HyMaTZ: A Python Program for Modeling Seismic Velocities in Hydrous Regions of the Mantle Transition Zone
Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone...
Uloženo v:
| Vydáno v: | Geochemistry, geophysics, geosystems : G3 Ročník 19; číslo 8; s. 2308 - 2324 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
01.08.2018
Wiley |
| Témata: | |
| ISSN: | 1525-2027, 1525-2027 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic‐velocity models. The influence of water is applied through a regression to experimental data on how H2O influences the thermoelastic properties of (Mg,Fe)2SiO4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H2O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in VS as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low‐velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/or an alternative compositional model is required.
Plain Language Summary
Olivine and its high‐pressure polymorphs, wadsleyite and ringwoodite, constitute at least half of the material in the Earth's upper mantle. In addition to magnesium, iron, silicon, and oxygen, these phases are known for their ability to incorporate H2O. Water is incorporated into their crystal structures as OH (hydroxyl) defects, charge‐balanced primarily by cation vacancies. Hydration of olivine, wadsleyite, and ringwoodite through such defects modifies their density and elastic properties such as the bulk (K) and shear (G) moduli, which can lead to changes in seismic velocities as determined from analyses of seismograms using methods such as seismic tomography. This paper presents a tool for researchers to calculate and graph the influence of hydration in olivine, wadsleyite, and ringwoodite for comparison to any seismic‐velocity model. While Hydrous Mantle Transition Zone accounts for elastic property changes due to hydration, the effect of water on thermodynamic phase proportions is not yet included. The goal of such studies is to assess the amount and regional distribution of water in the mantle transition zone.
Key Points
HyMaTZ calculates seismic velocity profiles for different states of hydration in the transition zone
In the upper MTZ, adding 1.65 wt% H2O, 7 mol% Fe, or increasing temperature by 160 K cause roughly equivalent reductions in VS
Velocities within the eastern U.S. low‐velocity anomaly are consistent with ~1 wt% H2O in wadsleyite along a 1600 K adiabat |
|---|---|
| AbstractList | Abstract Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic‐velocity models. The influence of water is applied through a regression to experimental data on how H2O influences the thermoelastic properties of (Mg,Fe)2SiO4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H2O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in VS as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low‐velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/or an alternative compositional model is required. Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic‐velocity models. The influence of water is applied through a regression to experimental data on how H 2 O influences the thermoelastic properties of (Mg,Fe) 2 SiO 4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H 2 O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in V S as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low‐velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/or an alternative compositional model is required. Olivine and its high‐pressure polymorphs, wadsleyite and ringwoodite, constitute at least half of the material in the Earth's upper mantle. In addition to magnesium, iron, silicon, and oxygen, these phases are known for their ability to incorporate H 2 O. Water is incorporated into their crystal structures as OH (hydroxyl) defects, charge‐balanced primarily by cation vacancies. Hydration of olivine, wadsleyite, and ringwoodite through such defects modifies their density and elastic properties such as the bulk ( K ) and shear ( G ) moduli, which can lead to changes in seismic velocities as determined from analyses of seismograms using methods such as seismic tomography. This paper presents a tool for researchers to calculate and graph the influence of hydration in olivine, wadsleyite, and ringwoodite for comparison to any seismic‐velocity model. While Hydrous Mantle Transition Zone accounts for elastic property changes due to hydration, the effect of water on thermodynamic phase proportions is not yet included. The goal of such studies is to assess the amount and regional distribution of water in the mantle transition zone. HyMaTZ calculates seismic velocity profiles for different states of hydration in the transition zone In the upper MTZ, adding 1.65 wt% H 2 O, 7 mol% Fe, or increasing temperature by 160 K cause roughly equivalent reductions in V S Velocities within the eastern U.S. low‐velocity anomaly are consistent with ~1 wt% H 2 O in wadsleyite along a 1600 K adiabat Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic‐velocity models. The influence of water is applied through a regression to experimental data on how H2O influences the thermoelastic properties of (Mg,Fe)2SiO4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H2O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in VS as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low‐velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/or an alternative compositional model is required. Plain Language Summary Olivine and its high‐pressure polymorphs, wadsleyite and ringwoodite, constitute at least half of the material in the Earth's upper mantle. In addition to magnesium, iron, silicon, and oxygen, these phases are known for their ability to incorporate H2O. Water is incorporated into their crystal structures as OH (hydroxyl) defects, charge‐balanced primarily by cation vacancies. Hydration of olivine, wadsleyite, and ringwoodite through such defects modifies their density and elastic properties such as the bulk (K) and shear (G) moduli, which can lead to changes in seismic velocities as determined from analyses of seismograms using methods such as seismic tomography. This paper presents a tool for researchers to calculate and graph the influence of hydration in olivine, wadsleyite, and ringwoodite for comparison to any seismic‐velocity model. While Hydrous Mantle Transition Zone accounts for elastic property changes due to hydration, the effect of water on thermodynamic phase proportions is not yet included. The goal of such studies is to assess the amount and regional distribution of water in the mantle transition zone. Key Points HyMaTZ calculates seismic velocity profiles for different states of hydration in the transition zone In the upper MTZ, adding 1.65 wt% H2O, 7 mol% Fe, or increasing temperature by 160 K cause roughly equivalent reductions in VS Velocities within the eastern U.S. low‐velocity anomaly are consistent with ~1 wt% H2O in wadsleyite along a 1600 K adiabat Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and experimental mineral physics data with regional studies of seismic velocity and seismic discontinuity structure. HyMaTZ (Hydrous Mantle Transition Zone) is a Python program with graphical user interface, which calculates and displays seismic velocities for different scenarios of hydration in the MTZ for comparison to global or regional seismic‐velocity models. The influence of water is applied through a regression to experimental data on how H2O influences the thermoelastic properties of (Mg,Fe)2SiO4 polymorphs: olivine, wadsleyite, and ringwoodite. Adiabatic temperature profiles are internally consistent with dry phase proportion models; however, modeling hydration in HyMaTZ affects only velocities and not phase proportions or discontinuity structure. For wadsleyite, adding 1.65 wt% H2O or increasing the iron content by 7 mol% leads to roughly equivalent reductions in VS as raising the temperature by 160 K with a pyrolite model in the upper part of the MTZ. The eastern U.S. low‐velocity anomaly, which has been interpreted as the result of dehydration of the Farallon slab in the top of the lower mantle, is consistent with hydration of wadsleyite to about 20% of its water storage capacity in the upper MTZ. Velocity gradients with depth in absolute shear velocity models are steeper in all seismic models than all mineralogical models, suggesting that the seismic velocity gradients should be lowered or varied with depth and/or an alternative compositional model is required. |
| Author | Jacobsen, Steven D. Wang, Fei Lee, Suzan Barklage, Mitchell Bina, Craig R. Lou, Xiaoting |
| Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0002-8316-454X surname: Wang fullname: Wang, Fei email: feiwang2020@u.northwestern.edu organization: Northwestern University – sequence: 2 givenname: Mitchell surname: Barklage fullname: Barklage, Mitchell organization: Northwestern University – sequence: 3 givenname: Xiaoting orcidid: 0000-0001-9206-1385 surname: Lou fullname: Lou, Xiaoting organization: Northwestern University – sequence: 4 givenname: Suzan orcidid: 0000-0003-1884-1185 surname: Lee fullname: Lee, Suzan organization: Northwestern University – sequence: 5 givenname: Craig R. orcidid: 0000-0001-5946-3737 surname: Bina fullname: Bina, Craig R. organization: Northwestern University – sequence: 6 givenname: Steven D. orcidid: 0000-0002-9746-958X surname: Jacobsen fullname: Jacobsen, Steven D. organization: Northwestern University |
| BookMark | eNp9kU9rGzEQxUVJoInTWz-AoNe61d_Vbm_BJOtATELi9OCL0K5GjsxaSqU1Yb9913UpppCcZhh-895j5hydhBgAoc-UfKOEVd8ZoWU9I0SJQnxAZ1QyOWWEqZOj_iM6z3lDCBVSlmfIz4eFWa5-4Et8P_TPMeD7FNfJbLGLCS-ihc6HNX4En7e-xT-hi63vPWTsA54PNsVdxg-w9jFkHB3unwEvTOg7wMtkQh7ZUXM15rxAp850GT79rRP0dH21nM2nt3f1zezydmqkFGoqHbetrDhzygEriG1sQ8qKF9KWTVM5Z42r9j2BwpECuCh4K6AhjnJV0pZP0M1B10az0S_Jb00adDRe_xnEtNYm9b7tQIvKKWlk66y1grGypCCVopZKYHvzUevLQeslxV87yL3exF0KY3zNKKVCqFLIkfp6oNoUc07g_rlSoveP0cePGXH2Hz5e1Ozv1Cfju7eW-GHp1XcwvGug67q-YrTgiv8GHC2gIw |
| CitedBy_id | crossref_primary_10_1016_j_epsl_2022_117441 crossref_primary_10_1002_gj_5045 crossref_primary_10_1016_j_jseaes_2024_106316 crossref_primary_10_1016_j_epsl_2020_116240 crossref_primary_10_1016_j_tecto_2025_230834 crossref_primary_10_2138_am_2022_8380 crossref_primary_10_1016_j_sesci_2020_08_003 crossref_primary_10_1016_j_epsl_2020_116626 crossref_primary_10_1016_j_tecto_2023_229723 crossref_primary_10_1016_j_tecto_2022_229248 crossref_primary_10_1016_j_epsl_2022_117867 crossref_primary_10_1016_j_gsf_2020_08_012 crossref_primary_10_1029_2022GL101213 crossref_primary_10_1016_j_epsl_2024_118838 crossref_primary_10_1029_2020JB019381 crossref_primary_10_1029_2022JB025035 |
| Cites_doi | 10.1016/j.epsl.2008.04.041 10.1029/RG014i004p00541 10.1016/j.pepi.2006.02.002 10.2138/am.2005.1751 10.1029/2000JB000049 10.2138/rmg.2006.62.11 10.2138/am‐2000‐2‐306 10.1002/2014GC005627 10.1029/JB074i025p05961 10.1007/s00410‐011‐0675‐7 10.1007/978-1-4612-4928-3_7 10.1029/1999JB900300 10.2138/am.2011.3807 10.1029/2001JB000317 10.1002/2014GC005588 10.1016/j.epsl.2007.01.023 10.1029/2009GL038660 10.1016/j.epsl.2010.11.038 10.1007/BF00223318 10.1016/S0012-821X(97)00010-1 10.1029/2005GL023453 10.1007/s004100050161 10.1002/2015GL063436 10.2138/am-2003-8-913 10.1098/rsta.2002.1077 10.1016/j.epsl.2010.02.025 10.1111/j.1365‐246X.2005.02642.x 10.1029/96JB01266 10.2138/am‐2003‐1025 10.1038/nature13080 10.1016/0031‐9201(75)90017‐5 10.1111/j.1365‐246X.1991.tb06724.x 10.1029/94JB00042 10.1146/annurev.earth.34.031405.125211 10.1126/science.260.5113.1487 10.1016/j.epsl.2012.03.001 10.1016/0022‐5096(63)90060‐7 10.1016/S0031‐9201(03)00022‐0 10.1029/2001GL014418 10.1016/j.epsl.2006.06.014 10.1029/2008JB005949 10.1146/annurev.ea.20.050192.002523 10.1029/GM168 10.1029/97JB01168 10.1016/j.pepi.2004.09.007 10.1080/08957950802296287 10.1029/157GM05 10.1016/S0012‐821X(98)00034‐X 10.1146/annurev.earth.36.031207.124244 10.1029/93GL01767 10.1029/91JB02675 10.1029/2006GL026441 10.1016/j.pepi.2015.11.005 10.1016/S0012‐821X(98)00063‐6 10.1029/168GM14 10.1016/j.epsl.2005.04.022 10.1016/j.epsl.2008.08.012 10.1785/0220160186 10.1016/S0031‐9201(03)00156‐0 10.1073/pnas.0608609104 10.1007/s11430‐016‐5277‐9 10.1016/j.pepi.2008.01.003 10.1016/j.pepi.2003.08.011 10.1126/science.1083636 10.1016/j.pepi.2003.09.015 10.1016/j.pepi.2007.02.010 10.1029/97JB00682 10.1180/0026461056930248 10.1016/j.pepi.2010.06.014 10.1016/j.pepi.2008.10.020 10.1111/j.1365‐246X.1979.tb04790.x 10.1111/j.1365‐246X.2010.04890.x 10.1016/j.pepi.2006.08.004 10.1029/98JB01819 10.1126/science.268.5207.74 10.1002/2016GL068239 10.1038/320321a0 10.1016/S0031‐9201(01)00192‐3 10.1126/science.1253358 10.1126/sciadv.1603024 10.1111/j.1365‐246X.1995.tb03540.x 10.1029/93RG01249 10.1029/2001GL014429 10.1016/0012‐821X(67)90114‐8 10.1029/2009GC002540 10.1007/BF00691869 10.1093/gji/ggu334 10.1038/386578a0 10.1093/petrology/egt035 10.2138/rmg.2006.62.14 10.1002/2013GC005122 10.1016/j.epsl.2005.04.033 10.1145/76909.76913 10.1029/2003JB002610 10.1016/j.epsl.2014.05.014 10.2138/am‐2000‐2‐305 10.1038/nature09401 10.1029/2004JB003162 10.1029/2007GC001834 10.1016/0012‐821X(87)90233‐0 10.2138/am.2012.4010 10.1002/2015JB012123 10.1029/97GL03217 10.1029/2008GL034398 10.1029/RG028i004p00399 10.1016/j.pepi.2010.08.003 10.2138/am.2012.3869 10.1002/2015GL067097 10.1029/2008GL035618 10.1029/JB074i025p05949 10.1098/rsta.1981.0025 10.1016/j.pepi.2003.07.018 10.1002/2014GL061231 |
| ContentType | Journal Article |
| Copyright | 2018. American Geophysical Union. All Rights Reserved. 2018. American Geophysical Union. All rights reserved. |
| Copyright_xml | – notice: 2018. American Geophysical Union. All Rights Reserved. – notice: 2018. American Geophysical Union. All rights reserved. |
| DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G DOA |
| DOI | 10.1029/2018GC007464 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1525-2027 |
| EndPage | 2324 |
| ExternalDocumentID | oai_doaj_org_article_49f75a5cfddd422881e5771d15e2fe26 10_1029_2018GC007464 GGGE21637 |
| Genre | article |
| GrantInformation_xml | – fundername: National Science Foundation (NSF) funderid: EAR‐1452344 |
| GroupedDBID | 05W 0R~ 1OC 24P 31~ 3V. 50Y 5GY 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 A00 AAESR AAHHS AANHP AAYCA AAZKR ABCUV ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACGFS ACGOD ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIYS ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUYN AFBPY AFGKR AFKRA AFPWT AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D1J DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OK1 P-X P2W PCBAR PQQKQ PROAC Q2X R.K ROL SUPJJ UB1 WBKPD WYJ ZZTAW ~02 ~OA AAFWJ AAMMB AAYXX AEFGJ AFFHD AFPKN AGQPQ AGXDD AIDQK AIDYY CITATION PHGZM PHGZT WIN 7TG 7TN F1W H96 KL. L.G |
| ID | FETCH-LOGICAL-a5547-5f3dc5932f7fe260dbdb089365d8bb9ffdaf95d8b0e6f06e3463c4eb0f13781c3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452122500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1525-2027 |
| IngestDate | Fri Oct 03 12:53:45 EDT 2025 Wed Aug 13 11:31:55 EDT 2025 Sat Nov 29 05:12:58 EST 2025 Tue Nov 18 22:37:22 EST 2025 Wed Jan 22 16:33:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a5547-5f3dc5932f7fe260dbdb089365d8bb9ffdaf95d8b0e6f06e3463c4eb0f13781c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1884-1185 0000-0002-9746-958X 0000-0001-9206-1385 0000-0002-8316-454X 0000-0001-5946-3737 |
| OpenAccessLink | https://doaj.org/article/49f75a5cfddd422881e5771d15e2fe26 |
| PQID | 2111447845 |
| PQPubID | 54722 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_49f75a5cfddd422881e5771d15e2fe26 proquest_journals_2111447845 crossref_primary_10_1029_2018GC007464 crossref_citationtrail_10_1029_2018GC007464 wiley_primary_10_1029_2018GC007464_GGGE21637 |
| PublicationCentury | 2000 |
| PublicationDate | August 2018 2018-08-00 20180801 2018-08-01 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geochemistry, geophysics, geosystems : G3 |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2007; 104 2006; 34 2006; 33 2017; 88 2010; 467 2000; 85 1993; 20 2008; 35 2010; 183 1998; 159 1975; 10 2010; 182 1998; 157 2009; 114 2012; 97 2005; 69 1997; 147 2014; 402 2009; 10 2013; 54 1993; 31 1997; 386 2008; 28 2016; 43 2014; 15 1986 1994; 79 1995; 122 1991; 105 2004; 143 2007; 162 2005; 90 2005; 236 2015; 120 1997; 24 1981; 25 2009; 174 2014; 41 1996; 123 2011; 301 1981; 299 2002; 360 1990; 28 2000; 105 1967; 2 1994; 99 2010; 293 1995; 268 1992; 20 2012; 40 2012; 163 2017; 3 1987; 72 1969; 74 2008; 9 2011; 96 1992; 97 1996; 101 2001; 106 1997; 102 2007; 256 1987; 86 2012; 331 2006; 62 2004; 143‐144 2015; 42 2005; 148 2002; 107 2005; 32 1983; 60 2006; 248 2008; 275 2008; 273 2003; 88 2001; 124 1979; 57 2015; 16 2003; 138 1993; 260 2006 2005 2004; 109 2014; 199 2008; 166 2006; 159 2003; 136 2016; 59 2006; 156 2009; 36 2014; 507 1976; 14 2005; 162 2002; 29 1963; 11 1986; 320 1998; 103 1989; 15 2011; 184 1989; 16 2003; 300 2016; 250 2014; 344 e_1_2_6_114_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_110_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_113_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_101_1 Smyth J. R. (e_1_2_6_91_1) 1994; 79 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_112_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_100_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_111_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 Smyth J. R. (e_1_2_6_90_1) 1987; 72 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
| References_xml | – volume: 236 start-page: 167 issue: 1‐2 year: 2005 end-page: 181 article-title: Storage capacity of H O in nominally anhydrous minerals in the upper mantle publication-title: Earth and Planetary Science Letters – volume: 301 start-page: 413 issue: 3–4 year: 2011 end-page: 423 article-title: Water distribution across the mantle transition zone and its implications for global material circulation publication-title: Earth and Planetary Science Letters – volume: 360 start-page: 2475 issue: 1800 year: 2002 end-page: 2491 article-title: Mantle shear‐wave tomography and the fate of subducted slabs publication-title: Philosophical Transactions of the Royal Society A – volume: 34 start-page: 629 issue: 1 year: 2006 end-page: 653 article-title: Water, melting, and the deep Earth H O cycle publication-title: Annual Review of Earth and Planetary Sciences – volume: 138 start-page: 197 issue: 3–4 year: 2003 end-page: 222 article-title: Inferring upper‐mantle temperatures from seismic velocities publication-title: Physics of the Earth and Planetary Interiors – volume: 467 start-page: 828 issue: 7317 year: 2010 end-page: 831 article-title: Seismic evidence of negligible water carried below 400‐km depth in subducting lithosphere publication-title: Nature – volume: 3 issue: 6 year: 2017 article-title: A nearly water‐saturated mantle transition zone inferred from mineral viscosity publication-title: Science Advances – volume: 109 year: 2004 article-title: Global transition zone tomography publication-title: Journal of Geophysical Research – volume: 507 start-page: 221 issue: 7491 year: 2014 end-page: 224 article-title: Hydrous mantle transition zone indicated by ringwoodite included within diamond publication-title: Nature – volume: 59 start-page: 873 issue: 5 year: 2016 end-page: 888 article-title: Effect of hydration on the elasticity of mantle minerals and its geophysical implications publication-title: Science China Earth Sciences – volume: 184 start-page: 1180 issue: 3 year: 2011 end-page: 1213 article-title: Thermodynamics of mantle minerals—II. Phase equilibria publication-title: Geophysical Journal International – start-page: 67 year: 2005 end-page: 80 – volume: 20 start-page: 1623 issue: 15 year: 1993 end-page: 1626 article-title: Importance of anelasticity in the interpretation of seismic tomography publication-title: Geophysical Research Letters – volume: 157 start-page: 193 issue: 3–4 year: 1998 end-page: 207 article-title: Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle publication-title: Earth and Planetary Science Letters – volume: 105 start-page: 11,153 issue: B5 year: 2000 end-page: 11,169 article-title: Shallow mantle temperatures under Europe from and wave tomography publication-title: Journal of Geophysical Research – volume: 25 start-page: 297 issue: 4 year: 1981 end-page: 356 article-title: Preliminary reference Earth model publication-title: Physics of the Earth and Planetary Interiors – volume: 35 year: 2008 article-title: Effects of hydration on the elastic properties of olivine publication-title: Geophysical Research Letters – volume: 174 start-page: 98 issue: 1‐4 year: 2009 end-page: 104 article-title: Elasticity of (Mg Fe ) SiO wadsleyite to 12 GPa and 1073 K publication-title: Physics of the Earth and Planetary Interiors – volume: 299 start-page: 319 issue: 1449 year: 1981 end-page: 356 article-title: A model of dislocation‐controlled rheology for the mantle publication-title: Philosophical Transactions of the Royal Society A – volume: 28 start-page: 399 issue: 4 year: 1990 end-page: 421 article-title: Defect microdynamics in minerals and solid‐state mechanisms of seismic wave attenuation and velocity dispersion in the mantle publication-title: Reviews of Geophysics – volume: 102 start-page: 22,815 issue: B10 year: 1997 end-page: 22,838 article-title: Upper mantle S velocity structure of North America publication-title: Journal of Geophysical Research – volume: 60 start-page: 217 issue: 3‐4 year: 1983 end-page: 222 article-title: The effects of 5‐minute ischemia in Mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus publication-title: Acta Neuropathologica – volume: 88 start-page: 1608 issue: 10 year: 2003 end-page: 1611 article-title: Elastic properties of hydrous ringwoodite publication-title: American Mineralogist – volume: 9 year: 2008 article-title: Integrated geophysical‐petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications publication-title: Geochemistry, Geophysics, Geosystems – volume: 293 start-page: 250 issue: 3–4 year: 2010 end-page: 258 article-title: Velocity crossover between hydrous and anhydrous forsterite at high pressures publication-title: Earth and Planetary Science Letters – volume: 29 issue: 10 year: 2002 article-title: The effect of water on the 410‐km discontinuity: An experimental study publication-title: Geophysical Research Letters – volume: 344 start-page: 1265 issue: 6189 year: 2014 end-page: 1268 article-title: Dehydration melting at the top of the lower mantle publication-title: Science – volume: 114 year: 2009 article-title: velocity variations beneath North America publication-title: Journal of Geophysical Research – volume: 16 start-page: 40 year: 2015 end-page: 58 article-title: The mantle transition zone beneath West Antarctica: Seismic evidence for hydration and thermal upwellings publication-title: Geochemistry, Geophysics, Geosystems – volume: 402 start-page: 26 year: 2014 end-page: 41 article-title: Imaging the North American continent using waveform inversion of global and USArray data publication-title: Earth and Planetary Science Letters – volume: 96 start-page: 1606 issue: 10 year: 2011 end-page: 1612 article-title: Effect of hydration on the single‐crystal elasticity of Fe‐bearing wadsleyite to 12 GPa publication-title: American Mineralogist – volume: 143 start-page: 255 year: 2004 end-page: 269 article-title: Water transport into the deep mantle and formation of a hydrous transition zone publication-title: Physics of the Earth and Planetary Interiors – volume: 42 start-page: 3289 year: 2015 end-page: 3297 article-title: Elastic wave velocities of peridotite KLB‐1 at mantle pressures and implications for mantle velocity modeling publication-title: Geophysical Research Letters – volume: 143‐144 start-page: 271 year: 2004 end-page: 278 article-title: High‐pressure crystal chemistry of hydrous ringwoodite and water in the Earth's interior publication-title: Physics of the Earth and Planetary Interiors – volume: 41 start-page: 6342 year: 2014 end-page: 6349 article-title: and wave tomography of the mantle beneath the United States publication-title: Geophysical Research Letters – volume: 124 start-page: 105 issue: 1–2 year: 2001 end-page: 117 article-title: Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle publication-title: Physics of the Earth and Planetary Interiors – volume: 300 start-page: 1556 issue: 5625 year: 2003 end-page: 1558 article-title: Seismic evidence for water deep in earth's upper mantle publication-title: Science – volume: 97 start-page: 1483 issue: 8–9 year: 2012 end-page: 1493 article-title: Ferric iron and water incorporation in wadsleyite under hydrous and oxidizing conditions: A XANES, Mössbauer, and SIMS study publication-title: American Mineralogist – volume: 69 start-page: 229 issue: 03 year: 2005 end-page: 257 article-title: Water in the Earth's mantle publication-title: Mineralogical Magazine – volume: 33 year: 2006 article-title: Elastic properties of hydrous ringwoodite at high‐pressure conditions publication-title: Geophysical Research Letters – volume: 24 start-page: 3265 issue: 24 year: 1997 end-page: 3268 article-title: Elasticity of natural majorite and ringwoodite from the Catherwood meteorite publication-title: Geophysical Research Letters – volume: 156 start-page: 89 issue: 1‐2 year: 2006 end-page: 107 article-title: Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35GPa, 1600 °C: Implications for water circulation in the Earth's deep mantle publication-title: Physics of the Earth and Planetary Interiors – volume: 20 start-page: 527 issue: 1 year: 1992 end-page: 552 article-title: Calculation of elastic properties from thermodynamic equation of state principles publication-title: Annual Review of Earth and Planetary Sciences – volume: 14 start-page: 541 issue: 4 year: 1976 end-page: 563 article-title: The elastic properties of composite materials publication-title: Reviews of Geophysics – volume: 166 start-page: 167 issue: 3‐4 year: 2008 end-page: 174 article-title: Elastic wave velocities of (Mg Fe ) SiO ringwoodite under P‐T conditions of the mantle transition region publication-title: Physics of the Earth and Planetary Interiors – volume: 162 start-page: 22 issue: 1‐2 year: 2007 end-page: 31 article-title: The elastic properties of β‐Mg 2 SiO 4 from 295 to 660K and implications on the composition of Earth's upper mantle publication-title: Physics of the Earth and Planetary Interiors – volume: 143 start-page: 19 year: 2004 end-page: 31 article-title: Ultrasonic measurements of the sound velocities in polycrystalline San Carlos olivine in multi‐anvil, high‐pressure apparatus publication-title: Physics of the Earth and Planetary Interiors – volume: 62 start-page: 321 issue: 1 year: 2006 end-page: 342 article-title: Effect of water on the equation of state of nominally anhydrous minerals publication-title: Reviews in Mineralogy and Geochemistry – volume: 106 start-page: 30,579 issue: B12 year: 2001 end-page: 30,591 article-title: ‐ ‐ ‐ ‐ measurements on wadsleyite to 7 GPa and 873 K: Implications for the 410‐km seismic discontinuity publication-title: Journal of Geophysical Research – volume: 90 start-page: 1084 issue: 7 year: 2005 end-page: 1091 article-title: Pressure and temperature‐dependence of water solubility in Fe‐free wadsleyite publication-title: American Mineralogist – volume: 74 start-page: 5961 issue: 25 year: 1969 end-page: 5972 article-title: Elastic moduli, pressure derivatives, and temperature derivatives of single‐crystal olivine and single‐crystal forsterite publication-title: Journal of Geophysical Research – volume: 88 start-page: 1312 issue: 8–9 year: 2003 end-page: 1317 article-title: Compressional and shear wave velocities of ringwoodite γ‐Mg SiO4 to 12 GPa publication-title: American Mineralogist – volume: 74 start-page: 5949 issue: 25 year: 1969 end-page: 5960 article-title: Elastic constants of single‐crystal forsterite as a function of temperature and pressure publication-title: Journal of Geophysical Research – volume: 99 start-page: 11,591 issue: B6 year: 1994 end-page: 11,621 article-title: Mantle shear structure beneath the Americas and surrounding oceans publication-title: Journal of Geophysical Research – volume: 320 start-page: 321 issue: 6060 year: 1986 end-page: 328 article-title: Transition region of the Earth's uppper mantle publication-title: Nature – volume: 136 start-page: 41 issue: 1–2 year: 2003 end-page: 66 article-title: Single‐crystal elasticity of ringwoodite to high pressures and high temperatures: Implications for 520 km seismic discontinuity publication-title: Physics of the Earth and Planetary Interiors – volume: 199 start-page: 1303 issue: 3 year: 2014 end-page: 1327 article-title: Whole‐mantle radially anisotropic shear velocity structure from spectral‐element waveform tomography publication-title: Geophysical Journal International – volume: 85 start-page: 296 issue: 2 year: 2000 end-page: 303 article-title: Sound velocities and elastic properties of γ‐Mg SiO to 873 K by Brillouin spectroscopy publication-title: American Mineralogist – volume: 36 year: 2009 article-title: Correction to “Effects of hydration on the elastic properties of olivine” publication-title: Geophysical Research Letters – volume: 331 start-page: 112 year: 2012 end-page: 119 article-title: Sound velocities of hydrous ringwoodite to 16 GPa and 673 K publication-title: Earth and Planetary Science Letters – volume: 43 start-page: 5026 year: 2016 end-page: 5034 article-title: Uncertainty of mantle geophysical properties computed from phase equilibrium models publication-title: Geophysical Research Letters – volume: 159 start-page: 25 issue: 1–2 year: 1998 end-page: 33 article-title: Brillouin scattering and X‐ray diffraction of San Carlos olivine: Direct pressure determination to 32 GPa publication-title: Earth and Planetary Science Letters – volume: 32 year: 2005 article-title: Elasticity of San Carlos olivine to 8 GPa and 1073 K publication-title: Geophysical Research Letters – volume: 35 year: 2008 article-title: Elasticity of hydrous wadsleyite to 12 GPa: Implications for Earth's transition zone publication-title: Geophysical Research Letters – volume: 101 start-page: 17,535 issue: B8 year: 1996 end-page: 17,545 article-title: Sound velocity and elasticity of single‐crystal forsterite to 16 GPa publication-title: Journal of Geophysical Research – volume: 97 start-page: 573 issue: 4 year: 2012 end-page: 582 article-title: Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H O publication-title: American Mineralogist – volume: 102 start-page: 12,253 issue: B6 year: 1997 end-page: 12,263 article-title: The elastic constants of San Carlos olivine to 17 GPa publication-title: Journal of Geophysical Research – volume: 10 start-page: 12 issue: 1 year: 1975 end-page: 48 article-title: Parametrically simple Earth models consistent with geophysical data publication-title: Physics of the Earth and Planetary Interiors – volume: 182 start-page: 107 issue: 1–2 year: 2010 end-page: 112 article-title: The temperature dependence of the elasticity of Fe‐bearing wadsleyite publication-title: Physics of the Earth and Planetary Interiors – volume: 148 start-page: 353 issue: 2‐4 year: 2005 end-page: 359 article-title: Temperature dependence of the elastic moduli of ringwoodite publication-title: Physics of the Earth and Planetary Interiors – volume: 62 start-page: 243 issue: 1 year: 2006 end-page: 271 article-title: The stability of hydrous mantle phases publication-title: Reviews in Mineralogy and Geochemistry – volume: 248 start-page: 715 issue: 3‐4 year: 2006 end-page: 734 article-title: Partitioning of water during melting of the Earth's upper mantle at H O‐undersaturated conditions publication-title: Earth and Planetary Science Letters – volume: 11 start-page: 127 issue: 2 year: 1963 end-page: 140 article-title: A variational approach to the theory of the elastic behaviour of multiphase materials publication-title: Journal of the Mechanics and Physics of Solids – volume: 273 start-page: 15 issue: 1 year: 2008 end-page: 27 article-title: The role of water in connecting past and future episodes of subduction publication-title: Earth and Planetary Science Letters – volume: 275 start-page: 70 issue: 1–2 year: 2008 end-page: 79 article-title: The effect of bulk composition and temperature on mantle seismic structure publication-title: Earth and Planetary Science Letters – volume: 2 start-page: 130 issue: 2 year: 1967 end-page: 133 article-title: High‐pressure reconnaissance investigations in the system Mg SiO ‐MgO‐H O publication-title: Earth and Planetary Science Letters – volume: 15 start-page: 1164 year: 2014 end-page: 1179 article-title: BurnMan: A lower mantle mineral physics toolkit publication-title: Geochemistry, Geophysics, Geosystems – volume: 104 start-page: 9145 issue: 22 year: 2007 end-page: 9150 article-title: Indoor seismology by probing the Earth's interior by using sound velocity measurements at high pressures and temperatures publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 10 year: 2009 article-title: The geodynamic equation of state: What and how publication-title: Geochemistry, Geophysics, Geosystems – volume: 236 start-page: 524 issue: 1–2 year: 2005 end-page: 541 article-title: Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation publication-title: Earth and Planetary Science Letters – start-page: 131 year: 2006 end-page: 145 – volume: 260 start-page: 1487 issue: 5113 year: 1993 end-page: 1489 article-title: Sound velocities in olivine at Earth mantle pressures publication-title: Science – volume: 29 issue: 18 year: 2002 article-title: Effect of water on olivine‐wadsleyite phase boundary in the (Mg, Fe) SiO system publication-title: Geophysical Research Letters – volume: 183 start-page: 245 issue: 1–2 year: 2010 end-page: 251 article-title: Water partitioning in the Earth's mantle publication-title: Physics of the Earth and Planetary Interiors – volume: 31 start-page: 267 issue: 3 year: 1993 end-page: 280 article-title: Heat flow from the Earth's interior: Analysis of the global data set publication-title: Reviews of Geophysics – volume: 54 start-page: 1901 issue: 9 year: 2013 end-page: 1920 article-title: New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle publication-title: Journal of Petrology – volume: 103 start-page: 20,819 issue: B9 year: 1998 end-page: 20,825 article-title: Sound velocities and elastic properties of Fe‐bearing wadsleyite and ringwoodite publication-title: Journal of Geophysical Research – volume: 250 start-page: 46 year: 2016 end-page: 63 article-title: Seismic signature of a hydrous mantle transition zone publication-title: Physics of the Earth and Planetary Interiors – volume: 16 start-page: 684 issue: 7 year: 1989 end-page: 692 article-title: The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa publication-title: Physics and Chemistry of Minerals – volume: 107 issue: B3 year: 2002 article-title: Thermal structure of the North American uppermost mantle inferred from seismic tomography publication-title: Journal of Geophysical Research – volume: 97 start-page: 1871 issue: B2 year: 1992 end-page: 1885 article-title: High‐temperature elasticity of iron‐bearing olivines publication-title: Journal of Geophysical Research – volume: 123 start-page: 345 issue: 4 year: 1996 end-page: 357 article-title: Solubility of water in the α, β and γ phases of (Mg, Fe) SiO publication-title: Contributions to Mineralogy and Petrology – volume: 57 start-page: 479 issue: 2 year: 1979 end-page: 506 article-title: Seismic structure of the upper mantle beneath the United States by three‐dimensional inversion of body wave arrival times publication-title: Geophysical Journal International – volume: 79 start-page: 1021 year: 1994 end-page: 1024 article-title: A crystallographic model for hydrous wadsleyite (β‐Mg SiO ): An ocean in the Earth's interior? publication-title: American Mineralogist – volume: 16 start-page: 681 year: 2015 end-page: 704 article-title: and velocity tomography of the Mariana subduction system from a combined land‐sea seismic deployment publication-title: Geochemistry, Geophysics, Geosystems – volume: 162 start-page: 610 issue: 2 year: 2005 end-page: 632 article-title: Thermodynamics of mantle minerals—I. Physical properties publication-title: Geophysical Journal International – volume: 15 start-page: 348 issue: 4 year: 1989 end-page: 364 article-title: Algorithm 676 ODRPACK: Software for weighted orthogonal distance regression publication-title: ACM Transactions on Mathematical Software – volume: 147 start-page: 9 issue: 1–4 year: 1997 end-page: 15 article-title: Single‐crystal elasticity of beta‐Mg SiO to the pressure of the 410 km seismic discontinuity in the Earth's mantle publication-title: Earth and Planetary Science Letters – volume: 88 start-page: 319 issue: 2A year: 2017 end-page: 325 article-title: Model update May 2016: Upper‐mantle heterogeneity beneath North America from travel‐time tomography with global and USArray data publication-title: Seismological Research Letters – volume: 122 start-page: 108 issue: 1 year: 1995 end-page: 124 article-title: Constraints on seismic velocities in the Earth from traveltimes publication-title: Geophysical Journal International – volume: 40 start-page: 569 issue: 1 year: 2012 end-page: 595 article-title: Geophysics of chemical heterogeneity in the mantle publication-title: Annual Review of Earth and Planetary Sciences – volume: 256 start-page: 182 issue: 1‐2 year: 2007 end-page: 195 article-title: Experimental determination of the effect of H O on the 410‐km seismic discontinuity publication-title: Earth and Planetary Science Letters – volume: 386 start-page: 578 issue: 6625 year: 1997 end-page: 584 article-title: Evidence for deep mantle circulation from global tomography publication-title: Nature – volume: 109 year: 2004 article-title: Single‐crystal elasticity of fayalite to 12 GPa publication-title: Journal of Geophysical Research – start-page: 181 year: 2006 end-page: 193 – volume: 159 start-page: 276 issue: 3–4 year: 2006 end-page: 285 article-title: The effect of iron on the elastic properties of ringwoodite at high pressure publication-title: Physics of the Earth and Planetary Interiors – volume: 86 start-page: 365 issue: 2–4 year: 1987 end-page: 376 article-title: Phase‐transformations in a Harzburgite composition to 26 Gpa—Implications for dynamical behavior of the subducting slab publication-title: Earth and Planetary Science Letters – volume: 85 start-page: 292 issue: 2 year: 2000 end-page: 295 article-title: Sound velocities of wadsleyite β‐(Mg Fe ) SiO to 10 GPa publication-title: American Mineralogist – volume: 43 start-page: 2480 year: 2016 end-page: 2487 article-title: Seismological detection of low‐velocity anomalies surrounding the mantle transition zone in Japan subduction zone publication-title: Geophysical Research Letters – volume: 120 start-page: 8259 year: 2015 end-page: 8280 article-title: Comparative compressibility of hydrous wadsleyite and ringwoodite: Effect of H O and implications for detecting water in the transition zone publication-title: Journal of Geophysical Research: Solid Earth – start-page: 251 year: 1986 end-page: 274 – year: 2006 – volume: 105 start-page: 429 issue: 2 year: 1991 end-page: 465 article-title: Traveltimes for global earthquake location and phase identification publication-title: Geophysical Journal International – volume: 163 start-page: 297 issue: 2 year: 2012 end-page: 316 article-title: H O storage capacity of olivine and low‐Ca pyroxene from 10 to 13 GPa: Consequences for dehydration melting above the transition zone publication-title: Contributions to Mineralogy and Petrology – volume: 28 start-page: 405 issue: 3 year: 2008 end-page: 413 article-title: Compressional and shear wave velocities of Fe SiO spinel at high pressure and high temperature publication-title: High Pressure Research – volume: 72 start-page: 1051 year: 1987 end-page: 1055 article-title: β‐Mg SiO : A potential host for water in the mantle publication-title: American Mineralogist – volume: 268 start-page: 74 issue: 5207 year: 1995 end-page: 76 article-title: The effect of H O on the 410‐kilometer seismic discontinuity publication-title: Science – ident: e_1_2_6_104_1 doi: 10.1016/j.epsl.2008.04.041 – ident: e_1_2_6_109_1 doi: 10.1029/RG014i004p00541 – ident: e_1_2_6_60_1 doi: 10.1016/j.pepi.2006.02.002 – ident: e_1_2_6_22_1 doi: 10.2138/am.2005.1751 – volume: 72 start-page: 1051 year: 1987 ident: e_1_2_6_90_1 article-title: β‐Mg2SiO4: A potential host for water in the mantle publication-title: American Mineralogist – ident: e_1_2_6_30_1 doi: 10.1029/2000JB000049 – ident: e_1_2_6_27_1 doi: 10.2138/rmg.2006.62.11 – ident: e_1_2_6_47_1 doi: 10.2138/am‐2000‐2‐306 – ident: e_1_2_6_5_1 doi: 10.1002/2014GC005627 – ident: e_1_2_6_61_1 doi: 10.1029/JB074i025p05961 – ident: e_1_2_6_99_1 doi: 10.1007/s00410‐011‐0675‐7 – ident: e_1_2_6_111_1 doi: 10.1007/978-1-4612-4928-3_7 – ident: e_1_2_6_29_1 doi: 10.1029/1999JB900300 – ident: e_1_2_6_70_1 doi: 10.2138/am.2011.3807 – ident: e_1_2_6_65_1 doi: 10.1029/2001JB000317 – ident: e_1_2_6_24_1 doi: 10.1002/2014GC005588 – ident: e_1_2_6_28_1 doi: 10.1016/j.epsl.2007.01.023 – ident: e_1_2_6_51_1 doi: 10.1029/2009GL038660 – ident: e_1_2_6_54_1 doi: 10.1016/j.epsl.2010.11.038 – ident: e_1_2_6_110_1 doi: 10.1007/BF00223318 – ident: e_1_2_6_118_1 doi: 10.1016/S0012-821X(97)00010-1 – volume: 79 start-page: 1021 year: 1994 ident: e_1_2_6_91_1 article-title: A crystallographic model for hydrous wadsleyite (β‐Mg2SiO4): An ocean in the Earth's interior? publication-title: American Mineralogist – ident: e_1_2_6_67_1 doi: 10.1029/2005GL023453 – ident: e_1_2_6_59_1 doi: 10.1007/s004100050161 – ident: e_1_2_6_108_1 doi: 10.1002/2015GL063436 – ident: e_1_2_6_62_1 doi: 10.2138/am-2003-8-913 – ident: e_1_2_6_33_1 doi: 10.1098/rsta.2002.1077 – ident: e_1_2_6_72_1 doi: 10.1016/j.epsl.2010.02.025 – ident: e_1_2_6_95_1 doi: 10.1111/j.1365‐246X.2005.02642.x – ident: e_1_2_6_116_1 doi: 10.1029/96JB01266 – ident: e_1_2_6_106_1 doi: 10.2138/am‐2003‐1025 – ident: e_1_2_6_79_1 doi: 10.1038/nature13080 – ident: e_1_2_6_21_1 doi: 10.2138/am.2005.1751 – ident: e_1_2_6_23_1 doi: 10.1016/0031‐9201(75)90017‐5 – ident: e_1_2_6_57_1 doi: 10.1111/j.1365‐246X.1991.tb06724.x – ident: e_1_2_6_32_1 doi: 10.1029/94JB00042 – ident: e_1_2_6_39_1 doi: 10.1146/annurev.earth.34.031405.125211 – ident: e_1_2_6_115_1 doi: 10.1126/science.260.5113.1487 – ident: e_1_2_6_74_1 doi: 10.1016/j.epsl.2012.03.001 – ident: e_1_2_6_35_1 doi: 10.1016/0022‐5096(63)90060‐7 – ident: e_1_2_6_87_1 doi: 10.1016/S0031‐9201(03)00022‐0 – ident: e_1_2_6_92_1 doi: 10.1029/2001GL014418 – ident: e_1_2_6_36_1 doi: 10.1016/j.epsl.2006.06.014 – ident: e_1_2_6_6_1 doi: 10.1029/2008JB005949 – ident: e_1_2_6_7_1 doi: 10.1146/annurev.ea.20.050192.002523 – ident: e_1_2_6_52_1 doi: 10.1029/GM168 – ident: e_1_2_6_103_1 doi: 10.1029/97JB01168 – ident: e_1_2_6_75_1 doi: 10.1016/j.pepi.2004.09.007 – ident: e_1_2_6_66_1 doi: 10.1080/08957950802296287 – ident: e_1_2_6_102_1 doi: 10.1029/157GM05 – ident: e_1_2_6_55_1 doi: 10.1016/S0012‐821X(98)00034‐X – ident: e_1_2_6_97_1 doi: 10.1146/annurev.earth.36.031207.124244 – ident: e_1_2_6_53_1 doi: 10.1029/93GL01767 – ident: e_1_2_6_44_1 doi: 10.1029/91JB02675 – ident: e_1_2_6_107_1 doi: 10.1029/2006GL026441 – ident: e_1_2_6_100_1 doi: 10.1016/j.pepi.2015.11.005 – ident: e_1_2_6_117_1 doi: 10.1016/S0012‐821X(98)00063‐6 – ident: e_1_2_6_19_1 doi: 10.1029/168GM14 – ident: e_1_2_6_40_1 doi: 10.1016/j.epsl.2005.04.022 – ident: e_1_2_6_113_1 doi: 10.1016/j.epsl.2008.08.012 – ident: e_1_2_6_11_1 doi: 10.1785/0220160186 – ident: e_1_2_6_12_1 doi: 10.1016/S0031‐9201(03)00156‐0 – ident: e_1_2_6_64_1 doi: 10.1073/pnas.0608609104 – ident: e_1_2_6_73_1 doi: 10.1007/s11430‐016‐5277‐9 – ident: e_1_2_6_37_1 doi: 10.1016/j.pepi.2008.01.003 – ident: e_1_2_6_93_1 doi: 10.1016/j.pepi.2003.08.011 – ident: e_1_2_6_105_1 doi: 10.1126/science.1083636 – ident: e_1_2_6_77_1 doi: 10.1016/j.pepi.2003.09.015 – ident: e_1_2_6_46_1 doi: 10.1016/j.pepi.2007.02.010 – ident: e_1_2_6_2_1 doi: 10.1029/97JB00682 – ident: e_1_2_6_9_1 doi: 10.1180/0026461056930248 – ident: e_1_2_6_45_1 doi: 10.1016/j.pepi.2010.06.014 – ident: e_1_2_6_68_1 doi: 10.1016/j.pepi.2008.10.020 – ident: e_1_2_6_83_1 doi: 10.1111/j.1365‐246X.1979.tb04790.x – ident: e_1_2_6_96_1 doi: 10.1111/j.1365‐246X.2010.04890.x – ident: e_1_2_6_38_1 doi: 10.1016/j.pepi.2006.08.004 – ident: e_1_2_6_89_1 doi: 10.1029/98JB01819 – ident: e_1_2_6_112_1 doi: 10.1126/science.268.5207.74 – ident: e_1_2_6_49_1 doi: 10.1029/GM168 – ident: e_1_2_6_17_1 doi: 10.1002/2016GL068239 – ident: e_1_2_6_4_1 doi: 10.1038/320321a0 – ident: e_1_2_6_78_1 doi: 10.1016/S0031‐9201(01)00192‐3 – ident: e_1_2_6_85_1 doi: 10.1126/science.1253358 – ident: e_1_2_6_25_1 doi: 10.1126/sciadv.1603024 – ident: e_1_2_6_58_1 doi: 10.1111/j.1365‐246X.1995.tb03540.x – ident: e_1_2_6_80_1 doi: 10.1029/93RG01249 – ident: e_1_2_6_14_1 doi: 10.1029/2001GL014429 – ident: e_1_2_6_81_1 doi: 10.1016/0012‐821X(67)90114‐8 – ident: e_1_2_6_16_1 doi: 10.1029/2009GC002540 – ident: e_1_2_6_98_1 doi: 10.1007/BF00691869 – ident: e_1_2_6_26_1 doi: 10.1093/gji/ggu334 – ident: e_1_2_6_101_1 doi: 10.1038/386578a0 – ident: e_1_2_6_41_1 doi: 10.1093/petrology/egt035 – ident: e_1_2_6_48_1 doi: 10.2138/rmg.2006.62.14 – ident: e_1_2_6_18_1 doi: 10.1002/2013GC005122 – ident: e_1_2_6_15_1 doi: 10.1016/j.epsl.2005.04.033 – ident: e_1_2_6_8_1 doi: 10.1145/76909.76913 – ident: e_1_2_6_82_1 doi: 10.1029/2003JB002610 – ident: e_1_2_6_84_1 doi: 10.1016/j.epsl.2014.05.014 – ident: e_1_2_6_63_1 doi: 10.2138/am‐2000‐2‐305 – ident: e_1_2_6_34_1 doi: 10.1038/nature09401 – ident: e_1_2_6_94_1 doi: 10.1029/2004JB003162 – ident: e_1_2_6_3_1 doi: 10.1029/2007GC001834 – ident: e_1_2_6_43_1 doi: 10.1016/0012‐821X(87)90233‐0 – ident: e_1_2_6_114_1 doi: 10.2138/am.2012.4010 – ident: e_1_2_6_13_1 doi: 10.1002/2015JB012123 – ident: e_1_2_6_88_1 doi: 10.1029/97GL03217 – ident: e_1_2_6_50_1 doi: 10.1029/2008GL034398 – ident: e_1_2_6_56_1 doi: 10.1029/RG028i004p00399 – ident: e_1_2_6_42_1 doi: 10.1016/j.pepi.2010.08.003 – ident: e_1_2_6_10_1 doi: 10.2138/am.2012.3869 – ident: e_1_2_6_69_1 doi: 10.1002/2015GL067097 – ident: e_1_2_6_71_1 doi: 10.1029/2008GL035618 – ident: e_1_2_6_31_1 doi: 10.1029/JB074i025p05949 – ident: e_1_2_6_76_1 doi: 10.1098/rsta.1981.0025 – ident: e_1_2_6_20_1 doi: 10.1016/j.pepi.2003.07.018 – ident: e_1_2_6_86_1 doi: 10.1002/2014GL061231 |
| SSID | ssj0014558 |
| Score | 2.3397255 |
| Snippet | Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and... Abstract Mapping the spatial distribution of water in the mantle transition zone (MTZ, 410‐ to 660‐km depth) may be approached by combining thermodynamic and... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2308 |
| SubjectTerms | Cations Defects Dehydration Depth Distribution Earth Elastic properties elasticity Hydration Iron Iron content Lower mantle Magnesium mantle transition zone Modelling Olivine Oxygen Physics Profiles Properties ringwoodite Seismic activity Seismic velocities Seismograms Seismology Shear Spatial distribution Storage capacity Storage conditions Temperature profiles Tomography Transition zone Upper mantle Velocity wadsleyite Water Water depth water in the mantle Water storage |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCl7EJ64v5qAnLTZt0rTeVLR7UFl8IV5K00ygsK6yq8L-eydpV9aDevFWShiGyYT5hky-j7E9EWqB3PJAoqIGRSKdORRxEKHkSHCfa-Mp8y_V9XX6-Jj1pqS-3ExYQw_cBO5IZFbJUlbWGOPoqlKOUiluOJm1GHmybUI9k2aqvT8QUqbtmHsYZdTh8zQ_89oa4lsB8jz938DlNET1NeZiiS224BBOGqeW2QwOVth87sV3x6us7o6vyrunYziB3ti9-YdeM10FhDzBqZq5t-Vwi_Xoua7gAalQecJUqAfQHZshdflwg24CeQQvFgj7wRVFto_gS5af3oKnlwGusfuL87uzbtBKJQQl4QEVSBubShIWs8oFJTTa6JCgSCJNqnVmrSlt5r5DTGyYYCySuBKoQ8tjlfIqXmezAzK_wSApOeqEEsxJwSQCS8UzsoEiQ6ltih12MIlfUbU84k7Ool_4--woK6aj3WH7X6tfG_6MH9aduq34WuNYr_0PyoWizYXir1zosO3JRhbtURwV1OFS06hSITvs0G_ur44UeZ6fR4RS1eZ_uLTFFpz1ZmRwm82-Dd9xh81VH2_1aLjrk_YTp0PtYQ priority: 102 providerName: Directory of Open Access Journals |
| Title | HyMaTZ: A Python Program for Modeling Seismic Velocities in Hydrous Regions of the Mantle Transition Zone |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GC007464 https://www.proquest.com/docview/2111447845 https://doaj.org/article/49f75a5cfddd422881e5771d15e2fe26 |
| Volume | 19 |
| WOSCitedRecordID | wos000452122500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1525-2027 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1525-2027 dateEnd: 20231207 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: WIN dateStart: 20000101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1525-2027 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: DRFUL dateStart: 20000101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlaaGXpk-yeSw6tKfG1FpLlp1bku56C9llyaMNuRjLGhVDshvWSWAv-e2ZkZ1lc2ih9OaHZGxrxvONPPo-xj7L0EgQTgQKNCYoCtDnQEZBD5QAhPvCWE-Zf6zH4-TiIp20E260Fqbhh1hOuJFn-O81OXhh6pZsgDgyMXIl2ZHXyyA6UCEFCRj8-jFe_kSQystzksJPQDl-W_eO3b-tdn4WkTxx_zO0uYpZfdAZbPzv7b5lb1q4yQ8a-3jHXsD0PXuVeTnfxQdWDRej4uxynx_wyYJYBPikqdfiiGU56aTRanV-ClV9XZX8J2Do8xSsvJry4cLOZ3c1PwGqaa75zHFEk3yEY3UF3AdBXw_GL2dT-MjOB_2zo2HQii8EBSIMHSgX2VIhunPaASY91lgTIriJlU2MSZ2zhUtpO4TYhTFEMo5KCSZ0ItKJKKNPbG2Kl99kPC4EmBhNlsRlYgmFFileA2QKyrgEOuzr0wDkZctMTgIZV7n_Q95L89WX12Fflq1vGkaOP7Q7pLFctiEebX9gNv-dt26Zy9RpVajSWWuJDC0RoLQWVqDR0mN32M6TJeStc9c55syYhupEqg7b82P-1xvJsyzr9xD36q1_a77NXtOJptxwh63dzu9gl70s72-ret71swddtv79ZHB-jHujh37X2_8jFs_-vQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED7BAMELvxGFAX6AJ4gWN3ac8DamLZ1oqwoKTHuxkviMIo0WNRtS_3vunKzqHkBCvEXRxUriu9x3zvn7AF6ruFIovYw0GipQNFLMoUqiIWqJBPdl5QJl_thMp9nJST7rdU55L0zHD7FZcOPICN9rDnBekO7ZBpgkk1JXVhwEwQx1HW4owhqs3fDteLr5jaB0EOhkjZ-Iq_y-852u39u--kpOCtT9V_DmNmoNaefo3n_f8H242yNOsd-5yAO4houHcKsIir7rR9CM1pNyfvpe7IvZmokExKxr2RIEZwVLpfGGdfEZm_ZHU4uvSNkvsLCKZiFGa7daXrTiE3JbcyuWXhCgFBOarjMUIQ-GljBxulzgY_hydDg_GEW9_kJUEsgwkfaJqzUBPG88Ut3jKlfFhG9S7bKqyr13pc_5OMbUxykmKk1qhVXsZWIyWSdPYGdBwz8FkZYSq5S8lvVlUoWlkTmNgSpHXfkMB_D2cgZs3ZOTs0bGmQ0_yYe53X55A3izsf7ZkXL8we4DT-bGhqm0w4nl6rvtI9Oq3Btd6to755gPLZOojZFOkt_yYw9g99IVbB_fraWymSpRkyk9gHdh0v96I7YoisMhQV_z7N_MX8Ht0XwytuPj6cfncIeNuu7DXdg5X13gC7hZ_zpv2tXL4Pi_ARmw_xU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9NAEB1BCohL-RahBfYAJ7DqjXe9dm_9ioNIo6i0qOrFsr2zyFJJqrhFyr9nZu1G6QEkxM2yxivbO-N54519D-CDCkuF0slAo6ECRSPFHKooGKCWSHBfltZT5o_NZJKcn6fTTueU98K0_BCrH24cGf57zQGOV9Z1bANMkkmpK8kOvGCGug8binVkerBxeDI8G68WEpT2Ep2s8hNwnd_1vtMIO-vX38lKnrz_DuJcx60-8Qyf_PctP4XNDnOKvdZJnsE9nD2Hh5nX9F2-gHq0PC5OL3bFnpgumUpATNumLUGAVrBYGm9ZF9-wbn7WlfiOlP88D6uoZ2K0tIv5TSNOkBubGzF3giClOKYJu0ThM6FvChMX8xm-hLPh0enBKOgUGIKCYIYJtItspQniOeOQKh9b2jIkhBNrm5Rl6pwtXMrHIcYujDFScVQpLEMnI5PIKnoFvRkN_xpEXEgsY_JbVpiJFRZGpjQGqhR16RLsw6fbGcirjp6cVTIuc79MPkjz9ZfXh48r66uWluMPdvs8mSsbJtP2J-aLH3kXm7lKndGFrpy1lhnREonaGGkleS4_dh-2b10h7yK8yalwplrUJEr34bOf9L_eSJ5l2dGAwK9582_m7-HR9HCYj79Mvm7BY7Zp2w-3oXe9uMG38KD6dV03i3ed5_8Gunn_vg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HyMaTZ%3A+A+Python+Program+for+Modeling+Seismic+Velocities+in+Hydrous+Regions+of+the+Mantle+Transition+Zone&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Wang%2C+Fei&rft.au=Barklage%2C+Mitchell&rft.au=Lou%2C+Xiaoting&rft.au=van+der+Lee%2C+Suzan&rft.date=2018-08-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=19&rft.issue=8&rft.spage=2308&rft.epage=2324&rft_id=info:doi/10.1029%2F2018GC007464&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2018GC007464 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon |