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 138
  start-page: 197
  issue: 3–4
  year: 2003
  end-page: 222
  article-title: Inferring upper‐mantle temperatures from seismic velocities
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 467
  start-page: 828
  issue: 7317
  year: 2010
  end-page: 831
  article-title: Seismic evidence of negligible water carried below 400‐km depth in subducting lithosphere
  publication-title: Nature
– volume: 3
  issue: 6
  year: 2017
  article-title: A nearly water‐saturated mantle transition zone inferred from mineral viscosity
  publication-title: Science Advances
– volume: 109
  year: 2004
  article-title: Global transition zone tomography
  publication-title: Journal of Geophysical Research
– volume: 507
  start-page: 221
  issue: 7491
  year: 2014
  end-page: 224
  article-title: Hydrous mantle transition zone indicated by ringwoodite included within diamond
  publication-title: Nature
– volume: 59
  start-page: 873
  issue: 5
  year: 2016
  end-page: 888
  article-title: Effect of hydration on the elasticity of mantle minerals and its geophysical implications
  publication-title: Science China Earth Sciences
– volume: 184
  start-page: 1180
  issue: 3
  year: 2011
  end-page: 1213
  article-title: Thermodynamics of mantle minerals—II. Phase equilibria
  publication-title: Geophysical Journal International
– start-page: 67
  year: 2005
  end-page: 80
– volume: 20
  start-page: 1623
  issue: 15
  year: 1993
  end-page: 1626
  article-title: Importance of anelasticity in the interpretation of seismic tomography
  publication-title: Geophysical Research Letters
– volume: 157
  start-page: 193
  issue: 3–4
  year: 1998
  end-page: 207
  article-title: Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle
  publication-title: Earth and Planetary Science Letters
– volume: 105
  start-page: 11,153
  issue: B5
  year: 2000
  end-page: 11,169
  article-title: Shallow mantle temperatures under Europe from and wave tomography
  publication-title: Journal of Geophysical Research
– volume: 25
  start-page: 297
  issue: 4
  year: 1981
  end-page: 356
  article-title: Preliminary reference Earth model
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 35
  year: 2008
  article-title: Effects of hydration on the elastic properties of olivine
  publication-title: Geophysical Research Letters
– volume: 174
  start-page: 98
  issue: 1‐4
  year: 2009
  end-page: 104
  article-title: Elasticity of (Mg Fe ) SiO wadsleyite to 12 GPa and 1073 K
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 299
  start-page: 319
  issue: 1449
  year: 1981
  end-page: 356
  article-title: A model of dislocation‐controlled rheology for the mantle
  publication-title: Philosophical Transactions of the Royal Society A
– volume: 28
  start-page: 399
  issue: 4
  year: 1990
  end-page: 421
  article-title: Defect microdynamics in minerals and solid‐state mechanisms of seismic wave attenuation and velocity dispersion in the mantle
  publication-title: Reviews of Geophysics
– volume: 102
  start-page: 22,815
  issue: B10
  year: 1997
  end-page: 22,838
  article-title: Upper mantle S velocity structure of North America
  publication-title: Journal of Geophysical Research
– volume: 60
  start-page: 217
  issue: 3‐4
  year: 1983
  end-page: 222
  article-title: The effects of 5‐minute ischemia in Mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus
  publication-title: Acta Neuropathologica
– volume: 88
  start-page: 1608
  issue: 10
  year: 2003
  end-page: 1611
  article-title: Elastic properties of hydrous ringwoodite
  publication-title: American Mineralogist
– volume: 9
  year: 2008
  article-title: Integrated geophysical‐petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 293
  start-page: 250
  issue: 3–4
  year: 2010
  end-page: 258
  article-title: Velocity crossover between hydrous and anhydrous forsterite at high pressures
  publication-title: Earth and Planetary Science Letters
– volume: 29
  issue: 10
  year: 2002
  article-title: The effect of water on the 410‐km discontinuity: An experimental study
  publication-title: Geophysical Research Letters
– volume: 344
  start-page: 1265
  issue: 6189
  year: 2014
  end-page: 1268
  article-title: Dehydration melting at the top of the lower mantle
  publication-title: Science
– volume: 114
  year: 2009
  article-title: velocity variations beneath North America
  publication-title: Journal of Geophysical Research
– volume: 16
  start-page: 40
  year: 2015
  end-page: 58
  article-title: The mantle transition zone beneath West Antarctica: Seismic evidence for hydration and thermal upwellings
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 402
  start-page: 26
  year: 2014
  end-page: 41
  article-title: Imaging the North American continent using waveform inversion of global and USArray data
  publication-title: Earth and Planetary Science Letters
– volume: 96
  start-page: 1606
  issue: 10
  year: 2011
  end-page: 1612
  article-title: Effect of hydration on the single‐crystal elasticity of Fe‐bearing wadsleyite to 12 GPa
  publication-title: American Mineralogist
– volume: 143
  start-page: 255
  year: 2004
  end-page: 269
  article-title: Water transport into the deep mantle and formation of a hydrous transition zone
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 42
  start-page: 3289
  year: 2015
  end-page: 3297
  article-title: Elastic wave velocities of peridotite KLB‐1 at mantle pressures and implications for mantle velocity modeling
  publication-title: Geophysical Research Letters
– volume: 143‐144
  start-page: 271
  year: 2004
  end-page: 278
  article-title: High‐pressure crystal chemistry of hydrous ringwoodite and water in the Earth's interior
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 41
  start-page: 6342
  year: 2014
  end-page: 6349
  article-title: and wave tomography of the mantle beneath the United States
  publication-title: Geophysical Research Letters
– volume: 124
  start-page: 105
  issue: 1–2
  year: 2001
  end-page: 117
  article-title: Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 300
  start-page: 1556
  issue: 5625
  year: 2003
  end-page: 1558
  article-title: Seismic evidence for water deep in earth's upper mantle
  publication-title: Science
– volume: 97
  start-page: 1483
  issue: 8–9
  year: 2012
  end-page: 1493
  article-title: Ferric iron and water incorporation in wadsleyite under hydrous and oxidizing conditions: A XANES, Mössbauer, and SIMS study
  publication-title: American Mineralogist
– volume: 69
  start-page: 229
  issue: 03
  year: 2005
  end-page: 257
  article-title: Water in the Earth's mantle
  publication-title: Mineralogical Magazine
– volume: 33
  year: 2006
  article-title: Elastic properties of hydrous ringwoodite at high‐pressure conditions
  publication-title: Geophysical Research Letters
– volume: 24
  start-page: 3265
  issue: 24
  year: 1997
  end-page: 3268
  article-title: Elasticity of natural majorite and ringwoodite from the Catherwood meteorite
  publication-title: Geophysical Research Letters
– volume: 156
  start-page: 89
  issue: 1‐2
  year: 2006
  end-page: 107
  article-title: Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35GPa, 1600 °C: Implications for water circulation in the Earth's deep mantle
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 20
  start-page: 527
  issue: 1
  year: 1992
  end-page: 552
  article-title: Calculation of elastic properties from thermodynamic equation of state principles
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 14
  start-page: 541
  issue: 4
  year: 1976
  end-page: 563
  article-title: The elastic properties of composite materials
  publication-title: Reviews of Geophysics
– volume: 166
  start-page: 167
  issue: 3‐4
  year: 2008
  end-page: 174
  article-title: Elastic wave velocities of (Mg Fe ) SiO ringwoodite under P‐T conditions of the mantle transition region
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 162
  start-page: 22
  issue: 1‐2
  year: 2007
  end-page: 31
  article-title: The elastic properties of β‐Mg 2 SiO 4 from 295 to 660K and implications on the composition of Earth's upper mantle
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 143
  start-page: 19
  year: 2004
  end-page: 31
  article-title: Ultrasonic measurements of the sound velocities in polycrystalline San Carlos olivine in multi‐anvil, high‐pressure apparatus
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 62
  start-page: 321
  issue: 1
  year: 2006
  end-page: 342
  article-title: Effect of water on the equation of state of nominally anhydrous minerals
  publication-title: Reviews in Mineralogy and Geochemistry
– volume: 106
  start-page: 30,579
  issue: B12
  year: 2001
  end-page: 30,591
  article-title: ‐ ‐ ‐ ‐ measurements on wadsleyite to 7 GPa and 873 K: Implications for the 410‐km seismic discontinuity
  publication-title: Journal of Geophysical Research
– volume: 90
  start-page: 1084
  issue: 7
  year: 2005
  end-page: 1091
  article-title: Pressure and temperature‐dependence of water solubility in Fe‐free wadsleyite
  publication-title: American Mineralogist
– volume: 74
  start-page: 5961
  issue: 25
  year: 1969
  end-page: 5972
  article-title: Elastic moduli, pressure derivatives, and temperature derivatives of single‐crystal olivine and single‐crystal forsterite
  publication-title: Journal of Geophysical Research
– volume: 88
  start-page: 1312
  issue: 8–9
  year: 2003
  end-page: 1317
  article-title: Compressional and shear wave velocities of ringwoodite γ‐Mg SiO4 to 12 GPa
  publication-title: American Mineralogist
– volume: 74
  start-page: 5949
  issue: 25
  year: 1969
  end-page: 5960
  article-title: Elastic constants of single‐crystal forsterite as a function of temperature and pressure
  publication-title: Journal of Geophysical Research
– volume: 99
  start-page: 11,591
  issue: B6
  year: 1994
  end-page: 11,621
  article-title: Mantle shear structure beneath the Americas and surrounding oceans
  publication-title: Journal of Geophysical Research
– volume: 320
  start-page: 321
  issue: 6060
  year: 1986
  end-page: 328
  article-title: Transition region of the Earth's uppper mantle
  publication-title: Nature
– volume: 136
  start-page: 41
  issue: 1–2
  year: 2003
  end-page: 66
  article-title: Single‐crystal elasticity of ringwoodite to high pressures and high temperatures: Implications for 520 km seismic discontinuity
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 199
  start-page: 1303
  issue: 3
  year: 2014
  end-page: 1327
  article-title: Whole‐mantle radially anisotropic shear velocity structure from spectral‐element waveform tomography
  publication-title: Geophysical Journal International
– volume: 85
  start-page: 296
  issue: 2
  year: 2000
  end-page: 303
  article-title: Sound velocities and elastic properties of γ‐Mg SiO to 873 K by Brillouin spectroscopy
  publication-title: American Mineralogist
– volume: 36
  year: 2009
  article-title: Correction to “Effects of hydration on the elastic properties of olivine”
  publication-title: Geophysical Research Letters
– volume: 331
  start-page: 112
  year: 2012
  end-page: 119
  article-title: Sound velocities of hydrous ringwoodite to 16 GPa and 673 K
  publication-title: Earth and Planetary Science Letters
– volume: 43
  start-page: 5026
  year: 2016
  end-page: 5034
  article-title: Uncertainty of mantle geophysical properties computed from phase equilibrium models
  publication-title: Geophysical Research Letters
– volume: 159
  start-page: 25
  issue: 1–2
  year: 1998
  end-page: 33
  article-title: Brillouin scattering and X‐ray diffraction of San Carlos olivine: Direct pressure determination to 32 GPa
  publication-title: Earth and Planetary Science Letters
– volume: 32
  year: 2005
  article-title: Elasticity of San Carlos olivine to 8 GPa and 1073 K
  publication-title: Geophysical Research Letters
– volume: 35
  year: 2008
  article-title: Elasticity of hydrous wadsleyite to 12 GPa: Implications for Earth's transition zone
  publication-title: Geophysical Research Letters
– volume: 101
  start-page: 17,535
  issue: B8
  year: 1996
  end-page: 17,545
  article-title: Sound velocity and elasticity of single‐crystal forsterite to 16 GPa
  publication-title: Journal of Geophysical Research
– volume: 97
  start-page: 573
  issue: 4
  year: 2012
  end-page: 582
  article-title: Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H O
  publication-title: American Mineralogist
– volume: 102
  start-page: 12,253
  issue: B6
  year: 1997
  end-page: 12,263
  article-title: The elastic constants of San Carlos olivine to 17 GPa
  publication-title: Journal of Geophysical Research
– volume: 10
  start-page: 12
  issue: 1
  year: 1975
  end-page: 48
  article-title: Parametrically simple Earth models consistent with geophysical data
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 182
  start-page: 107
  issue: 1–2
  year: 2010
  end-page: 112
  article-title: The temperature dependence of the elasticity of Fe‐bearing wadsleyite
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 148
  start-page: 353
  issue: 2‐4
  year: 2005
  end-page: 359
  article-title: Temperature dependence of the elastic moduli of ringwoodite
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 62
  start-page: 243
  issue: 1
  year: 2006
  end-page: 271
  article-title: The stability of hydrous mantle phases
  publication-title: Reviews in Mineralogy and Geochemistry
– volume: 248
  start-page: 715
  issue: 3‐4
  year: 2006
  end-page: 734
  article-title: Partitioning of water during melting of the Earth's upper mantle at H O‐undersaturated conditions
  publication-title: Earth and Planetary Science Letters
– volume: 11
  start-page: 127
  issue: 2
  year: 1963
  end-page: 140
  article-title: A variational approach to the theory of the elastic behaviour of multiphase materials
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 273
  start-page: 15
  issue: 1
  year: 2008
  end-page: 27
  article-title: The role of water in connecting past and future episodes of subduction
  publication-title: Earth and Planetary Science Letters
– volume: 275
  start-page: 70
  issue: 1–2
  year: 2008
  end-page: 79
  article-title: The effect of bulk composition and temperature on mantle seismic structure
  publication-title: Earth and Planetary Science Letters
– volume: 2
  start-page: 130
  issue: 2
  year: 1967
  end-page: 133
  article-title: High‐pressure reconnaissance investigations in the system Mg SiO ‐MgO‐H O
  publication-title: Earth and Planetary Science Letters
– volume: 15
  start-page: 1164
  year: 2014
  end-page: 1179
  article-title: BurnMan: A lower mantle mineral physics toolkit
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 104
  start-page: 9145
  issue: 22
  year: 2007
  end-page: 9150
  article-title: Indoor seismology by probing the Earth's interior by using sound velocity measurements at high pressures and temperatures
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  year: 2009
  article-title: The geodynamic equation of state: What and how
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 236
  start-page: 524
  issue: 1–2
  year: 2005
  end-page: 541
  article-title: Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation
  publication-title: Earth and Planetary Science Letters
– start-page: 131
  year: 2006
  end-page: 145
– volume: 260
  start-page: 1487
  issue: 5113
  year: 1993
  end-page: 1489
  article-title: Sound velocities in olivine at Earth mantle pressures
  publication-title: Science
– volume: 29
  issue: 18
  year: 2002
  article-title: Effect of water on olivine‐wadsleyite phase boundary in the (Mg, Fe) SiO system
  publication-title: Geophysical Research Letters
– volume: 183
  start-page: 245
  issue: 1–2
  year: 2010
  end-page: 251
  article-title: Water partitioning in the Earth's mantle
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 31
  start-page: 267
  issue: 3
  year: 1993
  end-page: 280
  article-title: Heat flow from the Earth's interior: Analysis of the global data set
  publication-title: Reviews of Geophysics
– volume: 54
  start-page: 1901
  issue: 9
  year: 2013
  end-page: 1920
  article-title: New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle
  publication-title: Journal of Petrology
– volume: 103
  start-page: 20,819
  issue: B9
  year: 1998
  end-page: 20,825
  article-title: Sound velocities and elastic properties of Fe‐bearing wadsleyite and ringwoodite
  publication-title: Journal of Geophysical Research
– volume: 250
  start-page: 46
  year: 2016
  end-page: 63
  article-title: Seismic signature of a hydrous mantle transition zone
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 16
  start-page: 684
  issue: 7
  year: 1989
  end-page: 692
  article-title: The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa
  publication-title: Physics and Chemistry of Minerals
– volume: 107
  issue: B3
  year: 2002
  article-title: Thermal structure of the North American uppermost mantle inferred from seismic tomography
  publication-title: Journal of Geophysical Research
– volume: 97
  start-page: 1871
  issue: B2
  year: 1992
  end-page: 1885
  article-title: High‐temperature elasticity of iron‐bearing olivines
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 345
  issue: 4
  year: 1996
  end-page: 357
  article-title: Solubility of water in the α, β and γ phases of (Mg, Fe) SiO
  publication-title: Contributions to Mineralogy and Petrology
– volume: 57
  start-page: 479
  issue: 2
  year: 1979
  end-page: 506
  article-title: Seismic structure of the upper mantle beneath the United States by three‐dimensional inversion of body wave arrival times
  publication-title: Geophysical Journal International
– volume: 79
  start-page: 1021
  year: 1994
  end-page: 1024
  article-title: A crystallographic model for hydrous wadsleyite (β‐Mg SiO ): An ocean in the Earth's interior?
  publication-title: American Mineralogist
– volume: 16
  start-page: 681
  year: 2015
  end-page: 704
  article-title: and velocity tomography of the Mariana subduction system from a combined land‐sea seismic deployment
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 162
  start-page: 610
  issue: 2
  year: 2005
  end-page: 632
  article-title: Thermodynamics of mantle minerals—I. Physical properties
  publication-title: Geophysical Journal International
– volume: 15
  start-page: 348
  issue: 4
  year: 1989
  end-page: 364
  article-title: Algorithm 676 ODRPACK: Software for weighted orthogonal distance regression
  publication-title: ACM Transactions on Mathematical Software
– volume: 147
  start-page: 9
  issue: 1–4
  year: 1997
  end-page: 15
  article-title: Single‐crystal elasticity of beta‐Mg SiO to the pressure of the 410 km seismic discontinuity in the Earth's mantle
  publication-title: Earth and Planetary Science Letters
– volume: 88
  start-page: 319
  issue: 2A
  year: 2017
  end-page: 325
  article-title: Model update May 2016: Upper‐mantle heterogeneity beneath North America from travel‐time tomography with global and USArray data
  publication-title: Seismological Research Letters
– volume: 122
  start-page: 108
  issue: 1
  year: 1995
  end-page: 124
  article-title: Constraints on seismic velocities in the Earth from traveltimes
  publication-title: Geophysical Journal International
– volume: 40
  start-page: 569
  issue: 1
  year: 2012
  end-page: 595
  article-title: Geophysics of chemical heterogeneity in the mantle
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 256
  start-page: 182
  issue: 1‐2
  year: 2007
  end-page: 195
  article-title: Experimental determination of the effect of H O on the 410‐km seismic discontinuity
  publication-title: Earth and Planetary Science Letters
– volume: 386
  start-page: 578
  issue: 6625
  year: 1997
  end-page: 584
  article-title: Evidence for deep mantle circulation from global tomography
  publication-title: Nature
– volume: 109
  year: 2004
  article-title: Single‐crystal elasticity of fayalite to 12 GPa
  publication-title: Journal of Geophysical Research
– start-page: 181
  year: 2006
  end-page: 193
– volume: 159
  start-page: 276
  issue: 3–4
  year: 2006
  end-page: 285
  article-title: The effect of iron on the elastic properties of ringwoodite at high pressure
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 86
  start-page: 365
  issue: 2–4
  year: 1987
  end-page: 376
  article-title: Phase‐transformations in a Harzburgite composition to 26 Gpa—Implications for dynamical behavior of the subducting slab
  publication-title: Earth and Planetary Science Letters
– volume: 85
  start-page: 292
  issue: 2
  year: 2000
  end-page: 295
  article-title: Sound velocities of wadsleyite β‐(Mg Fe ) SiO to 10 GPa
  publication-title: American Mineralogist
– volume: 43
  start-page: 2480
  year: 2016
  end-page: 2487
  article-title: Seismological detection of low‐velocity anomalies surrounding the mantle transition zone in Japan subduction zone
  publication-title: Geophysical Research Letters
– volume: 120
  start-page: 8259
  year: 2015
  end-page: 8280
  article-title: Comparative compressibility of hydrous wadsleyite and ringwoodite: Effect of H O and implications for detecting water in the transition zone
  publication-title: Journal of Geophysical Research: Solid Earth
– start-page: 251
  year: 1986
  end-page: 274
– year: 2006
– volume: 105
  start-page: 429
  issue: 2
  year: 1991
  end-page: 465
  article-title: Traveltimes for global earthquake location and phase identification
  publication-title: Geophysical Journal International
– volume: 163
  start-page: 297
  issue: 2
  year: 2012
  end-page: 316
  article-title: H O storage capacity of olivine and low‐Ca pyroxene from 10 to 13 GPa: Consequences for dehydration melting above the transition zone
  publication-title: Contributions to Mineralogy and Petrology
– volume: 28
  start-page: 405
  issue: 3
  year: 2008
  end-page: 413
  article-title: Compressional and shear wave velocities of Fe SiO spinel at high pressure and high temperature
  publication-title: High Pressure Research
– volume: 72
  start-page: 1051
  year: 1987
  end-page: 1055
  article-title: β‐Mg SiO : A potential host for water in the mantle
  publication-title: American Mineralogist
– volume: 268
  start-page: 74
  issue: 5207
  year: 1995
  end-page: 76
  article-title: The effect of H O on the 410‐kilometer seismic discontinuity
  publication-title: Science
– ident: e_1_2_6_104_1
  doi: 10.1016/j.epsl.2008.04.041
– ident: e_1_2_6_109_1
  doi: 10.1029/RG014i004p00541
– ident: e_1_2_6_60_1
  doi: 10.1016/j.pepi.2006.02.002
– ident: e_1_2_6_22_1
  doi: 10.2138/am.2005.1751
– volume: 72
  start-page: 1051
  year: 1987
  ident: e_1_2_6_90_1
  article-title: β‐Mg2SiO4: A potential host for water in the mantle
  publication-title: American Mineralogist
– ident: e_1_2_6_30_1
  doi: 10.1029/2000JB000049
– ident: e_1_2_6_27_1
  doi: 10.2138/rmg.2006.62.11
– ident: e_1_2_6_47_1
  doi: 10.2138/am‐2000‐2‐306
– ident: e_1_2_6_5_1
  doi: 10.1002/2014GC005627
– ident: e_1_2_6_61_1
  doi: 10.1029/JB074i025p05961
– ident: e_1_2_6_99_1
  doi: 10.1007/s00410‐011‐0675‐7
– ident: e_1_2_6_111_1
  doi: 10.1007/978-1-4612-4928-3_7
– ident: e_1_2_6_29_1
  doi: 10.1029/1999JB900300
– ident: e_1_2_6_70_1
  doi: 10.2138/am.2011.3807
– ident: e_1_2_6_65_1
  doi: 10.1029/2001JB000317
– ident: e_1_2_6_24_1
  doi: 10.1002/2014GC005588
– ident: e_1_2_6_28_1
  doi: 10.1016/j.epsl.2007.01.023
– ident: e_1_2_6_51_1
  doi: 10.1029/2009GL038660
– ident: e_1_2_6_54_1
  doi: 10.1016/j.epsl.2010.11.038
– ident: e_1_2_6_110_1
  doi: 10.1007/BF00223318
– ident: e_1_2_6_118_1
  doi: 10.1016/S0012-821X(97)00010-1
– volume: 79
  start-page: 1021
  year: 1994
  ident: e_1_2_6_91_1
  article-title: A crystallographic model for hydrous wadsleyite (β‐Mg2SiO4): An ocean in the Earth's interior?
  publication-title: American Mineralogist
– ident: e_1_2_6_67_1
  doi: 10.1029/2005GL023453
– ident: e_1_2_6_59_1
  doi: 10.1007/s004100050161
– ident: e_1_2_6_108_1
  doi: 10.1002/2015GL063436
– ident: e_1_2_6_62_1
  doi: 10.2138/am-2003-8-913
– ident: e_1_2_6_33_1
  doi: 10.1098/rsta.2002.1077
– ident: e_1_2_6_72_1
  doi: 10.1016/j.epsl.2010.02.025
– ident: e_1_2_6_95_1
  doi: 10.1111/j.1365‐246X.2005.02642.x
– ident: e_1_2_6_116_1
  doi: 10.1029/96JB01266
– ident: e_1_2_6_106_1
  doi: 10.2138/am‐2003‐1025
– ident: e_1_2_6_79_1
  doi: 10.1038/nature13080
– ident: e_1_2_6_21_1
  doi: 10.2138/am.2005.1751
– ident: e_1_2_6_23_1
  doi: 10.1016/0031‐9201(75)90017‐5
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1365‐246X.1991.tb06724.x
– ident: e_1_2_6_32_1
  doi: 10.1029/94JB00042
– ident: e_1_2_6_39_1
  doi: 10.1146/annurev.earth.34.031405.125211
– ident: e_1_2_6_115_1
  doi: 10.1126/science.260.5113.1487
– ident: e_1_2_6_74_1
  doi: 10.1016/j.epsl.2012.03.001
– ident: e_1_2_6_35_1
  doi: 10.1016/0022‐5096(63)90060‐7
– ident: e_1_2_6_87_1
  doi: 10.1016/S0031‐9201(03)00022‐0
– ident: e_1_2_6_92_1
  doi: 10.1029/2001GL014418
– ident: e_1_2_6_36_1
  doi: 10.1016/j.epsl.2006.06.014
– ident: e_1_2_6_6_1
  doi: 10.1029/2008JB005949
– ident: e_1_2_6_7_1
  doi: 10.1146/annurev.ea.20.050192.002523
– ident: e_1_2_6_52_1
  doi: 10.1029/GM168
– ident: e_1_2_6_103_1
  doi: 10.1029/97JB01168
– ident: e_1_2_6_75_1
  doi: 10.1016/j.pepi.2004.09.007
– ident: e_1_2_6_66_1
  doi: 10.1080/08957950802296287
– ident: e_1_2_6_102_1
  doi: 10.1029/157GM05
– ident: e_1_2_6_55_1
  doi: 10.1016/S0012‐821X(98)00034‐X
– ident: e_1_2_6_97_1
  doi: 10.1146/annurev.earth.36.031207.124244
– ident: e_1_2_6_53_1
  doi: 10.1029/93GL01767
– ident: e_1_2_6_44_1
  doi: 10.1029/91JB02675
– ident: e_1_2_6_107_1
  doi: 10.1029/2006GL026441
– ident: e_1_2_6_100_1
  doi: 10.1016/j.pepi.2015.11.005
– ident: e_1_2_6_117_1
  doi: 10.1016/S0012‐821X(98)00063‐6
– ident: e_1_2_6_19_1
  doi: 10.1029/168GM14
– ident: e_1_2_6_40_1
  doi: 10.1016/j.epsl.2005.04.022
– ident: e_1_2_6_113_1
  doi: 10.1016/j.epsl.2008.08.012
– ident: e_1_2_6_11_1
  doi: 10.1785/0220160186
– ident: e_1_2_6_12_1
  doi: 10.1016/S0031‐9201(03)00156‐0
– ident: e_1_2_6_64_1
  doi: 10.1073/pnas.0608609104
– ident: e_1_2_6_73_1
  doi: 10.1007/s11430‐016‐5277‐9
– ident: e_1_2_6_37_1
  doi: 10.1016/j.pepi.2008.01.003
– ident: e_1_2_6_93_1
  doi: 10.1016/j.pepi.2003.08.011
– ident: e_1_2_6_105_1
  doi: 10.1126/science.1083636
– ident: e_1_2_6_77_1
  doi: 10.1016/j.pepi.2003.09.015
– ident: e_1_2_6_46_1
  doi: 10.1016/j.pepi.2007.02.010
– ident: e_1_2_6_2_1
  doi: 10.1029/97JB00682
– ident: e_1_2_6_9_1
  doi: 10.1180/0026461056930248
– ident: e_1_2_6_45_1
  doi: 10.1016/j.pepi.2010.06.014
– ident: e_1_2_6_68_1
  doi: 10.1016/j.pepi.2008.10.020
– ident: e_1_2_6_83_1
  doi: 10.1111/j.1365‐246X.1979.tb04790.x
– ident: e_1_2_6_96_1
  doi: 10.1111/j.1365‐246X.2010.04890.x
– ident: e_1_2_6_38_1
  doi: 10.1016/j.pepi.2006.08.004
– ident: e_1_2_6_89_1
  doi: 10.1029/98JB01819
– ident: e_1_2_6_112_1
  doi: 10.1126/science.268.5207.74
– ident: e_1_2_6_49_1
  doi: 10.1029/GM168
– ident: e_1_2_6_17_1
  doi: 10.1002/2016GL068239
– ident: e_1_2_6_4_1
  doi: 10.1038/320321a0
– ident: e_1_2_6_78_1
  doi: 10.1016/S0031‐9201(01)00192‐3
– ident: e_1_2_6_85_1
  doi: 10.1126/science.1253358
– ident: e_1_2_6_25_1
  doi: 10.1126/sciadv.1603024
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1365‐246X.1995.tb03540.x
– ident: e_1_2_6_80_1
  doi: 10.1029/93RG01249
– ident: e_1_2_6_14_1
  doi: 10.1029/2001GL014429
– ident: e_1_2_6_81_1
  doi: 10.1016/0012‐821X(67)90114‐8
– ident: e_1_2_6_16_1
  doi: 10.1029/2009GC002540
– ident: e_1_2_6_98_1
  doi: 10.1007/BF00691869
– ident: e_1_2_6_26_1
  doi: 10.1093/gji/ggu334
– ident: e_1_2_6_101_1
  doi: 10.1038/386578a0
– ident: e_1_2_6_41_1
  doi: 10.1093/petrology/egt035
– ident: e_1_2_6_48_1
  doi: 10.2138/rmg.2006.62.14
– ident: e_1_2_6_18_1
  doi: 10.1002/2013GC005122
– ident: e_1_2_6_15_1
  doi: 10.1016/j.epsl.2005.04.033
– ident: e_1_2_6_8_1
  doi: 10.1145/76909.76913
– ident: e_1_2_6_82_1
  doi: 10.1029/2003JB002610
– ident: e_1_2_6_84_1
  doi: 10.1016/j.epsl.2014.05.014
– ident: e_1_2_6_63_1
  doi: 10.2138/am‐2000‐2‐305
– ident: e_1_2_6_34_1
  doi: 10.1038/nature09401
– ident: e_1_2_6_94_1
  doi: 10.1029/2004JB003162
– ident: e_1_2_6_3_1
  doi: 10.1029/2007GC001834
– ident: e_1_2_6_43_1
  doi: 10.1016/0012‐821X(87)90233‐0
– ident: e_1_2_6_114_1
  doi: 10.2138/am.2012.4010
– ident: e_1_2_6_13_1
  doi: 10.1002/2015JB012123
– ident: e_1_2_6_88_1
  doi: 10.1029/97GL03217
– ident: e_1_2_6_50_1
  doi: 10.1029/2008GL034398
– ident: e_1_2_6_56_1
  doi: 10.1029/RG028i004p00399
– ident: e_1_2_6_42_1
  doi: 10.1016/j.pepi.2010.08.003
– ident: e_1_2_6_10_1
  doi: 10.2138/am.2012.3869
– ident: e_1_2_6_69_1
  doi: 10.1002/2015GL067097
– ident: e_1_2_6_71_1
  doi: 10.1029/2008GL035618
– ident: e_1_2_6_31_1
  doi: 10.1029/JB074i025p05949
– ident: e_1_2_6_76_1
  doi: 10.1098/rsta.1981.0025
– ident: e_1_2_6_20_1
  doi: 10.1016/j.pepi.2003.07.018
– ident: e_1_2_6_86_1
  doi: 10.1002/2014GL061231
SSID ssj0014558
Score 2.3397255
Snippet Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and...
Abstract Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2308
SubjectTerms Cations
Defects
Dehydration
Depth
Distribution
Earth
Elastic properties
elasticity
Hydration
Iron
Iron content
Lower mantle
Magnesium
mantle transition zone
Modelling
Olivine
Oxygen
Physics
Profiles
Properties
ringwoodite
Seismic activity
Seismic velocities
Seismograms
Seismology
Shear
Spatial distribution
Storage capacity
Storage conditions
Temperature profiles
Tomography
Transition zone
Upper mantle
Velocity
wadsleyite
Water
Water depth
water in the mantle
Water storage
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCl7EJ64v5qAnLfaRNK03Fe0eVBZfiJfSJBMorKvsqrD_3knalfWgXjy1lCGEyaTzfWTyDWN7qeYy5miDlPZOwHNF_0FK64FRlDt1ZTHzck0Pl_L6Ont8zHtTrb5cTVgjD9w47ojnVopKaGuMcXJVWYRCyshEAmOLsRfbJtQzIVPt-QEXImvL3MM4J4YfZcWZ763BvyUgr9P_DVxOQ1SfYy6W2GILDuGkmdQym8HBCpsvfPPd8Sqru-Or6u7pGE6gN3Z3_qHXVFcBIU9wXc3c3XK4xXr0XGt4QEpUXjAV6gF0x2ZILB9u0FUgj-DFAmE_uCLP9hF8yvLVW_D0MsA1dn9xfnfWDdpWCUFFeEAGwiZGC8JiVjqnhEYZFRIUSYXJlMqtNZXN3XuIqQ1TTHiaaI4qtFEis0gn62x2QMNvMMgx0gqJpBJ34TqyhGsTFab0CCvCBqrDDib-K3WrI-7aWfRLf54d5-W0tzts_8v6tdHP-MHu1C3Fl41TvfYfKBbKNhbKv2Khw7YnC1m2W3FUEsMl0igzLjrs0C_urxMpi6I4jwmlys3_mNIWW3CjNyWD22z2bfiOO2xOf7zVo-GuD9pPYg7tGw
  priority: 102
  providerName: Directory of Open Access Journals
Title HyMaTZ: A Python Program for Modeling Seismic Velocities in Hydrous Regions of the Mantle Transition Zone
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GC007464
https://www.proquest.com/docview/2111447845
https://doaj.org/article/49f75a5cfddd422881e5771d15e2fe26
Volume 19
WOSCitedRecordID wos000452122500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: WIN
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfQAImXMb5Ex1b5AZ4gIm7sOOFtjDZFWqtqbGPaSxTbZxRpa6dmQ-oLfzt3TlZ1DyAhnvJlR07O5_udff4dY29TK_VAgo9S1J1I5gbHQTTrkTNoO23lIQt0TWdHejrNzs_zWTfhRnthWn6I9YQbaUYYr0nBK9N0ZAPEkYmWKysOQ74MogMVUlACg-9fp-tFBKlCek7K8BORj9_FvWP1j5uV71mkQNx_D21uYtZgdEZP_7e5O2y7g5v8oO0fz9gDmD9nj4uQznf1gtXj1aQ6ufjED_hsRSwCfNbGa3HEspzypNFudf4N6uaqtvwM0PQFClZez_l45ZaL24YfA8U0N3zhOaJJPkFZXQIPRjDEg_GLxRxestPR8ORwHHXJF6IKEYaOlE-cVYjuvPaATo8zzsQIblLlMmNy713lczqPIfVxColMEyvBxF4kOhM2ecW25vj614znIKwBdHvRG5JWeETKiYlTPMQVog3TY-_vBFDajpmcEmRclmGFfJCXmz-vx96tS1-3jBx_KPeZZLkuQzza4cZi-aPs1LKUudeqUtY754gMLROgtBZOKBjQZ_fY3l1PKDvlbkr0mdEN1ZlUPfYhyPyvDSmLohgOEPfq3X8r_oY9oQdtuOEe27pZ3sI-e2R_3tTNsh9mD_rs4Zfj0ekRXk1-Dfuh__8GBbj-dw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB2VFgQXyqdIaWEPcAILO9712txK1ToVSRRBKFUvK-8XslQSFLdI-fedWbtReihSxcmWNbZsz47nze74PYB3meGyz52PMoydiBcav4OY1iOrMXeayrs80DWdDOV4nJ-eFpNO55T-hWn5IVYTbhQZ4XtNAU4T0h3bAJFkYurKy4MgmMHvwRZHrEHaDT-Px6tlBC6CQCdp_ERU5Xed73j-p_Wzb-SkQN1_A2-uo9aQdo62__uGn8DjDnGy_XaIPIUNN3sGD8qg6Lt8DvVgOaqmZ5_ZPpssiUiATdqWLYZwlpFUGv2wzr67uvldG3biMPsFFlZWz9hgaRfzy4Z9c9TW3LC5Zwgo2Qjdde5YyIOhJYydzWfuBfw4OpweDKJOfyGqEGTISPjUGoEAz0vvsO6x2uoY8U0mbK514b2tfEH7sct8nLmUZ6nhTsc-SWWemPQlbM7w8q-AFS4x2mHliwURN4lHsJzqOMNNXCHg0D34cO0BZTpyctLIOFdhkbxfqPWX14P3K-s_LSnHLXZfyJkrG6LSDgfmi1-qi0zFCy9FJYy31hIfWp44IWViE-H69Ng92L0eCqqL70Zh2YyVqMy56MHH4PR_3ogqy_Kwj9BX7tzN_C08HExHQzU8Hn99DY_IqO0-3IXNi8Wl24P75u9F3SzehIF_BQys_s8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5BB4iXjZ-ibAM_wBNEJI0dJ7yNbU0RXVWNbZr2YsX2GUUa7dRsSP3vOTtZ1T2AhHhKFF2sJPb5vovP3wfwLjNcDji6KCPfiXihaR6ksB5ZTbHTVA7zQNd0NpaTSX5-Xkw7nVO_F6blh1j9cPOeEeZr7-B4ZV3HNuBJMil05eV-EMzg92GDex2ZHmwcHA9Px6uFBC6CRKdX-Yl8nt_VvlMLn9bvvxOVAnn_HcS5jltD4Blu_fcjP4HNDnOyvXaQPIV7OHsGD8ug6bt8DvVoeVSdXHxme2y69FQCbNoWbTECtMyLpfkt6-w71s3P2rAzpPgXeFhZPWOjpV3Mbxp2jL6wuWFzxwhSsiPqsEtkIRKGojB2MZ_hCzgdHp7sj6JOgSGqCGbISLjUGkEQz0mHlPlYbXVMCCcTNte6cM5WrvDnMWYuzjDlWWo46tglqcwTk76E3oyafwWswMRopNyXUiJuEkdwOdVxRoe4Isih-_DhtgeU6ejJvUrGpQrL5INCrX-8PrxfWV-1tBx_sPviO3Nl48m0w4X54ofqfFPxwklRCeOstZ4RLU9QSJnYRODAv3Yfdm6Hguo8vFGUOFMuKnMu-vAxdPpfH0SVZXk4IPArX_-b-Vt4ND0YqvHXybdteOxt2vLDHehdL25wFx6YX9d1s3jTjfzfrnH_eA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HyMaTZ%3A+A+Python+Program+for+Modeling+Seismic+Velocities+in+Hydrous+Regions+of+the+Mantle+Transition+Zone&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Wang%2C+Fei&rft.au=Barklage%2C+Mitchell&rft.au=Lou%2C+Xiaoting&rft.au=van+der+Lee%2C+Suzan&rft.date=2018-08-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=19&rft.issue=8&rft.spage=2308&rft.epage=2324&rft_id=info:doi/10.1029%2F2018GC007464&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2018GC007464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon